Aims and Scope. Paleoceanography focuses on original contributions dealing with reconstructions of past conditions and processes of change as recorded in sediments deposited in water. This especially includes marine sediments, but may extend to sediments from freshwater environments. Approaches to past reconstruction might include sedimentology, geochemistry, paleoontology, oceanography, geophysics, and modeling. Contributions will emphasize global and regional aspects, rather than purely local interests, and can cover all ages (Precambrian to the Quaternary, including modern analogs).

Editors: Ellen Thomas (Editor in Chief) (ellen.thomas@yale.edu), Heiko Pälike (hpaelike@marum.de).

Associate Editors: Stephen Barker, Helen C. Bostock, Gabriel J. Bowen, Min-Te Chen, Guy Harrington, Bärbel Hönsch, Zhifei Liu, Christopher Reinhard, Joellen L. Russell, Daniela N. Schmidt, Elisabeth L. Sikes, Ryuji Tada, Sandra Kirtland Turner.

AGU Editorial Team. For assistance with submitted manuscripts, file specifications, or AGU publication policy please contact paleoceanography@agu.org.

For submission instructions or to submit a manuscript visit: http://paleoceanography-submit.agu.org.

The journal to which you are submitting your manuscript employs a plagiarism detection system. By submitting your manuscript to this journal you accept that your manuscript may be screened for plagiarism against previously published works.


Publication Charges. The publication charge income received for Paleoceanography helps support rapid publication, allows more articles per volume, makes possible the low subscription rates, and supports many of AGU’s scientific and outreach activities. Publication charge information can be found here: http://publications.agu.org/author-resource-center/publication-fees/.

To encourage papers to be written in a concise fashion, there is an excess length fee. For Paleoceanography the fee is assessed only on the equivalent of more than 25 publication units. The excess length fee does not apply to review articles, and the editor may waive the fee on a limited number of concisely written papers that merit being longer. There is no charge for color in any format.

Copyright and Photocopying. Copyright © 2016. American Geophysical Union. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the prior permission in writing from the copyright holder. Authorization to copy items for internal and personal use is granted by the copyright holder for libraries and other users registered with their local Reproduction Rights Organization (RRO), e.g. Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, USA (www.copyright.com), provided the appropriate fee is paid directly to the RRO. This consent does not extend to other kinds of copying such as copying for general distribution, for advertising or promotional purposes, for creating new collective works or for resale. Special requests should be addressed to: publications@agu.org.

Disclaimer. The Publisher, American Geophysical Union, and Editors cannot be held responsible for errors or any consequences arising from the use of information contained in this journal; the views and opinions expressed do not necessarily reflect those of the Publisher, American Geophysical Union, and Editors, neither does the publication of advertisements constitute any endorsement by the Publisher, American Geophysical Union, and Editors of the products advertised.

Individual Subscriptions. Member subscriptions are available through members.agu.org or by contacting the AGU Member Service Center. The Service Center is open from 8:00 a.m. to 8:30 p.m. Eastern time: +1 202 462 6900, +1 800 966 2481; Fax: +1 202 777 7393; e-mail: service@agu.org. Questions about meetings or membership will be referred to the appropriate staff.

Publisher. Paleoceanography is published on behalf of the American Geophysical Union by Wiley Periodicals, Inc., 111 River St., Hoboken, NJ, 07030-5774, +1 201 748 6000.

Journal Customer Services. For institutional subscription information, claims and any enquiry concerning your journal subscription please go to www.wileycustomerhelp.com/ask or contact your nearest office.

Americas: Email: cs-journals@wiley.com; Tel: +1 781 388 8598 or +1 800 835 6770 (toll free in the USA & Canada).
Europe, Middle East, and Africa: Email: cs-journals@wiley.com; Tel: +44 (0) 1865 778315.
Asia Pacific: Email: cs-journals@wiley.com; Tel: +65 6511 8000.
Japan: For Japanese speaking support, Email: cs-japan@wiley.com; Tel: +65 6511 8010 or Tel (toll-free): 005 316 50 480.


Production Editor. For assistance with post-acceptance articles and other production issues please contact paloprod@wiley.com.

Access to this journal is available free online within institutions in the developing world through the AGORA initiative with the FAO, the HINARI initiative with the WHO, the OARE initiative with UNEP, and the ARDI initiative with WIPO. For information, visit www.aginternetwork.org, www.who.int/hinari/en/, www.oaresciences.org, or www.wipo.int/ardi/en.

ISSN 1944-9186 (Online)

View this journal online at http://paleoceanography.agu.org.

Cover: In D’onofrio et al. [DOI: 10.1002/2016PA002940]. Cartoons illustrating the environmental scenarios across the ETM2 at the Tehyan Terche section deriving from the integrated record of changes in calcareous plankton and abiotic proxies. Similar sequences of environmental reconstructions, though less extreme, can be outlined for the H2 and I1 events (see more extensive discussions in the text). Depth is not in scale. (a) Pre-event: relatively warm, stable, and meso-oligotrophic conditions in the photic zone and structured water column with a relatively expanded OMZ. These conditions are similar to those observed during the ETM2-H2 and H2-I1 transition phases. (b) Onset and peak of the CIE: meso-eutrophic surface-water related to enhanced nutrient discharge induced by improved hydrological cycle coupled with collapse of thermal water-column stratification. (c) CIE early recovery: peak of eutrophic conditions relatively to the pre-event conditions in warm surface-water and still persistent weakening of thermal water-column stratification. (d) CIE late recovery: resume of relatively stable meso-oligotrophic environment in surface waters and of a stratified water column. See pp. 1225–1247.
Research Articles

1154 Bjørg Risebrobakken, Carin Andersson, Stijn De Schepper, and Erin L. McClymont
Low-frequency Pliocene climate variability in the eastern Nordic Seas (doi 10.1002/2015PA002918)

Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum (doi 10.1002/2016PA002988)

1193 Raphaël Morard, Melanie Reinelt, Cristiano M. Chiessi, Jeroen Groeneveld, and Michal Kucera
Tracing shifts of oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata (doi 10.1002/2016PA002977)

1206 A. M. R. Aubry, A. de Vernal, and C. Hillaire-Marcel
The “warm” Marine Isotope Stage 31 in the Labrador Sea: Low surface salinities and cold subsurface waters prevented winter convection (doi 10.1002/2015PA002903)

1225 Roberta D’Onofrio, Valeria Luciani, Eliana Fornaciari, Luca Giusberti, Flavia Boscolo Galazzo, Edoardo Dallanave, Thomas Westerhold, Mario Sprovieri, and Sonia Telch
Environmental perturbations at the early Eocene ETM2, H2, and I1 events as inferred by Tethyan calcareous plankton (Terche section, northeastern Italy) (doi 10.1002/2016PA002940)

Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia (doi 10.1002/2016PA002967)

1261 George E. A. Swann, Andrea M. Snelling, and Jennifer Pike
Biogeochemical cycling in the Bering Sea over the onset of major Northern Hemisphere Glaciation (doi 10.1002/2016PA002978)

1270 Lennert B. Stap, Roderik S. W. van de Wal, Bas De Boer, Richard Bintanja, and Lucas J. Lourens
The MMCO-EOT conundrum: Same benthic δ18O, different CO2 (doi 10.1002/2016PA002958)

1283 Carolyn W. Snyder
Bayesian hierarchical regression analysis of variations in sea surface temperature change over the past million years (doi 10.1002/2016PA002944)