Aims and Scope. JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.

Editors: Minghua Zhang (Editor-in-Chief), (minghua.zhang@stonybrook.edu), James H. Crawford (http://orcid.org/0000-0002-1927-5405), Ruby Leung (http://orcid.org/0000-0002-6982-0934), William Randel (http://orcid.org/0000-0002-3221-9467), Zhanqing Li (http://orcid.org/0000-0002-7364-2624), William Randel (http://orcid.org/0000-0002-5999-7162), Lynn Russell (http://orcid.org/0000-0002-3823-1519), Chidong Zhang (http://orcid.org/0000-0001-9788-1561).

AGU Editorial Team. For assistance with submitted manuscripts, file specifications, or AGU publication policy please contact jgr-atmospheres@agu.org.

For submission instructions or to submit a manuscript visit: http://jgr-atmospheres-submit.agu.org.

The journal to which you are submitting your manuscript employs a plagiarism detection system. By submitting your manuscript to this journal you accept that your manuscript may be screened for plagiarism against previously published works.

Publication Charges. The publication charge income received for JGR: Atmospheres helps support rapid publication, allows more articles per volume, makes possible the low subscription rates, and supports many of AGU's scientific and outreach activities. Publication charge information can be found here: http://publications.agu.org/author-resource-center/publication-fees/.

To encourage papers to be written in a concise fashion, there is an excess length fee. For JGR: Atmospheres the fee is assessed only on the equivalent of more than 25 publication units. The excess length fee does not apply to review articles, and the editor may waive the fee on a limited number of concisely written papers that merit being longer. There is no charge for color in any format.

Copyright and Photocopying. Copyright © 2019 American Geophysical Union. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the prior permission in writing from the copyright holder. Authorization to copy items for internal and personal use is granted by the copyright holder for libraries and other users registered with their local Reproduction Rights Organization (RRO), e.g. Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, USA (www.copyright.com), provided the appropriate fee is paid directly to the RRO. This consent does not extend to other kinds of copying such as copying for general distribution, for advertising or promotional purposes, for republication, for creating new collective works or for resale. Permissions for such reuse can be obtained using the RightsLink “Request Permissions” link on Wiley Online Library. Special requests should be addressed to: permissions@wiley.com.

Disclaimer. The Publisher, American Geophysical Union, and Editors cannot be held responsible for errors or any consequences arising from the use of information contained in this journal; the views and opinions expressed do not necessarily reflect those of the Publisher, American Geophysical Union, and Editors, neither does the publication of advertisements constitute any endorsement by the Publisher, American Geophysical Union, and Editors of the products advertised.

Individual Subscriptions. Member subscriptions are available through members.agu.org or by contacting the AGU Member Service Center. The Service Center is open from 8:00 a.m. to 8:30 p.m. Eastern time: +1 202 462 6900, +1 800 966 2481; Fax: +1 202 777 7393; e-mail: service@agu.org. Questions about meetings or membership will be referred to the appropriate staff.

Publisher. JGR: Atmospheres is published on behalf of the American Geophysical Union by Wiley Periodicals, Inc., 111 River St., Hoboken, NJ, 07030-5774, +1 201 748 6000.

Journal Customer Services. For institutional subscription information, claims and any enquiry concerning your journal subscription please go to https://hub.wiley.com/community/support/onlinelibrary or contact your nearest office.

Americas: Email: cs-journals@wiley.com; Tel: +1 781 388 8598 or +1 800 835 6770 (toll free in the USA & Canada).
Europe, Middle East and Africa: Email: cs-journals@wiley.com; Tel: +44 (0) 1865 778315.
Asia Pacific: Email: cs-journals@wiley.com; Tel: +65 6511 8000.
Japan: For Japanese speaking support, Email: cs-japan@wiley.com.

Production Editor. For assistance with post-acceptance articles and other production issues please contact JGRDprod@wiley.com.

Access to this journal is available free online within institutions in the developing world through the AGORA initiative with the FAO, the HINARI initiative with the WHO, the OARE initiative with UNEP, and the ARDI initiative with WIPO. For information, visit www.aginternetwork.org, www.who.int/hinari/en, www.oaresciences.org, or www.wipo.int/ardi/en.

ISSN 2169-8996 (Online)

View this journal online at http://jgr-atm.agu.org.

Cover: In Feng et al. (https://doi.org/10.1029/2019JD031165), image shows the monthly mean of the modeled atmospheric boundary layer CO2 mole fractions for (a) and (b) boundary condition components and (c) and (d) the biogenic flux components. (a) and (c) The monthly means at fifth model level for January 2010 at 20 UTC and (b) and (d) for July. See pp. 14,325–14,346.
Climate and Dynamics

13,604 Kuan-Man Xu, Yongxiang Hu, and Takmeng Wong
Convective Aggregation and Indices Examined from CERES Cloud Object Data (https://doi.org/10.1029/2019JD030816)

13,625 Annette L. Hirsch, Jason P. Evans, Giovanni Di Virgilio, Sarah E. Perkins-Kirkpatrick, Daniel Argüeso, Andrew J. Pitman, Claire C. Carouge, Jatin Kala, Julia Andrys, Paola Petrelli, and Burkhardt Rockel
Amplification of Australian Heatwaves via Local Land-Atmosphere Coupling (https://doi.org/10.1029/2019JD030665)

13,648 Meng Zuo, Tianjun Zhou, and Wenmin Man
Wetter Global Arid Regions Driven by Volcanic Eruptions (https://doi.org/10.1029/2019JD031171)

13,663 Amélie Kirchgässner, John King, and Alan Gadian
The Representation of Föhn Events to the East of the Antarctic Peninsula in Simulations by the Antarctic Mesoscale Prediction System (https://doi.org/10.1029/2019JD030637)

13,680 Siwei He, Tatiana G. Smirnova, and Stanley G. Benjamin

13,714 Jing Xu, Yuqing Wang, and Chi Yang
Interbasin Differences in the Median and Variability of Tropical Cyclone MPI in the Northern Hemisphere (https://doi.org/10.1029/2019JD031588)

13,731 Ze Zhang, Yuqing Wang, Weimin Zhang, and Jing Xu
Coastal Ocean Response and Its Feedback to Typhoon Hato (2017) Over the South China Sea: A Numerical Study (https://doi.org/10.1029/2019JD031377)

13,750 C.E. Clapp, J.B. Smith, K.M. Bedka, and J.G. Anderson
Identifying Source Regions and the Distribution of Cross-Tropopause Convective Outflow Over North America During the Warm Season (https://doi.org/10.1029/2019JD031382)

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology (https://doi.org/10.1029/2019JD030936)

*This article is part of a Special Section—Atmospheric Rivers: Intersection of Weather and Climate

The Land-Sea Breeze of the Red Sea: Observations, Simulations, and Relationships to Regional Moisture Transport (https://doi.org/10.1029/2019JD031007)

13,826 Huancui Hu and Francina Domínguez
Understanding the Role of Tropical Moisture in Atmospheric Rivers (https://doi.org/10.1029/2019JD030867)

13,843 Abduduwaili Abulikemu, Yan Wang, Runxiang Gao, Yuan Wang, and Xin Xu
A Numerical Study of Convection Initiation Associated With a Gust Front in Bohai Bay Region, North China (https://doi.org/10.1029/2019JD030883)

Subseasonal Forecasts of the 2018 Indian Summer Monsoon Over Bihar* (https://doi.org/10.1029/2019JD031374)

*This article is part of a Special Section—Bridging Weather and Climate: Subseasonal-to-Seasonal (S2S) Prediction

13,876 Alcide Zhao, David S. Stevenson, and Massimo A. Bollasina
Climate Forcing and Response to Greenhouse Gases, Aerosols, and Ozone in CESM1 (https://doi.org/10.1029/2019JD030769)

13,895 Anna M. Jalowska and Tanya L. Spero
Developing PIDF Curves From Dynamically Downscaled WRF Model Fields to Examine Extreme Precipitation Events in Three Eastern U.S. Metropolitan Areas (https://doi.org/10.1029/2019JD031584)
Aerosol and Clouds

14,008 Mohammad Azadifar, Marcos Rubinstein, Quanxin Li, Farhad Rachidi, and Vladimir Rakov
A New Engineering Model of Lightning M Component That Reproduces Its Electric Field Waveforms at Both Close and Far Distances (https://doi.org/10.1029/2019JD030796)

First 10 Months of TGF Observations by ASIM (https://doi.org/10.1029/2019JD031214)

14,037 Kumar Ravi Prakash, Vinmesh Pant, and Tanuja Nigam
Effects of the Sea Surface Roughness and Sea Spray-Induced Flux Parameterization on the Simulations of a Tropical Cyclone (https://doi.org/10.1029/2018JD029760)

14,059 Xiaoli Zhou and Christopher S. Bretherton
The Correlation of Mesoscale Humidity Anomalies With Mesoscale Organization of Marine Stratocumulus From Observations Over the ARM Eastern North Atlantic Site (https://doi.org/10.1029/2019JD031056)

14,072 Jacob Shpund, Alexander Khain, Barry Lynn, Jiwen Fan, Bin Han, Alexander Ryzhkov, Jeffrey Snyder, Jimy Dudhia, and Dave Gill
Simulating a Mesoscale Convective System Using WRF With a New Spectral Bin Microphysics: 1: Hail vs Graupel (https://doi.org/10.1029/2019JD030576)

14,102 Fang Zhang, Jingye Ren, Tianyi Fan, Lu Chen, Weiqi Xu, Yele Sun, Renyi Zhang, Jeyooy Liu, Sihui Jiang, Hao Wu, Shange Li, Maureen C. Cribb, and Zhangling Li
Significantly Enhanced Aerosol CCN Activity and Number Concentrations by Nucleation-Initiated Haze Events: A Case Study in Urban Beijing (https://doi.org/10.1029/2019JD031457)

14,114 Fei Wang, Hengyi Liu, Wansheng Dong, Yijun Zhang, Wen Yao, and Dong Zheng
Radar Reflectivity of Lightning Flashes in Stratiform Regions of Mesoscale Convective Systems (https://doi.org/10.1029/2019JD031238)

14,133 S. Sharma, L.A. Barrie, E. Magnusson, G. Brattström, W.R. Leith, A. Steffen, and S. Landsberger
A Factor and Trends Analysis of Multidecadal Lower Tropospheric Observations of Arctic Aerosol Composition, Black Carbon, Ozone, and Mercury at Alert, Canada (https://doi.org/10.1029/2019JD030844)

14,162 Nicolau Pineda, Jordi Figueras i Ventura, David Romero, Amirhossein Mostajabi, Mohammad Azadifar, Antonio Sunjerga, Farhad Rachidi, Marcos Rubinstein, Joan Montanyà, Oscar van der Velde, Patricia Altube, Nikola Besic, Jacopo Grazio1, Urs Germann, and Earle R. Williams
Meteorological Aspects of Self-Initiated Upward Lightning at the Säntis Tower (Switzerland) (https://doi.org/10.1029/2019JD030834)

14,184 Zeen Zhu, Katja Lamer, Pavlos Kollias, and Eugene E. Clothiaux
The Vertical Structure of Liquid Water Content in Shallow Clouds as Retrieved From Dual-Wavelength Radar Observations (https://doi.org/10.1029/2019JD031188)

14,198 Dongshuai Li, Alejandro Luque, Farhad Rachidi, Marcos Rubinstein, Mohammad Azadifar, Gerhard Diendorfer, and Hannes Pichler
The Propagation Effects of Lightning Electromagnetic Fields Over Mountainous Terrain in the Earth-Ionosphere Waveguide (https://doi.org/10.1029/2018JD030014)

Bias Correction of High-Resolution Regional Climate Model Precipitation Output Gives the Best Estimates of Precipitation in Himalayan Catchments (https://doi.org/10.1029/2019JD030804)

Seasonal Variations in Western North Atlantic Remote Marine Aerosol Properties (https://doi.org/10.1029/2019JD031740)

14,262 Qian Chen, Yan Yin, Hui Jiang, Zhigang Chu, Lulin Xue, Rulin Shi, Xin Zhang, and Jinghua Chen
The Roles of Mineral Dust as Cloud Condensation Nuclei and Ice Nuclei During the Evolution of a Hail Storm (https://doi.org/10.1029/2019JD031403)
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,310</td>
<td>Water Vapor Near-UV Absorption: Laboratory Spectrum, Field Evidence, and Atmospheric Impacts</td>
<td>Linsen Pei, Qilong Min, Yuyi Du, Zhechen Wang, Bangsheng Yin, Kai Yang, Patrick Disterhoft, Thomas Pongetti, and Lei Zhu</td>
<td>https://doi.org/10.1029/2019JD030724</td>
</tr>
<tr>
<td>14,325</td>
<td>Seasonal Characteristics of Model Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary Inflow in Atmospheric CO₂ Simulations Over North America*</td>
<td>Sha Feng, Thomas Lauvaux, Kenneth J. Davis, Klaus Keller, Yu Zhou, Christopher Williams, Andrew E. Schuh, Junjie Liu, and Ian Baker</td>
<td>https://doi.org/10.1029/2019JD031165</td>
</tr>
</tbody>
</table>

*This article is part of a Special Section—A New Era of Lightning Observations From Space

Composition and Chemistry

This article is part of a Special Section—Carbon and Weather: Results from the Atmospheric Carbon and Transport -- America Mission