Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta
Abstract
Occurrences of solar wind plasma with abnormally low proton temperatures (Tp) have long been associated with the interplanetary manifestations (which we term “ejecta”) of coronal mass ejections (CMEs). We survey the National Space Science Data Center Omni solar wind database for 1965–1991, and data from the Helios 1 and 2 spacecraft for more limited periods, to identify plasma in which Tp is less than the temperature expected (Tex) from the well‐established correlation between the solar wind speed and Tp for normal solar wind expansion. The occurrence rate of low‐temperature plasma (specifically with Tp/Tex ≤ 0.5) is shown to be correlated with solar activity levels. Individual low‐temperature regions have durations from 1 to ∼80 hours with a mean of ∼10 hours. Around one third are encounters with the heliospheric plasma sheet (HPS). These events are observed most frequently during the increasing phase of solar activity when the HPS lies closer to the ecliptic. The abnormally low temperatures may be intrinsic to the HPS or may provide support for the proposal that the coronal streamer belt underlying the HPS is a frequent source of ejecta. The remaining events have an occurrence rate which shows a particularly clear correlation with solar activity levels and with the CME rate at the Sun (when CME observations are available), consistent with an association with ejecta. These events also show greater than chance associations with other ejecta signatures. We suggest that the Omni plasma data can provide information on the rate of ejecta passing the Earth, and hence give an indication of the CME rate, for a period commencing before spacecraft coronagraph CME observations became available in the early 1970s. Our findings suggest that Tp depressions may provide a more comprehensive indication of the presence of ejecta than other ejecta signatures, such as bidirectional solar wind electron heat fluxes and energetic ion flows, which alone do not identify all ejecta.
Number of times cited: 164
- Yu I. Yermolaev, I.G. Lodkina, N.S. Nikolaeva, M.Yu Yermolaev, M.O. Riazantseva and L.S. Rakhmanova, Statistic study of the geoeffectiveness of compression regions CIRs and Sheaths, Journal of Atmospheric and Solar-Terrestrial Physics, 10.1016/j.jastp.2018.01.027, (2018).
- S. Watari, Intense Geomagnetic Storms Associated with Coronal Holes Under the Weak Solar-Wind Conditions of Cycle 24, Solar Physics, 10.1007/s11207-018-1248-y, 293, 2, (2018).
- Zicai Yang, Fang Shen, Jie Zhang, Yi Yang, Xueshang Feng and Ian G. Richardson, Correlation Between the Magnetic Field and Plasma Parameters at 1 AU, Solar Physics, 10.1007/s11207-017-1238-5, 293, 2, (2018).
- Duraid A. Al‐Shakarchi and Huw Morgan, Properties of the HPS‐ICME‐CIR Interaction Event of 9–10 September 2011, Journal of Geophysical Research: Space Physics, 123, 4, (2535-2556), (2018).
- Johan L. Freiherr von Forstner, Jingnan Guo, Robert F. Wimmer‐Schweingruber, Donald M. Hassler, Manuela Temmer, Mateja Dumbović, Lan K. Jian, Jan K. Appel, Jaša Čalogović, Bent Ehresmann, Bernd Heber, Henning Lohf, Arik Posner, Christian T. Steigies, Bojan Vršnak and Cary J. Zeitlin, Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars, Journal of Geophysical Research: Space Physics, 123, 1, (39-56), (2018).
- O. Witasse, B. Sánchez‐Cano, M. L. Mays, P. Kajdič, H. Opgenoorth, H. A. Elliott, I. G. Richardson, I. Zouganelis, J. Zender, R. F. Wimmer‐Schweingruber, L. Turc, M. G. G. T. Taylor, E. Roussos, A. Rouillard, I. Richter, J. D. Richardson, R. Ramstad, G. Provan, A. Posner, J. J. Plaut, D. Odstrcil, H. Nilsson, P. Niemenen, S. E. Milan, K. Mandt, H. Lohf, M. Lester, J.‐P. Lebreton, E. Kuulkers, N. Krupp, C. Koenders, M. K. James, D. Intzekara, M. Holmstrom, D. M. Hassler, B. E. S. Hall, J. Guo, R. Goldstein, C. Goetz, K. H. Glassmeier, V. Génot, H. Evans, J. Espley, N. J. T. Edberg, M. Dougherty, S. W. H. Cowley, J. Burch, E. Behar, S. Barabash, D. J. Andrews and N. Altobelli, Interplanetary coronal mass ejection observed at STEREO‐A, Mars, comet 67P/Churyumov‐Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU, Journal of Geophysical Research: Space Physics, 122, 8, (7865-7890), (2017).
- Emilia Kilpua, Hannu E. J. Koskinen and Tuija I. Pulkkinen, Coronal mass ejections and their sheath regions in interplanetary space, Living Reviews in Solar Physics, 10.1007/s41116-017-0009-6, 14, 1, (2017).
- Jia Huang, Yong C.‐M. Liu, Jun Peng, Hui Li, Berndt Klecker, Charles J. Farrugia, Wenyuan Yu, Antoinette B. Galvin, Liang Zhao and Jiansen He, A multispacecraft study of a small flux rope entrained by rolling back magnetic field lines, Journal of Geophysical Research: Space Physics, 122, 7, (6927-6939), (2017).
- Manuela Temmer, Julia K. Thalmann, Karin Dissauer, Astrid M. Veronig, Johannes Tschernitz, Jürgen Hinterreiter and Luciano Rodriguez, On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling, Solar Physics, 10.1007/s11207-017-1112-5, 292, 7, (2017).
- Noé Lugaz, Manuela Temmer, Yuming Wang and Charles J. Farrugia, The Interaction of Successive Coronal Mass Ejections: A Review, Solar Physics, 10.1007/s11207-017-1091-6, 292, 4, (2017).
- Phillip Hess and Jie Zhang, A Study of the Earth-Affecting CMEs of Solar Cycle 24, Solar Physics, 10.1007/s11207-017-1099-y, 292, 6, (2017).
- Y. I. Yermolaev, I. G. Lodkina, N. S. Nikolaeva and M. Y. Yermolaev, Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta, Solar Physics, 10.1007/s11207-017-1205-1, 292, 12, (2017).
- S. Asenovski, Geomagnetic Field Disturbances Caused by Heliospheric Current Sheet Crossings, Geomagnetism and Aeronomy, 10.1134/S0016793217080035, 57, 8, (973-977), (2018).
- Marcia Neugebauer, Daniel Reisenfeld and Ian G. Richardson, Comparison of algorithms for determination of solar wind regimes, Journal of Geophysical Research: Space Physics, 121, 9, (8215-8227), (2016).
- Petra Kohutova, François‐Xavier Bocquet, Edmund M. Henley and Matthew J. Owens, Improving solar wind persistence forecasts: Removing transient space weather events, and using observations away from the Sun‐Earth line, Space Weather, 14, 10, (802-818), (2016).
- L. Rodriguez, J. J. Masías-Meza, S. Dasso, P. Démoulin, A. N. Zhukov, A. M. Gulisano, M. Mierla, E. Kilpua, M. West, D. Lacatus, A. Paraschiv and M. Janvier, Typical Profiles and Distributions of Plasma and Magnetic Field Parameters in Magnetic Clouds at 1 AU, Solar Physics, 10.1007/s11207-016-0955-5, 291, 7, (2145-2163), (2016).
- E. K. J. Kilpua, M. S. Madjarska, N. Karna, T. Wiegelmann, C. Farrugia, W. Yu and K. Andreeova, Sources of the Slow Solar Wind During the Solar Cycle 23/24 Minimum, Solar Physics, 10.1007/s11207-016-0979-x, 291, 8, (2441-2456), (2016).
- S. G. Kanekal, D. N. Baker, J. F. Fennell, A. Jones, Q. Schiller, I. G. Richardson, X. Li, D. L. Turner, S. Califf, S. G. Claudepierre, L. B. Wilson, A. Jaynes, J. B. Blake, G. D. Reeves, H. E. Spence, C. A. Kletzing and J. R. Wygant, Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock, Journal of Geophysical Research: Space Physics, 121, 8, (7622-7635), (2016).
- Fei Xu and Joseph E. Borovsky, A new four‐plasma categorization scheme for the solar wind, Journal of Geophysical Research: Space Physics, 120, 1, (70-100), (2015).
- B. Kirov, S. Asenovski, K. Georgieva and V. N. Obridko, What causes geomagnetic activity during sunspot minimum?, Geomagnetism and Aeronomy, 10.1134/S0016793215080149, 55, 8, (1033-1038), (2015).
- Qiu Bai-han and LI Chuan, The Study on a Solar Storm and Its Interplanetary and Geomagnetic Effects, Chinese Astronomy and Astrophysics, 10.1016/j.chinastron.2015.10.006, 39, 4, (487-496), (2015).
- I. G. Richardson, Identification of Interplanetary Coronal Mass Ejections at Ulysses Using Multiple Solar Wind Signatures, Solar Physics, 10.1007/s11207-014-0540-8, 289, 10, (3843-3894), (2014).
- W. Yu, C. J. Farrugia, N. Lugaz, A. B. Galvin, E. K. J. Kilpua, H. Kucharek, C. Möstl, M. Leitner, R. B. Torbert, K. D. C. Simunac, J. G. Luhmann, A. Szabo, L. B. Wilson, K. W. Ogilvie and J.‐A. Sauvaud, A statistical analysis of properties of small transients in the solar wind 2007–2009: STEREO and Wind observations, Journal of Geophysical Research: Space Physics, 119, 2, (689-708), (2014).
- M. E. Ruiz, S. Dasso, W. H. Matthaeus and J. M. Weygand, Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units, Solar Physics, 10.1007/s11207-014-0531-9, 289, 10, (3917-3933), (2014).
- X.‐Y. Zhang, M. B. Moldwin, J. T. Steinberg and R. M. Skoug, Alfvén waves as a possible source of long‐duration, large‐amplitude, and geoeffective southward IMF, Journal of Geophysical Research: Space Physics, 119, 5, (3259-3266), (2014).
- E. K. J. Kilpua, M. Mierla, A. N. Zhukov, L. Rodriguez, A. Vourlidas and B. Wood, Solar Sources of Interplanetary Coronal Mass Ejections During the Solar Cycle 23/24 Minimum, Solar Physics, 10.1007/s11207-014-0552-4, 289, 10, (3773-3797), (2014).
- Yuming Wang, Boyi Wang, Chenglong Shen, Fang Shen and Noé Lugaz, Deflected propagation of a coronal mass ejection from the corona to interplanetary space, Journal of Geophysical Research: Space Physics, 119, 7, (5117-5132), (2014).
- Rahul Sharma, Nandita Srivastava, D. Chakrabarty, Christian Möstl and Qiang Hu, Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments, Journal of Geophysical Research: Space Physics, 118, 7, (3954-3967), (2013).
- J. Zhang, P. Hess and W. Poomvises, A Comparative Study of Coronal Mass Ejections with and Without Magnetic Cloud Structure near the Earth: Are All Interplanetary CMEs Flux Ropes?, Solar Physics, 10.1007/s11207-013-0242-7, 284, 1, (89-104), (2013).
- Joseph E. Borovsky and John T. Steinberg, The Freestream Turbulence Effect in Solar‐Wind/Magnetosphere Coupling: Analysis Through the Solar Cycle and for Various Types of Solar Wind, Recurrent Magnetic Storms: Corotating Solar Wind Streams, (59-76), (2013).
- Ian G. Richardson, Geomagnetic activity during the rising phase of solar cycle 24, Journal of Space Weather and Space Climate, 10.1051/swsc/2013031, 3, (A08), (2013).
- J. T. Gosling, Coronal Mass Ejections: An Overview, Coronal Mass Ejections, (9-16), (2013).
- Marcia Neugebauer and Raymond Goldstein, Particle and Field Signatures of Coronal Mass Ejections in the Solar Wind, Coronal Mass Ejections, (245-251), (2013).
- Joseph E. Borovsky and Michael H. Denton, The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs, Journal of Geophysical Research: Space Physics, 118, 9, (5506-5521), (2013).
- I.G. Richardson, Using Energetic Particles to Probe the Magnetic Topology of Ejecta, Coronal Mass Ejections, (189-196), (2013).
- C. J. Farrugia, L. F. Burlaga and R. P. Lepping, Magnetic Clouds and the Quiet‐Storm Effect at Earth, Magnetic Storms, (91-106), (2013).
- Joseph E. Borovsky, The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties, Journal of Geophysical Research: Space Physics, 117, A5, (2012).
- H. A. Elliott, C. J. Henney, D. J. McComas, C. W. Smith and B. J. Vasquez, Temporal and radial variation of the solar wind temperature‐speed relationship, Journal of Geophysical Research: Space Physics, 117, A9, (2012).
- T. W. Broiles, M. I. Desai and D. J. McComas, Formation, shape, and evolution of magnetic structures in CIRs at 1 AU, Journal of Geophysical Research: Space Physics, 117, A3, (2012).
- G. Le Chat, K. Issautier and N. Meyer-Vernet, The Solar Wind Energy Flux, Solar Physics, 10.1007/s11207-012-9967-y, 279, 1, (197-205), (2012).
- Rahul Sharma and Nandita Srivastava, Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft, Journal of Space Weather and Space Climate, 10.1051/swsc/2012010, 2, (A10), (2012).
- Ian G. Richardson and Hilary V. Cane, Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), Journal of Space Weather and Space Climate, 10.1051/swsc/2012003, 2, (A02), (2012).
- S. Dasso, H. Asorey and For The Pierre Auger Collaboration, The scaler mode in the Pierre Auger Observatory to study heliospheric modulation of cosmic rays, Advances in Space Research, 10.1016/j.asr.2011.12.028, 49, 11, (1563-1569), (2012).
- A. M. Gulisano, P. Démoulin, S. Dasso and L. Rodriguez, Expansion of magnetic clouds in the outer heliosphere, Astronomy & Astrophysics, 10.1051/0004-6361/201118748, 543, (A107), (2012).
- K. Steed, C. J. Owen, P. Démoulin and S. Dasso, Investigating the observational signatures of magnetic cloud substructure, Journal of Geophysical Research: Space Physics, 116, A1, (2011).
- C. J. Davis, C. A. de Koning, J. A. Davies, D. Biesecker, G. Millward, M. Dryer, C. Deehr, D. F. Webb, K. Schenk, S. L. Freeland, C. Möstl, C. J. Farrugia and D. Odstrcil, A comparison of space weather analysis techniques used to predict the arrival of the Earth‐directed CME and its shockwave launched on 8 April 2010, Space Weather, 9, 1, (2011).
- L. J. Thatcher and H.‐R. Müller, Statistical investigation of hourly OMNI solar wind data, Journal of Geophysical Research: Space Physics, 116, A12, (2011).
- A. P. Jordan, H. E. Spence, J. B. Blake and D. N. A. Shaul, Revisiting two‐step Forbush decreases, Journal of Geophysical Research: Space Physics, 116, A11, (2011).
- Pei‐Chen Lai, Chin S. Lin, William J. Burke, Chien‐Ming Huang and Ming‐Quey Chen, COSMIC observations of dayside total electron content enhancements in response to moderate disturbances in the solar wind, Journal of Geophysical Research: Space Physics, 116, A5, (2011).
- L. K. Harra, C. H. Mandrini, S. Dasso, A. M. Gulisano, K. Steed and S. Imada, Determining the Solar Source of a Magnetic Cloud Using a Velocity Difference Technique, Solar Physics, 10.1007/s11207-010-9674-5, 268, 1, (213-230), (2010).
- Jacob R. Gruesbeck, Susan T. Lepri, Thomas H. Zurbuchen and Spiro K. Antiochos, CONSTRAINTS ON CORONAL MASS EJECTION EVOLUTION FROM IN SITU OBSERVATIONS OF IONIC CHARGE STATES, The Astrophysical Journal, 10.1088/0004-637X/730/2/103, 730, 2, (103), (2011).
- Y. C.-M. Liu, M. Opher, Y. Wang and T. I. Gombosi, Downstream structure and evolution of a simulated CME-driven sheath in the solar corona, Astronomy & Astrophysics, 10.1051/0004-6361/201014384, 527, (A46), (2011).
- I. G. Richardson and H. V. Cane, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995–2009 and implications for storm forecasting, Space Weather, 9, 7, (2011).
- Jianpeng Guo, Xueshang Feng, Pingbing Zuo, Jie Zhang, Yong Wei and Qiugang Zong, Interplanetary drivers of ionospheric prompt penetration electric fields, Journal of Atmospheric and Solar-Terrestrial Physics, 10.1016/j.jastp.2010.01.010, 73, 1, (130-136), (2011).
- C. Foullon, B. Lavraud, J. G. Luhmann, C. J. Farrugia, A. Retinò, K. D. C. Simunac, N. C. Wardle, A. B. Galvin, H. Kucharek, C. J. Owen, M. Popecki, A. Opitz and J.-A. Sauvaud, PLASMOID RELEASES IN THE HELIOSPHERIC CURRENT SHEET AND ASSOCIATED CORONAL HOLE BOUNDARY LAYER EVOLUTION, The Astrophysical Journal, 10.1088/0004-637X/737/1/16, 737, 1, (16), (2011).
- A. O. Williams, N. J. T. Edberg, S. E. Milan, M. Lester, M. Fränz and J. A. Davies, Tracking corotating interaction regions from the Sun through to the orbit of Mars using ACE, MEX, VEX, and STEREO, Journal of Geophysical Research: Space Physics, 116, A8, (2011).
- I. G. Richardson and H. V. Cane, Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995 – 2009, Solar Physics, 10.1007/s11207-011-9774-x, 270, 2, (609-627), (2011).
- Y. Miyoshi and R. Kataoka, Solar cycle variations of outer radiation belt and its relationship to solar wind structure dependences, Journal of Atmospheric and Solar-Terrestrial Physics, 10.1016/j.jastp.2010.09.031, 73, 1, (77-87), (2011).
- A. Lynnyk, J. Šafránková, Z. Němeček and J.D. Richardson, Deformation of ICMEs/MCs along their path, Planetary and Space Science, 10.1016/j.pss.2011.03.016, 59, 9, (840-847), (2011).
- B. J. Lynch, A. A. Reinard, T. Mulligan, K. K. Reeves, C. E. Rakowski, J. C. Allred, Y. Li, J. M. Laming, P. J. MacNeice and J. A. Linker, IONIC COMPOSITION STRUCTURE OF CORONAL MASS EJECTIONS IN AXISYMMETRIC MAGNETOHYDRODYNAMIC MODELS, The Astrophysical Journal, 10.1088/0004-637X/740/2/112, 740, 2, (112), (2011).
- Joseph E. Borovsky and Michael H. Denton, NO EVIDENCE FOR HEATING OF THE SOLAR WIND AT STRONG CURRENT SHEETS, The Astrophysical Journal, 10.1088/2041-8205/739/2/L61, 739, 2, (L61), (2011).
- Jianpeng Guo, Xueshang Feng, Jie Zhang, Pingbing Zuo and Changqing Xiang, Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic storms, Journal of Geophysical Research: Space Physics, 115, A9, (2010).
- Joseph E. Borovsky and Michael H. Denton, Solar wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, Journal of Geophysical Research: Space Physics, 115, A10, (2010).
- Joseph E. Borovsky, On the variations of the solar wind magnetic field about the Parker spiral direction, Journal of Geophysical Research: Space Physics, 115, A9, (2010).
- GuiMing Le, YuHua Tang, Liang Zheng and LianGuang Liu, An analysis of interplanetary sources of geomagnetic storm during November 7–8, 1998, Chinese Science Bulletin, 10.1007/s11434-009-0228-x, 55, 9, (851-856), (2009).
- I. S. Veselovsky, A. V. Dmitriev and A. V. Suvorova, Algebra and statistics of the solar wind, Cosmic Research, 10.1134/S0010952510020012, 48, 2, (113-128), (2010).
- D. Du, P. B. Zuo and X. X. Zhang, Interplanetary Coronal Mass Ejections Observed by Ulysses Through Its Three Solar Orbits, Solar Physics, 10.1007/s11207-009-9505-8, 262, 1, (171-190), (2010).
- I. G. Richardson and H. V. Cane, Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties, Solar Physics, 10.1007/s11207-010-9568-6, 264, 1, (189-237), (2010).
- I. G. Richardson and H. V. Cane, Interplanetary circumstances of quasi‐perpendicular interplanetary shocks in 1996–2005, Journal of Geophysical Research: Space Physics, 115, A7, (2010).
- T. T. von Rosenvinge, I. G. Richardson, D. V. Reames, C. M. S. Cohen, A. C. Cummings, R. A. Leske, R. A. Mewaldt, E. C. Stone and M. E. Wiedenbeck, The Solar Energetic Particle Event of 14 December 2006, Solar Physics, 10.1007/s11207-009-9353-6, 256, 1-2, (443-462), (2009).
- Barbara A. Emery, Ian G. Richardson, David S. Evans and Frederick J. Rich, Solar wind structure sources and periodicities of auroral electron power over three solar cycles, Journal of Atmospheric and Solar-Terrestrial Physics, 10.1016/j.jastp.2008.08.005, 71, 10-11, (1157-1175), (2009).
- Yu. I. Yermolaev, N. S. Nikolaeva, I. G. Lodkina and M. Yu. Yermolaev, Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Research, 10.1134/S0010952509020014, 47, 2, (81-94), (2009).
- Yuming Wang, Jie Zhang and Chenglong Shen, An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations, Journal of Geophysical Research: Space Physics, 114, A10, (2009).
- E. K. J. Kilpua, J. G. Luhmann, J. Gosling, Y. Li, H. Elliott, C. T. Russell, L. Jian, A. B. Galvin, D. Larson, P. Schroeder, K. Simunac and G. Petrie, Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure, Solar Physics, 10.1007/s11207-009-9366-1, 256, 1-2, (327-344), (2009).
- A. Lynnyk and M. Vandas, Fitting of expanding magnetic clouds: A statistical study, Planetary and Space Science, 10.1016/j.pss.2009.06.015, 57, 12, (1375-1380), (2009).
- A. Mahrous, M. El-Nawawy, M. Hammam and N. Ahmed, Empirical model of the transit time of interplanetary coronal mass ejections, Solar System Research, 10.1134/S0038094609020051, 43, 2, (128-135), (2009).
- P. Démoulin, Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections?, Solar Physics, 10.1007/s11207-009-9338-5, 257, 1, (169-184), (2009).
- Y. I. Yermolaev, I. G. Lodkina, N. S. Nikolaeva and M. Y. Yermolaev, The “Floor” in the Interplanetary Magnetic Field: Estimation on the Basis of Relative Duration of ICME Observations in Solar Wind During 1976 – 2000, Solar Physics, 10.1007/s11207-009-9438-2, 260, 1, (219-224), (2009).
- B. J. Lynch, S. K. Antiochos, Y. Li, J. G. Luhmann and C. R. DeVore, ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION, The Astrophysical Journal, 10.1088/0004-637X/697/2/1918, 697, 2, (1918-1927), (2009).
- Victor U. Chukwuma, On heliophysical and geophysical phenomena during October–November 2003, Acta Geophysica, 10.2478/s11600-009-0003-z, 57, 3, (778-800), (2009).
- A. A. Reinard, Analysis of Interplanetary Coronal Mass Ejection Parameters as a Function of Energetics, Source Location, and Magnetic Structure, The Astrophysical Journal, 10.1086/589322, 682, 2, (1289-1305), (2008).
- L. K. Jian, C. T. Russell, J. G. Luhmann, R. M. Skoug and J. T. Steinberg, Stream Interactions and Interplanetary Coronal Mass Ejections at 5.3 AU near the Solar Ecliptic Plane, Solar Physics, 10.1007/s11207-008-9204-x, 250, 2, (375-402), (2008).
- J. Zhang, I. G. Richardson and D. F. Webb, Interplanetary origin of multiple‐dip geomagnetic storms, Journal of Geophysical Research: Space Physics, 113, A3, (2008).
- Y. Liu, W. B. Manchester, J. D. Richardson, J. G. Luhmann, R. P. Lin and S. D. Bale, Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness, Journal of Geophysical Research: Space Physics, 113, A9, (2008).
- I. G. Richardson and J. Zhang, Multiple‐step geomagnetic storms and their interplanetary drivers, Geophysical Research Letters, 35, 6, (2008).
- J. T. Gosling, S. Eriksson, D. J. McComas, T. D. Phan and R. M. Skoug, Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind, Journal of Geophysical Research: Space Physics, 112, A8, (2007).
- D. Du, C. Wang and Q. Hu, Propagation and evolution of a magnetic cloud from ACE to Ulysses, Journal of Geophysical Research: Space Physics, 112, A9, (2007).
- E. E. Chollet, J. Giacalone, J. E. Mazur and M. Al Dayeh, A New Phenomenon in Impulsive‐Flare‐Associated Energetic Particles, The Astrophysical Journal, 10.1086/521670, 669, 1, (615-620), (2007).
- C. Foullon, C. J. Owen, S. Dasso, L. M. Green, I. Dandouras, H. A. Elliott, A. N. Fazakerley, Y. V. Bogdanova and N. U. Crooker, Multi-Spacecraft Study of the 21 January 2005 ICME, Solar Physics, 10.1007/s11207-007-0355-y, 244, 1-2, (139-165), (2007).
- R. Schwenn, Solar Wind Sources and Their Variations Over the Solar Cycle, Space Science Reviews, 10.1007/s11214-006-9099-5, 124, 1-4, (51-76), (2007).
- J. Zhang, I. G. Richardson, D. F. Webb, N. Gopalswamy, E. Huttunen, J. C. Kasper, N. V. Nitta, W. Poomvises, B. J. Thompson, C.‐C. Wu, S. Yashiro and A. N. Zhukov, Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, Journal of Geophysical Research: Space Physics, 112, A10, (2007). Paulo de Tarso 10th International Congress of the Brazilian Geophysical Society & EXPOGEF 2007, Rio de Janeiro, Brazil, 19-23 November 2007 Rio de Janeiro, Brazil 19 November to 23 November 10th International Congress of the Brazilian Geophysical Society & EXPOGEF 2007, Rio de Janeiro, Brazil, 19-23 November 2007 Society of Exploration Geophysicists and Brazilian Geophysical Society , (2007). 10.1190/SBGf2007 , 10.1190/SBGf2007 2014110406480400155 http://library.seg.org/doi/book/10.1190/SBGf2007 Rainer Schwenn Space storms are roaring through the solar system: why do we earthlings care? , (2007). , (2014). 2080 2083 10.1190/sbgf2007-406 , 10.1190/sbgf2007-406 2014110406480400155 http://library.seg.org/doi/abs/10.1190/sbgf2007-406
- M. Tokumaru, M. Yamashita, M. Kojima, K. Fujiki and T. Nakagawa, Reconstructed global feature of an interplanetary disturbance for the full-halo coronal mass ejection event on 1999 September 20, Advances in Space Research, 10.1016/j.asr.2005.07.011, 38, 3, (547-551), (2006).
- L. Jian, C. T. Russell, J. G. Luhmann and R. M. Skoug, Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004, Solar Physics, 10.1007/s11207-006-0133-2, 239, 1-2, (393-436), (2006).
- I. G. Richardson, D. F. Webb, J. Zhang, D. B. Berdichevsky, D. A. Biesecker, J. C. Kasper, R. Kataoka, J. T. Steinberg, B. J. Thompson, C.‐C. Wu and A. N. Zhukov, Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions, Journal of Geophysical Research: Space Physics, 111, A7, (2006).
- Ryuho Kataoka and Yoshizumi Miyoshi, Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Space Weather, 4, 9, (2006).
- C. J. Farrugia, V. K. Jordanova, M. F. Thomsen, G. Lu, S. W. H. Cowley and K. W. Ogilvie, A two‐ejecta event associated with a two‐step geomagnetic storm, Journal of Geophysical Research: Space Physics, 111, A11, (2006).
- Yu.I. Yermolaev and M.Yu. Yermolaev, Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events, Advances in Space Research, 10.1016/j.asr.2005.03.130, 37, 6, (1175-1181), (2006).
- R. F. Wimmer-Schweingruber, N. U. Crooker, A. Balogh, V. Bothmer, R. J. Forsyth, P. Gazis, J. T. Gosling, T. Horbury, A. Kilchenmann, I. G. Richardson, J. D. Richardson, P. Riley, L. Rodriguez, R. von Steiger, P. Wurz and T. H. Zurbuchen, Understanding Interplanetary Coronal Mass Ejection Signatures, Space Science Reviews, 10.1007/s11214-006-9017-x, 123, 1-3, (177-216), (2006).
- Joseph E. Borovsky and John T. Steinberg, The “calm before the storm” in CIR/magnetosphere interactions: Occurrence statistics, solar wind statistics, and magnetospheric preconditioning, Journal of Geophysical Research: Space Physics, 111, A7, (2006).
- Joseph E. Borovsky, Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling, Physics of Plasmas, 10.1063/1.2200308, 13, 5, (056505), (2006).
- E. Aguilar-Rodriguez, X. Blanco-Cano and N. Gopalswamy, Composition and magnetic structure of interplanetary coronal mass ejections at 1AU, Advances in Space Research, 10.1016/j.asr.2005.01.051, 38, 3, (522-527), (2006).
- Y. Liu, J.D. Richardson and J.W. Belcher, A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4AU, Planetary and Space Science, 10.1016/j.pss.2004.09.023, 53, 1-3, (3-17), (2005).
- J. A. le Roux, G. P. Zank, G. Li and G. M. Webb, Nonlinear Energetic Charged Particle Transport and Energization in Enhanced Compressive Wave Turbulence near Shocks, The Astrophysical Journal, 10.1086/430088, 626, 2, (1116-1130), (2005).
- C. J. Farrugia, H. Matsui, H. Kucharek, R. B. Torbert, C. W. Smith, V. K. Jordanova, K. W. Ogilvie, R. P. Lepping, D. B. Berdichevsky, T. Terasawa, J. Kasper, T. Mukai, Y. Saito and R. Skoug, Interplanetary coronal mass ejection and ambient interplanetary magnetic field correlations during the Sun‐Earth connection events of October–November 2003, Journal of Geophysical Research: Space Physics, 110, A9, (2005).
- C. Wang, D. Du and J. D. Richardson, Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU, Journal of Geophysical Research: Space Physics, 110, A10, (2005).
- Robert F. Penna and Alice C. Quillen, Decay of interplanetary coronal mass ejections and Forbush decrease recovery times, Journal of Geophysical Research: Space Physics, 110, A9, (2005).
- Curt A. de Koning, John T. Steinberg, J. T. Gosling, Daniel B. Reisenfeld, Ruth M. Skoug, O. C. St. Cyr, M. L. Malayeri, André Balogh, Adam Rees and D. J. McComas, An unusually fast interplanetary coronal mass ejection observed by Ulysses at 5 AU on 15 November 2003, Journal of Geophysical Research: Space Physics, 110, A1, (2005).
- S. Dasso, C.H. Mandrini, P. Démoulin, M.L. Luoni and A.M. Gulisano, Large scale MHD properties of interplanetary magnetic clouds, Advances in Space Research, 10.1016/j.asr.2005.02.096, 35, 5, (711-724), (2005).
- B. J. Lynch, J. R. Gruesbeck, T. H. Zurbuchen and S. K. Antiochos, Solar cycle–dependent helicity transport by magnetic clouds, Journal of Geophysical Research: Space Physics, 110, A8, (2005).
- H. A. Elliott, D. J. McComas, N. A. Schwadron, J. T. Gosling, R. M. Skoug, G. Gloeckler and T. H. Zurbuchen, An improved expected temperature formula for identifying interplanetary coronal mass ejections, Journal of Geophysical Research: Space Physics, 110, A4, (2005).
- C. T. Russell and A. A. Shinde, ON DEFINING INTERPLANETARY CORONAL MASS EJECTIONs FROM FLUID PARAMETERS, Solar Physics, 10.1007/s11207-005-8777-x, 229, 2, (323-344), (2005).
- D. B. Berdichevsky, I. G. Richardson, R. P. Lepping and S. F. Martin, On the origin and configuration of the 20 March 2003 interplanetary shock and magnetic cloud at 1 AU, Journal of Geophysical Research: Space Physics, 110, A9, (2005).
- J. T. Steinberg, J. T. Gosling, R. M. Skoug and R. C. Wiens, Suprathermal electrons in high‐speed streams from coronal holes: Counterstreaming on open field lines at 1 AU, Journal of Geophysical Research: Space Physics, 110, A6, (2005).
- A. C. Pagel, N. U. Crooker, T. H. Zurbuchen and J. T. Gosling, Correlation of solar wind entropy and oxygen ion charge state ratio, Journal of Geophysical Research: Space Physics, 109, A1, (2004).
- C. Cid, M. A. Hidalgo, E. Saiz, Y. Cerrato and J. Sequeiros, Sources of intense geomagnetic storms over the rise of solar cycle 23, Solar Physics, 10.1007/s11207-004-1243-3, 223, 1-2, (231-243), (2004).
- I. G. Richardson and H. V. Cane, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies, Journal of Geophysical Research: Space Physics, 109, A9, (2004).
- P. G. Hanlon, M. K. Dougherty, R. J. Forsyth, M. J. Owens, K. C. Hansen, G. Tóth, F. J. Crary and D. T. Young, On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region, Journal of Geophysical Research: Space Physics, 109, A9, (2004).
- C. Wang and J. D. Richardson, Interplanetary coronal mass ejections observed by Voyager 2 between 1 and 30 AU, Journal of Geophysical Research: Space Physics, 109, A6, (2004).
- N. U. Crooker, S. W. Kahler, D. E. Larson and R. P. Lin, Large‐scale magnetic field inversions at sector boundaries, Journal of Geophysical Research: Space Physics, 109, A3, (2004).
- S. T. Lepri and T. H. Zurbuchen, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum, Journal of Geophysical Research: Space Physics, 109, A1, (2004).
- Hiromitsu Ishibashi and Katsuhide Marubashi, Structure of interplanetary magnetic cloud on April 16, 1999 and its origin estimated by fitting the torus‐shaped flux rope model, Geophysical Research Letters, 31, 21, (2004).
- S. Dasso, C. H. Mandrini, P. Démoulin and C. J. Farrugia, Magnetic helicity analysis of an interplanetary twisted flux tube, Journal of Geophysical Research: Space Physics, 108, A10, (2003).
- Sergio Dasso, Fausto T. Gratton and Charles J. Farrugia, A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections, Journal of Geophysical Research: Space Physics, 108, A4, (2003).
- Y. M. Wang, P. Z. Ye and S. Wang, Multiple magnetic clouds: Several examples during March–April 2001, Journal of Geophysical Research: Space Physics, 108, A10, (2003).
- J. Zhang, K. P. Dere, R. A. Howard and V. Bothmer, Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000, The Astrophysical Journal, 10.1086/344611, 582, 1, (520-533), (2003).
- H. V. Cane and I. G. Richardson, Interplanetary coronal mass ejections in the near‐Earth solar wind during 1996–2002, Journal of Geophysical Research: Space Physics, 108, A4, (2003).
- B. J. Lynch, T. H. Zurbuchen, L. A. Fisk and S. K. Antiochos, Internal structure of magnetic clouds: Plasma and composition, Journal of Geophysical Research: Space Physics, 108, A6, (2003).
- Y. M. Wang, P. Z. Ye, S. Wang, G. P. Zhou and J. X. Wang, A statistical study on the geoeffectiveness of Earth‐directed coronal mass ejections from March 1997 to December 2000, Journal of Geophysical Research: Space Physics, 107, A11, (SSH 2-1-SSH 2-9), (2002).
- I. G. Richardson, H. V. Cane and E. W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), Journal of Geophysical Research: Space Physics, 107, A8, (SSH 8-1-SSH 8-13), (2002).
- C. J. Farrugia, M. Popecki, E. Möbius, V. K. Jordanova, M. I. Desai, R. J. Fitzenreiter, K. W. Ogilvie, H. Matsui, S. Lepri, T. Zurbuchen, G. M. Mason, G. R. Lawrence, L. F. Burlaga, R. P. Lepping, J. R. Dwyer and D. McComas, Wind and ACE observations during the great flow of 1–4 May 1998: Relation to solar activity and implications for the magnetosphere, Journal of Geophysical Research: Space Physics, 107, A9, (SSH 3-1-SSH 3-21), (2002).
- K. Emilia J. Huttunen, Hannu E. J. Koskinen, Tuija I. Pulkkinen, Antti Pulkkinen, Minna Palmroth, E. Geoffrey D. Reeves and Howard J. Singer, April 2000 magnetic storm: Solar wind driver and magnetospheric response, Journal of Geophysical Research: Space Physics, 107, A12, (SMP 15-1-SMP 15-21), (2002).
- I. G. Richardson, E. W. Cliver and H. V. Cane, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophysical Research Letters, 28, 13, (2569-2572), (2001).
- C. Wang and J. D. Richardson, Voyager 2 observations of helium abundance enhancements from 1–60 AU, Journal of Geophysical Research: Space Physics, 106, A4, (5683-5692), (2001).
- L. F. Burlaga, R. M. Skoug, C. W. Smith, D. F. Webb, T. H. Zurbuchen and Alysha Reinard, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999, Journal of Geophysical Research: Space Physics, 106, A10, (20957-20977), (2001).
- S. Vennerstroem, Interplanetary sources of magnetic storms: A statistical study, Journal of Geophysical Research: Space Physics, 106, A12, (29175-29184), (2001).
- S. Dasso, C.J. Farrugia, F.T. Gratton, R.P. Lepping, K.W. Ogilvie and R.J. Fitzenreiter, Waves in the proton cyclotron frequency range in the CME observed by wind on August 7–8, 1996: theory and data, Advances in Space Research, 10.1016/S0273-1177(01)00526-9, 28, 5, (747-752), (2001).
- C.J. Farrugia, B. Vasquez, I.G. Richardson, R.B. Torbert, L.F. Burlaga, H.K. Biernat, S. Mühlbachler, K.W. Ogilvie, R.P. Lepping, J.D. Scudder, D.E. Berdichevsky, V.S. Semenov, I.V. Kubyshkin, T.-D. Phan and R.P. Lin, A reconnection layer associated with a magnetic cloud, Advances in Space Research, 10.1016/S0273-1177(01)00529-4, 28, 5, (759-764), (2001).
- S. T. Lepri, T. H. Zurbuchen, L. A. Fisk, I. G. Richardson, H. V. Cane and G. Gloeckler, Iron charge distribution as an identifier of interplanetary coronal mass ejections, Journal of Geophysical Research: Space Physics, 106, A12, (29231-29238), (2001).
- Hironori Shimazu and Katsuhide Marubashi, New method for detecting interplanetary flux ropes, Journal of Geophysical Research: Space Physics, 105, A2, (2365-2373), (2000).
- I. G. Richardson, D. Berdichevsky, M. D. Desch and C. J. Farrugia, Solar‐cycle variation of low density solar wind during more than three solar cycles, Geophysical Research Letters, 27, 23, (3761-3764), (2000).
- K. Marubashi, Physics of interplanetary magnetic flux ropes: Toward prediction of geomagnetic storms, Advances in Space Research, 10.1016/S0273-1177(99)01026-1, 26, 1, (55-66), (2000).
- H. V. Cane, I. G. Richardson and O. C. St. Cyr, Coronal mass ejections, interplanetary ejecta and geomagnetic storms, Geophysical Research Letters, 27, 21, (3591-3594), (2000).
- J. A. González‐Esparza, M. Neugebauer, E. J. Smith and J. L. Phillips, Radial evolution of ejecta characteristics and transient shocks: Ulysses in‐ecliptic observations, Journal of Geophysical Research: Space Physics, 103, A3, (4767-4773), (1998).
- R. Goldstein, M. Neugebauer and D. Clay, A statistical study of coronal mass ejection plasma flows, Journal of Geophysical Research: Space Physics, 103, A3, (4761-4766), (1998).
- H. V. Cane, I. G. Richardson and O. C. St Cyr, The interplanetary events of January–May, 1997 as inferred from energetic particle data, and their relationship with solar events, Geophysical Research Letters, 25, 14, (2517-2520), (1998).
- D. Maia, O. Malandraki, M. Pick, E. T. Sarris, G. Kasotakis, L. J. Lanzerotti, C. G. MacLennan and P. C. Trochoutsos, Particle propagation channel detected at 4.7 AU inside a corotating interaction region, Journal of Geophysical Research: Space Physics, 103, A5, (9545-9551), (1998).
- M. Dryer, C.‐C. Wu and Z. K. Smith, Three‐dimensional MHD simulation of the April 14, 1994, interplanetary coronal mass ejection and its propagation to Earth and Ulysses, Journal of Geophysical Research: Space Physics, 102, A7, (14065-14074), (2013).
- N. U. Crooker and A. H. McAllister, Transients associated with recurrent storms, Journal of Geophysical Research: Space Physics, 102, A7, (14041-14047), (2013).
- M. Neugebauer, R. Goldstein and B. E. Goldstein, Features observed in the trailing regions of interplanetary clouds from coronal mass ejections, Journal of Geophysical Research: Space Physics, 102, A9, (19743-19751), (1997).
- S. W. Kahler, N. U. Crocker and J. T. Gosling, The topology of intrasector reversals of the interplanetary magnetic field, Journal of Geophysical Research: Space Physics, 101, A11, (24373-24382), (1996).
- N. U. Crooker and D. S. Intriligator, A magnetic cloud as a distended flux rope occlusion in the heliospheric current sheet, Journal of Geophysical Research: Space Physics, 101, A11, (24343-24348), (1996).
- R. Bučík, D. E. Innes, U. Mall, A. Korth, G. M. Mason and R. Gómez-Herrero, MULTI-SPACECRAFT OBSERVATIONS OF RECURRENT 3 He-RICH SOLAR ENERGETIC PARTICLES , The Astrophysical Journal, 10.1088/0004-637X/786/1/71, 786, 1, (71), (2014).
- Huidong Hu, Ying D. Liu, Rui Wang, Xiaowei Zhao, Bei Zhu and Zhongwei Yang, Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions, The Astrophysical Journal, 10.3847/1538-4357/aa6d54, 840, 2, (76), (2017).
- Heather A. Elliott, David J. McComas and Craig E. DeForest, LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS, The Astrophysical Journal, 10.3847/0004-637X/832/1/66, 832, 1, (66), (2016).
- Hui Li, Chi Wang, Jiansen He, Lingqian Zhang, John D. Richardson, John W. Belcher and Cui Tu, PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION, The Astrophysical Journal, 10.3847/2041-8205/831/2/L13, 831, 2, (L13), (2016).
- Phillip Hess and Jie Zhang, STEREOSCOPIC STUDY OF THE KINEMATIC EVOLUTION OF A CORONAL MASS EJECTION AND ITS DRIVEN SHOCK FROM THE SUN TO THE EARTH AND THE PREDICTION OF THEIR ARRIVAL TIMES, The Astrophysical Journal, 10.1088/0004-637X/792/1/49, 792, 1, (49), (2014).
- A. Ojeda-Gonzalez, O. Mendes, A. Calzadilla, M. O. Domingues, A. Prestes and V. Klausner, An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions, The Astrophysical Journal, 10.3847/1538-4357/aa6034, 837, 2, (156), (2017).
- A. N. Fazakerley, L. K. Harra and L. van Driel-Gesztelyi, AN INVESTIGATION OF THE SOURCES OF EARTH-DIRECTED SOLAR WIND DURING CARRINGTON ROTATION 2053, The Astrophysical Journal, 10.3847/0004-637X/823/2/145, 823, 2, (145), (2016).
- C. E. DeForest, C. A. de Koning and H. A. Elliott, 3D Polarized Imaging of Coronal Mass Ejections: Chirality of a CME, The Astrophysical Journal, 10.3847/1538-4357/aa94ca, 850, 2, (130), (2017).
- M. Kocher, S. T. Lepri, E. Landi, L. Zhao and W. B. Manchester, ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS, The Astrophysical Journal, 10.3847/1538-4357/834/2/147, 834, 2, (147), (2017).
- E. K. J. Kilpua, L. K. Jian, Y. Li, J. G. Luhmann and C. T. Russell, Observations of ICMEs and ICME-like Solar Wind Structures from 2007 – 2010 Using Near-Earth and STEREO Observations, Solar Physics, 10.1007/s11207-012-9957-0, (2012).
- Xiaowei Zhao, Ying D. Liu, Huidong Hu and Rui Wang, Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space, The Astrophysical Journal, 10.3847/1538-4357/aa5ea3, 837, 1, (4), (2017).
- L. K. Jian, C. T. Russell, J. G. Luhmann and A. B. Galvin, STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016 , The Astrophysical Journal, 10.3847/1538-4357/aab189, 855, 2, (114), (2018).




