Holocene Lake Sediments Reveal Alluvial Fan History With Links to Climate, Wildfire, and Earthquakes
Corresponding Author
Daniel G. Gavin
Department of Geography, University of Oregon, Eugene, OR, USA
Correspondence to:
D. G. Gavin,
Contribution: Conceptualization, Methodology, Software, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorWilliam T. Struble
Department of Geosciences, University of Arizona, Tucson, AZ, USA
Now at Department of Earth & Atmospheric Sciences, University of Houston, Houston, TX, USA
Contribution: Methodology, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorMark A. Fonstad
Department of Geography, University of Oregon, Eugene, OR, USA
Contribution: Writing - review & editing
Search for more papers by this authorCorresponding Author
Daniel G. Gavin
Department of Geography, University of Oregon, Eugene, OR, USA
Correspondence to:
D. G. Gavin,
Contribution: Conceptualization, Methodology, Software, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorWilliam T. Struble
Department of Geosciences, University of Arizona, Tucson, AZ, USA
Now at Department of Earth & Atmospheric Sciences, University of Houston, Houston, TX, USA
Contribution: Methodology, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorMark A. Fonstad
Department of Geography, University of Oregon, Eugene, OR, USA
Contribution: Writing - review & editing
Search for more papers by this authorAbstract
Flood hazards along alluvial rivers vary over time due to changes in both flow regime and channel morphology; however, their millennial-scale histories are difficult to study from incomplete and poorly dated alluvial stratigraphies. Thus, the role of external forcings (e.g., climate) in the magnitude of alluvial channel dynamics remains poorly understood. We developed a record of overbank flows of the Tolt River in Washington from a continuous 6,100-year sediment record obtained from a 33-m deep lake with an outlet dammed by alluvium. Overbank flows from the adjacent river result in fine laminations preserved in the lake sediment. Multi-century periods of overbank flows with fine (<2 mm; ca. annual) laminations account for 36% of the last 6,100 years. The only event recorded in the lake during the last 900 years is dated by 210Pb-verified varves to a historic atmospheric river event in December 1867. Tree-ring and radiocarbon-dated alluvial surfaces upriver from the lake are consistent with a significantly aggraded channel during silt periods in the lake. Although a sediment slump in the lake dates to a known earthquake, there is little other linkage between earthquake history and alluvial history. However, regional paleoclimate, local fire history, and landslide ages suggest that the continuous periods of overbank flows were sustained by aggradation from sediment input after fires and during dry climate periods. The lake record indicates an alternation of incision and aggradation and a much more dynamic channel history than observed over the last several decades following channel modification and dam development.
Key Points
-
An accurately dated lake sediment record reliably preserves 6,100 years of flooding from an adjacent alluvial river
-
Channel morphodynamics, rather than streamflow, explain the flood history at this site, including a major 1867 CE flood
-
Climate and fire history in the presence of frequent input from upstream landslides can explain the history of overbank flows
Plain Language Summary
Lakes positioned close to rivers can preserve sediments that indicate the times of past floods over thousands of years, but interpreting such records is complicated because river channels themselves can change over time. We analyzed a 6,100-year sediment record with clear evidence of flood deposits, the most recent in 1867 CE at a time of a very large rainfall event early in the settlement history of Washington State. However, the modern river channel adjacent to the lake is cut into the topography such that floods cannot reach the lake. Ages of trees near the river and carbon dates in the river sediment confirm that the river channel was aggraded at times when it flooded into the lake. We also compared the history of flooding with nearby studies of paleoclimate, landslides, forest fires, and earthquakes, all of which are known to impact river channels. This comparison suggests that past dry climates and forest fires sustained long periods of an aggraded channel. The magnitude of change in the channel required to explain these patterns is much greater than that observed over recent decades of monitoring.
Open Research
Data Availability Statement
Magnetic susceptibility, pollen, loss-on-ignition, X-ray diffraction, and charcoal data are available on the Neotoma Paleoecology Database (Gavin, 2021a, 2021b, 2021c, 2021d). Core images, raw and interpolated sediment lightness, and the statistical analysis for computing the age-depth model are available in Gavin (2024).
Supporting Information
Filename | Description |
---|---|
2024JF007778-sup-0001-Supporting Information SI-S01.docx870.9 KB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ahrendt, S., Horner-Devine, A. R., Collins, B. D., Morgan, J. A., & Istanbulluoglu, E. (2022). Channel conveyance variability can influence flood risk as much as streamflow variability in western Washington state. Water Resources Research, 58(6), e2021WR031890. https://doi.org/10.1029/2021WR031890
- Anderson, S. W., & Jaeger, K. L. (2021). Coarse sediment dynamics in a large glaciated river system: Holocene history and storage dynamics dictate contemporary climate sensitivity. GSA Bulletin, 133(5–6), 899–922. https://doi.org/10.1130/B35530.1
10.1130/B35530.1 Google Scholar
- Anderson, S. W., & Konrad, C. P. (2019). Downstream-propagating channel responses to decadal-scale climate variability in a glaciated river basin. Journal of Geophysical Research: Earth Surface, 124(4), 902–919. https://doi.org/10.1029/2018JF004734
- Appleby, P. G., & Oldfield, F. (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1), 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2
- Atwater, B. F., & Moore, A. L. (1992). A tsunami about 1000 years ago in Puget Sound, Washington. Science, 258(5088), 1614–1617. https://doi.org/10.1126/science.258.5088.1614
- Baker, V. R. (2008). Paleoflood hydrology: Origin, progress, prospects. Geomorphology, 101(1–2), 1–13. https://doi.org/10.1016/j.geomorph.2008.05.016
- Bakun, W. H. (2002). The December 1872 Washington State Earthquake. Bulletin of the Seismological Society of America, 92(8), 3239–3258. https://doi.org/10.1785/0120010274
- Bennett, K. D. (1996). Determination of the number of zones in a biostratigraphic sequence. New Phytologist, 132(1), 155–170. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x
- Binford, M. W. (1990). Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology, 3(3), 253–267. https://doi.org/10.1007/BF00219461
- Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618
- Black, B. A., Pearl, J. K., Pearson, C. L., Pringle, P. T., Frank, D. C., Page, M. T., et al. (2023). A multifault earthquake threat for the Seattle metropolitan region revealed by mass tree mortality. Science Advances, 9(39), eadh4973. https://doi.org/10.1126/sciadv.adh4973
- Bonner, V. (1992). HEC-2 water-surface profiles generalized computer program. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center.
- Booth, A. M., LaHusen, S. R., Duvall, A. R., & Montgomery, D. R. (2017). Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling: Landsliding in the N. Fork Stillaguamish. Journal of Geophysical Research: Earth Surface, 122(2), 456–472. https://doi.org/10.1002/2016JF003934
- Bradford, D. C., & Waters, A. C. (1934). The Tolt River earthquake and its bearing on the structure of the Cascade Range. Bulletin of the Seismological Society of America, 24(1), 51–62. https://doi.org/10.1785/BSSA0240010051
10.1785/BSSA0240010051 Google Scholar
- Brown, K. J., Fitton, R. J., Schoups, G., Allen, G. B., Wahl, K. A., & Hebda, R. J. (2006). Holocene precipitation in the coastal temperate rainforest complex of southern British Columbia, Canada. Quaternary Science Reviews, 25(21–22), 2762–2779. https://doi.org/10.1016/j.quascirev.2006.02.020
- Brubaker, L. B. (2002). NOAA/WDS Paleoclimatology - Brubaker - Mount Pilchuck - PSME - ITRDB WA034. NOAA National Centers for Environmental Information. https://doi.org/10.25921/sjej-nf68
- Bruel, R., & Sabatier, P. (2020). serac: An R package for ShortlivEd RAdionuclide chronology of recent sediment cores. Journal of Environmental Radioactivity, 225, 106449. https://doi.org/10.1016/j.jenvrad.2020.106449
- Brummer, C. J., Abbe, T. B., Sampson, J. R., & Montgomery, D. R. (2006). Influence of vertical channel change associated with wood accumulations on delineating channel migration zones, Washington, USA. Geomorphology, 80(3–4), 295–309. https://doi.org/10.1016/j.geomorph.2006.03.002
- Bunn, A. G. (2010). Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28(4), 251–258. https://doi.org/10.1016/j.dendro.2009.12.001
- Butler, T., & Lott, F. (2017a). Evaluation of gravel removal in the lower Tolt River. King County Department of Natural Resources and Parks, Water and Land Resource Division. Retrieved from https://kingcounty.gov/toltsedimentstudy
- Butler, T., & Lott, F. (2017b). Tolt River Channel Migration Study. King County Department of Natural Resources and Parks, Water and Land Resource Division. Retrieved from https://kingcounty.gov/services/environment/water-and-land/flooding/maps/migration/draft-tolt-cmz.aspx
- Collins, B. D., & Montgomery, D. R. (2011). The legacy of Pleistocene glaciation and the organization of lowland alluvial process domains in the Puget Sound region. Geomorphology, 126(1–2), 174–185. https://doi.org/10.1016/j.geomorph.2010.11.002
- Collins, B. D., Montgomery, D. R., & Haas, A. D. (2002). Historical changes in the distribution and functions of large wood in Puget Lowland rivers. Canadian Journal of Fisheries and Aquatic Sciences, 59(1), 66–76. https://doi.org/10.1139/f01-199
- Collins, B. D., Montgomery, D. R., & Sheikh, A. J. (2003). Reconstructing the historical riverine landscape of the Puget Lowland. In D. R. Montgomery, S. Bolton, D. B. Booth, & L. Wall (Eds.), Restoring Puget Sound Rivers (pp. 79–128). University of Washington Press.
- Colombaroli, D., Gavin, D. G., Morey, A. E., & Thorndycraft, V. R. (2018). High resolution lake sediment record reveals self-organized criticality in erosion processes regulated by internal feedbacks. Earth Surface Processes and Landforms, 43(10), 2181–2192. https://doi.org/10.1002/esp.4383
- Coulthard, T. J., Macklin, M. G., & Kirkby, M. J. (2002). A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 27(3), 269–288. https://doi.org/10.1002/esp.318
- Crausbay, S. D., Higuera, P. E., Sprugel, D. G., & Brubaker, L. B. (2017). Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years. Ecology, 98(9), 2356–2369. https://doi.org/10.1002/ecy.1897
- Crema, E. R., & Bevan, A. (2021). Inference from large sets of radiocarbon dates: Software and methods. Radiocarbon, 63(1), 23–39. https://doi.org/10.1017/RDC.2020.95
- Daniels, J. M. (2008). Distinguishing allogenic from autogenic causes of bed elevation change in late Quaternary alluvial stratigraphic records. Geomorphology, 101(1), 159–171. https://doi.org/10.1016/j.geomorph.2008.05.022
- Davis, M. B. (1973). Pollen evidence of changing land use around the shores of Lake Washington. Northwest Science, 47, 133–148.
- Donders, T. H., Wagner-Cremer, F., & Visscher, H. (2008). Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability. Quaternary Science Reviews, 27(5), 571–579. https://doi.org/10.1016/j.quascirev.2007.11.010
- Dragovich, J. D., Anderson, M. L., MacDonald, J. H., Jr., Mahan, S. A., DuFrane, S. A., Littke, H. A., et al. (2010). Supplement to the geologic map of the Carnation 7.5-minute quadrangle, King County, Washington—Geochronologic, geochemical, point count, geophysical, earthquake, fault, and neotectonic data (Washington Division of Geology and Earth Resources Open File Report 2010-2) (p. 42). Retrieved from https://www.dnr.wa.gov/Publications/ger_ofr2010-1_geol_map_carnation_24k.zip
- Dragovich, J. D., Anderson, M. L., Mahan, S. A., MacDonald, J. H., Jr., McCabe, C. P., Cakir, R., et al. (2012). Geologic map of the Lake Joy 7.5-minute quadrangle, King County, Washington (No. Washington Division of Geology and Earth Resources Map Series 2012-01) (p. 79). Retrieved from https://www.dnr.wa.gov/Publications/ger_ms2012-01_geol_map_lake_joy_24k.zip
- Duncan, R. P. (1989). An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrocarpus dacrydiodes). New Zealand Natural Science, 16, 31–37.
- East, A. E., Jenkins, K. J., Happe, P. J., Bountry, J. A., Beechie, T. J., Mastin, M. C., et al. (2017). Channel-planform evolution in four rivers of Olympic National Park, Washington, USA: The roles of physical drivers and trophic cascades: Channel evolution in Olympic National Park. Earth Surface Processes and Landforms, 42(7), 1011–1032. https://doi.org/10.1002/esp.4048
- Faegri, K., & Iversen, J. (2000). Textbook of pollen analysis ( 4th ed.). Blackburn Press.
- Franklin, J. E., & Dyrness, C. T. (1988). Natural vegetation of Oregon and Washington. Oregon State University Press.
- Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(12), 1347. https://doi.org/10.1029/2002WR001426
- Gavin, D. G. (2021a). Macrocharcoal data from Langlois Lake [Dataset]. Neotoma Paleoecology Database. https://doi.org/10.21233/CZNK-ME71
10.21233/CZNK?ME71 Google Scholar
- Gavin, D. G. (2021b). Magnetic susceptibility data from Langlois Lake [Dataset]. Neotoma Paleoecology Database. https://doi.org/10.21233/B3G8-DC43
10.21233/B3G8?DC43 Google Scholar
- Gavin, D. G. (2021c). Pollen data from Langlois Lake [Dataset]. Neotoma Paleoecology Database. https://doi.org/10.21233/5CJD-9V64
10.21233/5CJD?9V64 Google Scholar
- Gavin, D. G. (2021d). X-ray diffraction data from Langlois Lake [Dataset]. Neotoma Paleoecology Database. https://doi.org/10.21233/5PKB-VC34
10.21233/5PKB?VC34 Google Scholar
- Gavin, D. G. (2024). Data, images, and R programming language code for age-depth modeling a lake sediment record [Dataset]. University of Oregon Scholarsbank. https://doi.org/10.7264/e14t-6927
10.7264/e14t?6927 Google Scholar
- Gavin, D. G., Bartlein, P. J., & Mock, C. J. (2023). Historical archives reveal record rainfall and severe flooding in December 1867 resulting from an atmospheric river and snowmelt, western Washington, USA. PLOS Climate, 2(12), e0000324. https://doi.org/10.1371/journal.pclm.0000324
10.1371/journal.pclm.0000324 Google Scholar
- Gavin, D. G., & Brubaker, L. B. (2015). Late Pleistocene and Holocene Environmental Change on the Olympic Peninsula, Washington. Springer International Publishing. Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-11014-1_1
10.1007/978-3-319-11014-1 Google Scholar
- Gibson, D. K., Bird, B. W., Pollard, H. J., Nealy, C. A., Barr, R. C., & Escobar, J. (2022). Using sediment accumulation rates in floodplain paleochannel lakes to reconstruct climate-flood relationships on the lower Ohio River. Quaternary Science Reviews, 298, 107852. https://doi.org/10.1016/j.quascirev.2022.107852
10.1016/j.quascirev.2022.107852 Google Scholar
- Harvey, A. (2018). Alluvial fans. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11066-8
10.1016/B978-0-12-409548-9.11066-8 Google Scholar
- Harvey, A. M. (2012). The coupling status of alluvial fans and debris cones: A review and synthesis. Earth Surface Processes and Landforms, 37(1), 64–76. https://doi.org/10.1002/esp.2213
- Henn, B., Cao, Q., Lettenmaier, D. P., Magirl, C. S., Mass, C., Bower, J. B., et al. (2015). Hydroclimatic conditions preceding the March 2014 Oso Landslide. Journal of Hydrometeorology, 16(3), 1243–1249. https://doi.org/10.1175/JHM-D-15-0008.1
- Herzig, E., Duvall, A., Booth, A., Stone, I., Wirth, E., LaHusen, S., et al. (2023). Evidence of Seattle fault earthquakes from patterns in deep-seated landslides. Bulletin of the Seismological Society of America, 114(2), 1084–1102. https://doi.org/10.1785/0120230079
10.1785/0120230079 Google Scholar
- Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19), L19401. https://doi.org/10.1029/2010GL044638
- Jones, A. F., Lewin, J., & Macklin, M. G. (2010). Flood series data for the later Holocene: Available approaches, potential and limitations from UK alluvial sediments. The Holocene, 20(7), 1123–1135. https://doi.org/10.1177/0959683610369501
- Jones, I. (1997). A History of Tolt/Carnation: A Town Remembered ( 2nd ed.). Snohomish, WA: Snohomish Publishing Company.
- Juggins, S. (2020). rioja: Analysis of Quaternary Science Data, R package version (0.9-26). Retrieved from https://cran.r-project.org/package=rioja
- Karlin, R. E., & Abella, S. E. B. (1992). Paleoearthquakes in the Puget Sound region recorded in sediments from Lake Washington, U.S.A. Science, 258(5088), 1617–1620. https://doi.org/10.1126/science.258.5088.1617
- Karlin, R. E., & Abella, S. E. B. (1996). A history of Pacific Northwest earthquakes recorded in Holocene sediments from Lake Washington. Journal of Geophysical Research, 101(B3), 6137–6150. https://doi.org/10.1029/95JB01626
- Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., & Hu, F. S. (2013). Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences, 110(32), 13055–13060. https://doi.org/10.1073/pnas.1305069110
- Knoll, K. M. (1967). Surficial geology of the Tolt River areas, Washington. (Master’s Thesis). University of Washington.
- Krishnaswamy, S., Lal, D., Martin, J. M., & Meybeck, M. (1971). Geochronology of lake sediments. Earth and Planetary Science Letters, 11(1), 407–414. https://doi.org/10.1016/0012-821X(71)90202-0
- LaHusen, S. R., Duvall, A. R., Booth, A. M., & Montgomery, D. R. (2016). Surface roughness dating of long-runout landslides near Oso, Washington (USA), reveals persistent postglacial hillslope instability. Geology, 44(2), 111–114. https://doi.org/10.1130/G37267.1
- Lehmann, S. B., Steinman, B. A., Finkenbinder, M. S., & Abbott, M. B. (2021). Prolonged early to middle Holocene drought in the Pacific Northwest inferred from lacustrine carbonate oxygen isotope values and sedimentology. Quaternary Science Reviews, 271, 107192. https://doi.org/10.1016/j.quascirev.2021.107192
10.1016/j.quascirev.2021.107192 Google Scholar
- Lewin, J., & Macklin, M. G. (2003). Preservation potential for Late Quaternary river alluvium. Journal of Quaternary Science, 18(2), 107–120. https://doi.org/10.1002/jqs.738
- Li, Y., Armitage, S. J., Stevens, T., & Meng, X. (2018). Alluvial fan aggradation/incision history of the eastern Tibetan plateau margin and implications for debris flow/debris-charged flood hazard. Geomorphology, 318, 203–216. https://doi.org/10.1016/j.geomorph.2018.06.016
- Mackin, J. H. (1948). Concept of the graded river. GSA Bulletin, 59(5), 463–512. https://doi.org/10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2
10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2 Google Scholar
- Macklin, M. G., & Lewin, J. (2008). Alluvial responses to the changing Earth system. Earth Surface Processes and Landforms, 33(9), 1374–1395. https://doi.org/10.1002/esp.1714
- Macklin, M. G., Lewin, J., & Woodward, J. C. (2012). The fluvial record of climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1966), 2143–2172. https://doi.org/10.1098/rsta.2011.0608
- Martin, M. E., & Bourgeois, J. (2012). Vented sediments and tsunami deposits in the Puget Lowland, Washington – Differentiating sedimentary processes. Sedimentology, 59(2), 419–444. https://doi.org/10.1111/j.1365-3091.2011.01259.x
- Menounos, B., Osborn, G., Clague, J. J., & Luckman, B. H. (2009). Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quaternary Science Reviews, 28(21–22), 2049–2074. https://doi.org/10.1016/j.quascirev.2008.10.018
- Moody, J. A., & Martin, D. A. (2009). Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire, 18(1), 96–115. https://doi.org/10.1071/WF07162
- Moore, D. M., & Reynolds, R. C., Jr. (1997). X-ray diffraction and the identification and analysis of clay minerals ( 2nd ed.). Oxford University Press.
- Munoz, S. E., Gruley, K. E., Massie, A., Fike, D. A., Schroeder, S., & Williams, J. W. (2015). Cahokia’s emergence and decline coincided with shifts of flood frequency on the Mississippi River. Proceedings of the National Academy of Sciences, 112(20), 6319–6324. https://doi.org/10.1073/pnas.1501904112
- Nelson, A. R., Johnson, S. Y., Kelsey, H. M., Wells, R. E., Sherrod, B. L., Pezzopane, S. K., et al. (2003). Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington. Geological Society of America Bulletin, 115(11), 1388. https://doi.org/10.1130/B25262.1
- Niinemets, U., & Valladares, F. (2006). Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 76(4), 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
- Noren, A. J., Bierman, P. R., Steig, E. J., Lini, A., & Southon, J. (2002). Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature, 419(6909), 821–824. https://doi.org/10.1038/nature01132
- Osborn, G., Menounos, B., Ryane, C., Riedel, J., Clague, J. J., Koch, J., et al. (2012). Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington. Quaternary Science Reviews, 49, 33–51. https://doi.org/10.1016/j.quascirev.2012.06.004
- Oswald, W. W., Gavin, D. G., Anderson, P. M., Brubaker, L. B., & Hu, F. S. (2012). A 14,500-year record of landscape change from Okpilak Lake, northeastern Brooks Range, northern Alaska. Journal of Paleolimnology, 48(1), 101–113. https://doi.org/10.1007/s10933-012-9605-6
- Parish, M. C., Wolf, K. D., Higuera, P. E., & Shuman, B. N. (2022). Holocene water levels of Silver Lake, Montana, and the hydroclimate history of the Inland Northwest. Quaternary Research, 110, 54–66. https://doi.org/10.1017/qua.2022.17
- Patricola, C. M., O’Brien, J. P., Risser, M. D., Rhoades, A. M., O’Brien, T. A., Ullrich, P. A., et al. (2020). Maximizing ENSO as a source of western US hydroclimate predictability. Climate Dynamics, 54(1), 351–372. https://doi.org/10.1007/s00382-019-05004-8
- Pfeiffer, A. M., Collins, B. D., Anderson, S. W., Montgomery, D. R., & Istanbulluoglu, E. (2019). River bed elevation variability reflects sediment supply, rather than peak flows, in the uplands of Washington State. Water Resources Research, 55(8), 6795–6810. https://doi.org/10.1029/2019WR025394
- Porter, S. C., & Swanson, T. W. (1998). Radiocarbon age constraints on rates of advance and retreat of the Puget lobe of the Cordilleran Ice Sheet during the last glaciation. Quaternary Research, 50(3), 205–213. https://doi.org/10.1006/qres.1998.2004
- Praetorius, S. K., Condron, A., Mix, A. C., Walczak, M. H., McKay, J. L., & Du, J. (2020). The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances, 6(9), eaay2915. https://doi.org/10.1126/sciadv.aay2915
- Reed, W. J., Larsen, C. P. S., Johnson, E. A., & MacDonald, G. M. (1998). Estimation of temporal variations in historical fire frequency from time-since-fire map data. Forest Science, 44(3), 465–475. https://doi.org/10.1093/forestscience/44.3.465
- Renberg, I. (1981). Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas, 10(3), 255–258. https://doi.org/10.1111/j.1502-3885.1981.tb00486.x
10.1111/j.1502-3885.1981.tb00486.x Google Scholar
- Roering, J. J., & Gerber, M. (2005). Fire and the evolution of steep, soil-mantled landscapes. Geology, 33(5), 349. https://doi.org/10.1130/G21260.1
- Routson, C. C., Erb, M. P., & McKay, N. P. (2022). High latitude modulation of the Holocene North American monsoon. Geophysical Research Letters, 49(16), e2022GL099772. https://doi.org/10.1029/2022GL099772
- Rumsby, B. T., & Macklin, M. G. (1994). Channel and floodplain response to recent abrupt climate change: The Tyne basin, Northern England. Earth Surface Processes and Landforms, 19(6), 499–515. https://doi.org/10.1002/esp.3290190603
- Schanz, S. A., Montgomery, D. R., & Collins, B. D. (2019). Anthropogenic strath terrace formation caused by reduced sediment retention. Proceedings of the National Academy of Sciences, 116(18), 8734–8739. https://doi.org/10.1073/pnas.1814627116
- Schnurrenberger, D., Russell, J., & Kelts, K. (2003). Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology, 29(2), 141–154. https://doi.org/10.1023/A:1023270324800
- Schumm, S. A. (1979). Geomorphic thresholds: The concept and its applications. Transactions of the Institute of British Geographers, 4(4), 485. https://doi.org/10.2307/622211
- Sherrod, B. L., Blakely, R. J., & Weaver, C. S. (2021). LiDAR and paleoseismology solve earthquake mystery in the Pacific Northwest, USA. Geophysical Research Letters, 48(16). https://doi.org/10.1029/2021GL093318
10.1029/2021GL093318 Google Scholar
- Shuman, B., Henderson, A. K., Colman, S. M., Stone, J. R., Fritz, S. C., Stevens, L. R., et al. (2009). Holocene lake-level trends in the Rocky Mountains, U.S.A. Quaternary Science Reviews, 28(19–20), 1861–1879. https://doi.org/10.1016/j.quascirev.2009.03.003
- Slater, L. J., Singer, M. B., & Kirchner, J. W. (2015). Hydrologic versus geomorphic drivers of trends in flood hazard. Geophysical Research Letters, 42(2), 370–376. https://doi.org/10.1002/2014GL062482
- Struble, W. T., Roering, J. J., Burns, W. J., Calhoun, N. C., Wetherell, L. R., & Black, B. A. (2021). The preservation of climate-driven landslide dams in western Oregon. Journal of Geophysical Research: Earth Surface, 126(4), e2020JF005908. https://doi.org/10.1029/2020JF005908
- Toonen, W. H. J., Munoz, S. E., Cohen, K. M., & Macklin, M. G. (2020). High-resolution sedimentary paleoflood records in alluvial river environments: A review of recent methodological advances and application to flood hazard assessment. In J. Herget & A. Fontana (Eds.), Palaeohydrology: Traces, tracks and trails of extreme events (pp. 213–228). Springer International Publishing. https://doi.org/10.1007/978-3-030-23315-0_11
10.1007/978-3-030-23315-0_11 Google Scholar
- Van Dijk, M., Postma, G., & Kleinhans, M. G. (2009). Autocyclic behaviour of fan deltas: An analogue experimental study. Sedimentology, 56(5), 1569–1589. https://doi.org/10.1111/j.1365-3091.2008.01047.x
- Ventra, D., & Clarke, L. E. (2018). Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives. Geological Society, London, Special Publications, 440(1), 1–21. https://doi.org/10.1144/SP440.16
- Ward, G. K., & Wilson, S. R. (1978). Procedures for comparing and combining radiocarbon age determinations: A critique. Archaeometry, 20(1), 19–31. https://doi.org/10.1111/j.1475-4754.1978.tb00208.x
- Wartman, J., Montgomery, D. R., Anderson, S. A., Keaton, J. R., Benoît, J., dela Chapelle, J., & Gilbert, R. (2016). The 22 March 2014 Oso landslide, Washington, USA. Geomorphology, 253, 275–288. https://doi.org/10.1016/j.geomorph.2015.10.022
- Washington Geological Survey. (2020). Landslide protocol inventory mapping—GIS data. Washington Geological Survey. Retrieved from https://fortress.wa.gov/dnr/geologydata/publications/data_download/ger_portal_landslide_inventory.zip
- Weissmann, G. S., Mount, J. F., & Fogg, G. E. (2002). Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, U.S.A. Journal of Sedimentary Research, 72(2), 240–251. https://doi.org/10.1306/062201720240
- Wilhelm, B., Amann, B., Corella, J. P., Rapuc, W., Giguet-Covex, C., Merz, B., & Støren, E. (2022). Reconstructing paleoflood occurrence and magnitude from lake sediments. Quaternary, 5(1), 9. https://doi.org/10.3390/quat5010009
- Wilhelm, B., Ballesteros Cánovas, J. A., Macdonald, N., Toonen, W. H. J., Baker, V., Barriendos, M., et al. (2019). Interpreting historical, botanical, and geological evidence to aid preparations for future floods. WIREs Water, 6(1), e1318. https://doi.org/10.1002/wat2.1318
- Winter, L. E., Brubaker, L. B., Franklin, J. F., Miller, E. A., & DeWitt, D. Q. (2002). Initiation of an old-growth Douglas-fir stand in the Pacific Northwest: A reconstruction from tree-ring records. Canadian Journal of Forest Research, 32(6), 1039–1056. https://doi.org/10.1139/X02-031
10.1139/x02-031 Google Scholar
- Wolman, M. G., & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68(1), 54–74. https://doi.org/10.1086/626637
- Wong, C. M., & Lertzman, K. P. (2001). Errors in estimating tree age: Implications for studies of stand dynamics. Canadian Journal of Forest Research, 31(7), 1262–1271. https://doi.org/10.1139/x01-060
- Wood, R., King, F., Esmay, R., Chen, Q., Schneider, L., Dotte-Sarout, E., et al. (2023). The size inherited age effect on radiocarbon dates of alluvial deposits: Redating charcoal fragments in a sand-bed stream, Macdonald River, NSW, Australia. Radiocarbon, 1–14. https://doi.org/10.1017/RDC.2023.75
10.1017/RDC.2023.75 Google Scholar
- Zolitschka, B., Francus, P., Ojala, A. E. K., & Schimmelmann, A. (2015). Varves in lake sediments – A review. Quaternary Science Reviews, 117, 1–41. https://doi.org/10.1016/j.quascirev.2015.03.019
References From the Supporting Information
- Hibbert, D. M. (1979). Pollen analysis of Late Quaternary sediments from two lakes in the Southern Puget Lowland, Washington (M.S. Thesis). University of Washington.
- McLachlan, J., & Brubaker, L. B. (1995). Local and regional vegetation change on the northeastern Olympic Peninsula during the Holocene. Canadian Journal of Botany, 73(10), 1618–1627. https://doi.org/10.1139/b95-175
10.1139/b95-175 Google Scholar
- Prichard, S. J., Gedalof, Z., Oswald, W. W., & Peterson, D. L. (2009). Holocene fire and vegetation dynamics in a montane forest, North Cascade Range, Washington, USA. Quaternary Research, 72(1), 57–67. https://doi.org/10.1016/j.yqres.2009.03.008
- Sugita, S., & Tsukada, M. (1982). The vegetation history in western North America 1. Mineral and Hall lakes. Japanese Journal of Ecology, 32(4), 499–516.