A Ground-Based Instrument Suite for Integrated High-Time Resolution Measurements of Pulsating Aurora With Arase
Corresponding Author
K. Hosokawa
Graduate School of Communication Engineering and Informatics, University of Electro- Communications, Tokyo, Japan
Correspondence to:
K. Hosokawa,
Search for more papers by this authorS.-I. Oyama
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
National Institute of Polar Research, Tokyo, Japan
University of Oulu, Oulu, Finland
Search for more papers by this authorY. Miyoshi
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorS. Kurita
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
Search for more papers by this authorS. Nozawa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorT. Kawabata
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorY. Kawamura
Graduate School of Communication Engineering and Informatics, University of Electro- Communications, Tokyo, Japan
Search for more papers by this authorY.-M. Tanaka
National Institute of Polar Research, Tokyo, Japan
Search for more papers by this authorK. Shiokawa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorU. Brändström
The Swedish Institute of Space Physics, Kiruna, Sweden
Search for more papers by this authorE. Turunen
Sodankylä Geophysical Observatory, Sodankylä, Finland
Search for more papers by this authorM. G. Johnsen
Tromsø Geophysical Observatory, UiT, The Arctic University of Norway, Tromsø, Norway
Search for more papers by this authorC. Hall
Tromsø Geophysical Observatory, UiT, The Arctic University of Norway, Tromsø, Norway
Deceased 9 August 2021.
Contribution: Resources, Supervision, Project administration
Search for more papers by this authorD. Hampton
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Search for more papers by this authorY. Ebihara
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
Search for more papers by this authorY. Kasahara
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorS. Matsuda
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorI. Shinohara
Institute of Space and Astronautical Science, Sagamihara, Japan
Search for more papers by this authorR. Fujii
Research Organization of Information and Systems, Tokyo, Japan
Search for more papers by this authorCorresponding Author
K. Hosokawa
Graduate School of Communication Engineering and Informatics, University of Electro- Communications, Tokyo, Japan
Correspondence to:
K. Hosokawa,
Search for more papers by this authorS.-I. Oyama
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
National Institute of Polar Research, Tokyo, Japan
University of Oulu, Oulu, Finland
Search for more papers by this authorY. Miyoshi
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorS. Kurita
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
Search for more papers by this authorS. Nozawa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorT. Kawabata
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorY. Kawamura
Graduate School of Communication Engineering and Informatics, University of Electro- Communications, Tokyo, Japan
Search for more papers by this authorY.-M. Tanaka
National Institute of Polar Research, Tokyo, Japan
Search for more papers by this authorK. Shiokawa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Search for more papers by this authorU. Brändström
The Swedish Institute of Space Physics, Kiruna, Sweden
Search for more papers by this authorE. Turunen
Sodankylä Geophysical Observatory, Sodankylä, Finland
Search for more papers by this authorM. G. Johnsen
Tromsø Geophysical Observatory, UiT, The Arctic University of Norway, Tromsø, Norway
Search for more papers by this authorC. Hall
Tromsø Geophysical Observatory, UiT, The Arctic University of Norway, Tromsø, Norway
Deceased 9 August 2021.
Contribution: Resources, Supervision, Project administration
Search for more papers by this authorD. Hampton
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Search for more papers by this authorY. Ebihara
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
Search for more papers by this authorY. Kasahara
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorS. Matsuda
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorI. Shinohara
Institute of Space and Astronautical Science, Sagamihara, Japan
Search for more papers by this authorR. Fujii
Research Organization of Information and Systems, Tokyo, Japan
Search for more papers by this authorAbstract
A specialized ground-based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of (a) six 100 Hz sampling high-speed all-sky imagers (ASIs), (b) two 10 Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emissions, (c) a 20 Hz sampling fluxgate magnetometer. The 100 Hz ASIs were deployed in four stations in Scandinavia and two stations in Alaska, which have been used for capturing the main pulsations and quasi 3 Hz internal modulations of PsA at the same time. The 10 Hz sampling monochromatic ASIs have been operative in Tromsø, Norway with the 20 Hz sampling magnetometer. Combination of these multiple instruments with the European Incoherent SCATter (EISCAT) radar enables us to detect the low-altitude ionization due to energetic electron precipitation during PsA and further to reveal the ionospheric electrodynamics behind PsA. Since the launch of the Arase satellite, the data from these instruments have been examined in comparison with the wave and particle data from the satellite in the magnetosphere. In the future, the system can be utilized not only for studies of PsA but also for other classes of aurora in close collaboration with the planned EISCAT_3D project.
Key Points
-
An integrated package of instruments for high-time resolution measurements of pulsating aurora was deployed in Scandinavia and Alaska
-
The system has enabled us to capture the fine-scale spatio-temporal variations of pulsating aurora in a wide area
-
Data from those instruments have also been used for simultaneous observations of pulsating aurora with the Arase satellite
Open Research
Data Availability Statement
The data from the Arase (ERG) satellite and ground-based instruments were obtained from the ERG Science Center operated by the Institute of Space and Astronautical Science of the Japan Aerospace eXploration Agency and the Institute for Space-Earth Environmental Research of Nagoya University (https://ergsc.isee.nagoya-u.ac.jp/index.shtml.en, Miyoshi, Hori, et al., 2018). The EMCCD all-sky camera data are accessible at the following DOIs, 100 Hz ASI at Tromsø station: https://doi.org/10.34515/DATA.GND-0059-0006-0201_v01, 100 Hz ASI Sodankylä: https://doi.org/10.34515/DATA.GND-0049-0006-0202_v01, 10 Hz monochromatic (844.6 nm) ASI Tromsø: https://doi.org/10.34515/DATA.GND-0059-0006-0203_v01, 100 Hz ASI at Tjautjas: https://doi.org/10.34515/DATA.GND-0062-0006-0204_v01, 10 Hz monochromatic (427.8 nm) ASI at Tromsø: https://doi.org/10.34515/DATA.GND-0059-0006-0205_v01, 100 Hz ASI at Kevo: https://doi.org/10.34515/DATA.GND-0022-0006-0206_v01, 100 Hz at Gakona station: https://doi.org/10.34515/DATA.GND-0013-0006-0207_v01, and 100 Hz ASI at Pokar Flat: https://doi.org/10.34515/DATA.GND-0040-0006-0208_v01.
Supporting Information
Filename | Description |
---|---|
2023JA031527-sup-0001-Supporting Information SI-S01.doc65.5 KB | Supporting Information S1 |
2023JA031527-sup-0002-Movie SI-S01.mp457.5 MB | Movie S1 |
2023JA031527-sup-0003-Movie SI-S02.mp45.8 MB | Movie S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King, D. A., et al. (2019). The space physics environment data analysis system (SPEDAS). Space Science Reviews, 215(1), 9. https://doi.org/10.1007/s11214-018-0576-4
- Arnoldy, R. L., Dragoon, K., Cahill, L. J., Mende, S. B., Jr., & Rosenberg, T. J. (1982). Detailed correlations of magnetic field and riometer observations at L = 4.2 with pulsating aurora. Journal of Geophysical Research, 87(A12), 10449–10456. https://doi.org/10.1029/JA087iA12p10449
- Baker, K. B., & Wing, S. (1989). A new magnetic coordinate system for conjugate studies of high latitudes. Journal of Geophysical Research, 94(A7), 9139. https://doi.org/10.1029/ja094ia07p09139
- Demekhov, A. G., & Trakhtengerts, V. Y. (1994). A mechanism of formation of pulsating aurorae. Journal of Geophysical Research, 99(A4), 5831–5841. https://doi.org/10.1029/93JA01804
- Feldsten, Y. I., & Starkov, G. V. (1967). Dynamics of auroral belt and polar geomagnetic disturbance. Planetary and Space Science, 15, 209–229. https://doi.org/10.1016/0032-0633(67)90190-0
- Foster, J. C., Erickson, P. J., Omura, Y., Baker, D. N., Kletzing, C. A., & Claudepierre, S. G. (2017). Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 122(1), 324–339. https://doi.org/10.1002/2016ja023429
- Foster, J. C., & Rosenberg, T. J. (1976). Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause. Journal of Geophysical Research, 81(13), 2183–2192. https://doi.org/10.1029/ja081i013p02183
- Fukizawa, M., Sakanoi, T., Miyoshi, Y., Hosokawa, K., Shiokawa, K., Katoh, Y., et al. (2018). Electrostatic electron cyclotron harmonic waves as a candidate to cause pulsating auroras. Geophysical Research Letters, 45(23), 12661–12668. https://doi.org/10.1029/2018GL080145
- Hosokawa, K., Miyoshi, Y., & Li, W. (2015). Introduction to special section on pulsating aurora and related magnetospheric phenomena. Journal of Geophysical Research: Space Physics, 120(7), 5341–5343. https://doi.org/10.1002/2015JA021453
- Hosokawa, K., Miyoshi, Y., Ozaki, M., Oyama, S.-I., Ogawa, Y., Kurita, S., et al. (2020). Multiple time-scale beats in aurora: Precise orchestration via magnetospheric chorus waves. Nature Scientific Report, 10(1), 3380. https://doi.org/10.1038/s41598-020-59642-8
- Hosokawa, K., Ogawa, Y., Kadokura, A., Miyaoka, H., & Sato, N. (2010). Modulation of ionospheric conductance and electric field associated with pulsating aurora. Journal of Geophysical Research, 115(A3), A03201. https://doi.org/10.1029/2009JA014683
- Jones, A. V. (1974). Aurora. Reidel Publishing Company. https://doi.org/10.1007/978-94-010-2099-2
10.1007/978-94-010-2099-2 Google Scholar
- Kasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S., et al. (2018a). Pulsating aurora from electron scattering by chorus waves. Nature, 554(7692), 337–340. https://doi.org/10.1038/nature25505
- Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K., Kumamoto, A., et al. (2018b). The plasma wave experiment (PWE) on board the Arase (ERG) satellite. Earth Planets and Space, 70(1), 86. https://doi.org/10.1186/s40623-018-0842-4
- Kataoka, R., Miyoshi, Y., Hampton, D., Ishii, T., & Kozako, H. (2012). Pulsating aurora beyond the ultra-low frequency range. Journal of Geophysical Research, 117(A8), A08336. https://doi.org/10.1029/2012JA017987
10.1029/2012JA017987 Google Scholar
- Kennel, C. F., & Petschek, H. E. (1966). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71, 1–28. https://doi.org/10.1029/JZ071i001p00001
- Lanchester, B. S., Palmer, J. R., Rees, M. H., Lummerzheim, D., Kaila, K., & Turunen, T. (1994). Energy flux and characteristic energy of an elemental auroral structure. Geophysical Research Letters, 21(25), 2789–2792. https://doi.org/10.1029/94gl01764
- Lessard, M. (2012). A review of pulsating aurora. In A. Keiling, E. Donovan, F. Bagenal, & T. Karlsson (Eds.), Auroral phenomenology and magnetospheric processes: Earth and other planets. AGU monograph series (Vol. 197). https://doi.org/10.1029/2011GM001187
10.1029/2011GM001187 Google Scholar
- Matsuda, S., Kasahara, Y., Kojima, H., Kasaba, Y., Yagitani, S., Ozaki, M., et al. (2018). Onboard software of plasma wave experiment aboard arase: Instrument management and signal processing of waveform capture/onboard frequency analyzer. Earth Planets and Space, 70(1), 75. https://doi.org/10.1186/s40623-018-0838-0
- McCrea, I. W., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., et al. (2015). The science case for the EISCAT_3D radar. Progress in Earth and Planetary Science, 2(1), 21. https://doi.org/10.1186/s40645-015-0051-8
- Mende, S. B., Harris, S. E., Frey, H. U., Angelopoulos, V., Russell, C. T., Donovan, E., et al. (2008). The THEMIS array of ground-based observatories for the study of auroral substorms. Space Science Reviews, 141(1–4), 357–387. https://doi.org/10.1007/s11214-008-9380-x
- Miyoshi, Y., Hori, T., Shoji, M., Teramoto, M., Chang, T.-F., Segawa, T., et al. (2018). The ERG science center. Earth Planets and Space, 70(1), 96. https://doi.org/10.1186/s40623-018-0867-8
- Miyoshi, Y., Hosokawa, K., Kurita, S., Oyama, S.-I., Ogawa, Y., Saito, S., et al. (2021). Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae. Scientific Reports, 11(1), 13724. https://doi.org/10.1038/s41598-021-92611-3
- Miyoshi, Y., Katoh, Y., Nishiyama, T., Sakanoi, T., Asamura, K., & Hirahara, M. (2010). Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves. Journal of Geophysical Research, 115(A10), A10312. https://doi.org/10.1029/2009JA015127
- Miyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H., Kataoka, R., et al. (2015b). Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. Journal of Geophysical Research: Space Physics, 120(4), 2754–2766. https://doi.org/10.1002/2014JA020690
- Miyoshi, Y., Saito, S., Kurita, S., Asamura, K., Hosokawa, K., Sakanoi, T., et al. (2020). Relativistic electron microbursts as high energy tail of pulsating aurora electrons. Geophysical Research Letters, 47(21), e2020GL090360. https://doi.org/10.1029/2020GL090360
- Miyoshi, Y., Saito, S., Seki, K., Nishiyama, T., Kataoka, R., Asamura, K., et al. (2015a). Relation between energy spectra of pulsating aurora electrons and frequency spectra of whistler-mode chorus waves. Journal of Geophysical Research, 120(9), 7728–7736. https://doi.org/10.1002/2015JA021562
- Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., et al. (2018). Geospace exploration project ERG. Earth Planets and Space, 70(1), 101. https://doi.org/10.1186/s40623-018-0862-0
- Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., et al. (2010). Identifying the driver of pulsating aurora. Science, 330(6000), 81–84. https://doi.org/10.1126/science.1193186
- Nishimura, Y., Lessard, M. R., Katoh, Y., Miyoshi, Y., Grono, E., Partamies, N., et al. (2020). Diffuse and pulsating aurora. Space Science Reviews, 216(1), 4. https://doi.org/10.1007/s11214-019-0629-3
- Nishiyama, T., Sakanoi, T., Miyoshi, Y., Katoh, Y., Asamura, K., Okano, S., & Hirahara, M. (2011). The source region and its characteristic of pulsating aurora based on the Reimei observations. Journal of Geophysical Research, 116(A3), A03226. https://doi.org/10.1029/2010JA015507
10.1029/2010JA015507 Google Scholar
- Nozawa, S., Kawabata, T., Hosokawa, K., Ogawa, Y., Tsuda, T., Mizuno, A., et al. (2018). A new five-wavelength photometer operated in Tromsø (69.6°N, 19.2°E). Earth Planets and Space, 70(1), 193. https://doi.org/10.1186/s40623-018-0962-x
- Ogawa, Y., Kadokura, A., & Ejiri, M. K. (2020b). Optical calibration system of NIPR for aurora and airglow observations. Polar Science, 26, 100570. https://doi.org/10.1016/j.polar.2020.100570
- Ogawa, Y., Tanaka, Y., Kadokura, A., Hosokawa, K., Ebihara, Y., Motoba, T., et al. (2020a). Development of low-cost multi-wavelength imager system for studies of aurora and airglow. Polar Science, 23, 100501. https://doi.org/10.1016/j.polar.2019.100501
- Oguti, T., & Hayashi, K. (1984). Multiple correlation between auroral and magnetic pulsations. II - Determination of electric currents and electric fields around a pulsating auroral patch. Journal of Geophysical Research, 89(A9), 7467–7481. https://doi.org/10.1029/JA089iA09p07467
- Oguti, T., Hayashi, K., Yamamoto, T., Ishida, J., Higuchi, T., & Nishitani, N. (1986). Absence of hydromagnetic waves in the magnetospheric equatorial region conjugate with pulsating auroras. Journal of Geophysical Research, 91(A12), 13711–13715. https://doi.org/10.1029/JA091iA12p13711
- Omura, Y., Hsieh, Y., Foster, J. C., Erickson, P. J., Kletzing, C. A., & Baker, D. N. (2019). Cyclotron acceleration of relativistic electrons through Landau resonance with obliquely propagating whistler-mode chorus emissions. Journal of Geophysical Research: Space Physics, 124, 2795–2810. https://doi.org/10.1029/2018ja026374
- Ono, T. (1993). Derivation of energy parameters of precipitating auroral electrons by using the intensity ratios of auroral emissions. Journal of geomagnetism and geoelectricity, 45(6), 455–472. https://doi.org/10.5636/jgg.45.455
- Oyama, S., Kero, A., Rodger, C. J., Clilverd, M. A., Miyoshi, Y., Partamies, N., et al. (2017). Energetic electron precipitation and auroral morphology at the substorm recovery phase. Journal of Geophysical Research: Space Physics, 122(6), 6508–6527. https://doi.org/10.1002/2016JA023484
- Oyama, S., Tsuda, T. T., Hosokawa, K., Ogawa, Y., Miyoshi, Y., Kurita, S., et al. (2018). Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm. Earth Planets and Space, 70(1), 166. https://doi.org/10.1186/s40623-018-0936-z
- Ozaki, M., Miyoshi, Y., Shiokawa, K., Hosokawa, K., Oyama, S., Kataoka, R., et al. (2019). Visualization of rapid electron precipitation via chorus element wave–particle interactions. Nature Communications, 10(1), 257. https://doi.org/10.1038/s41467-018-07996-z
- Rosenberg, T. J., Helliwell, R. A., & Katsufrakis, J. P. (1971). Electron precipitation associated with discrete very-low-frequency emissions. Journal of Geophysical Research, 76(34), 8445–8452. https://doi.org/10.1029/ja076i034p08445
- Røyrvik, O., & Davis, T. N. (1977). Pulsating aurora: Local and global morphology. Journal of Geophysical Research, 82(29), 4720–4740. https://doi.org/10.1029/ja082i029p04720
- Samara, M., & Michell, R. G. (2010). Ground-based observations of diffuse auroral frequencies in the context of whistler mode chorus. Journal of Geophysical Research, 115(A9), A00F18. https://doi.org/10.1029/2009JA014852
10.1029/2009JA014852 Google Scholar
- Sandahl, I., Eliasson, L., & Lundin, R. (1980). Rocket observations of precipitating electrons over a pulsating aurora. Geophysical Research Letters, 7(5), 309–312. https://doi.org/10.1029/gl007i005p00309
- Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth Planets and Space, 69(1), 160. https://doi.org/10.1186/s40623-017-0745-9
- Solomon, S. C. (2017). Global modeling of thermospheric airglow in the far ultraviolet. Journal of Geophysical Research: Space Physics, 122(7), 7834–7848. https://doi.org/10.1002/2017JA024314
- Taguchi, M., Ejiri, M., & Tomimatsu, K. (2004). A new all-sky optics for aurora and airglow imaging. Advances in Polar Upper Atmosphere Research, 18, 140–148.
- Tsuda, T. T., Li, C., Hamada, S., Hosokawa, K., Oyama, S.-I., Nozawa, S., et al. (2020). OI 630.0-nm and N2 1PG emissions in pulsating aurora events observed by an optical spectrograph at Tromsø, Norway. Journal of Geophysical Research: Space Physics, 125(12), e2020JA028250. https://doi.org/10.1029/2020JA028250
- Turunen, E., Kero, A., Verronen, P. T., Miyoshi, Y., Oyama, S.-I., & Saito, S. (2016). Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora. Journal of Geophysical Research: Atmospheres, 121(19), 11852–11861. https://doi.org/10.1002/2016JD025015
- Yamamoto, T. (1988). On the temporal fluctuations of pulsating auroral luminosity. Journal of Geophysical Research, 93(A2), 897–911. https://doi.org/10.1029/JA093iA02p00897