High-pressure elastic properties of major materials of Earth's mantle from first principles
Bijaya B. Karki
Search for more papers by this authorLars Stixrude
Search for more papers by this authorRenata M. Wentzcovitch
Search for more papers by this authorBijaya B. Karki
Search for more papers by this authorLars Stixrude
Search for more papers by this authorRenata M. Wentzcovitch
Search for more papers by this authorAbstract
The elasticity of materials is important for our understanding of processes ranging from brittle failure, to flexure, to the propagation of elastic waves. Seismologically revealed structure of the Earth's mantle, including the radial (one-dimensional) profile, lateral heterogeneity, and anisotropy are determined largely by the elasticity of the materials that make up this region. Despite its importance to geophysics, our knowledge of the elasticity of potentially relevant mineral phases at conditions typical of the Earth's mantle is still limited: Measuring the elastic constants at elevated pressure-temperature conditions in the laboratory remains a major challenge. Over the past several years, another approach has been developed based on first-principles quantum mechanical theory. First-principles calculations provide the ideal complement to the laboratory approach because they require no input from experiment; that is, there are no free parameters in the theory. Such calculations have true predictive power and can supply critical information including that which is difficult to measure experimentally. A review of high-pressure theoretical studies of major mantle phases shows a wide diversity of elastic behavior among important tetrahedrally and octahedrally coordinated Mg and Ca silicates and Mg, Ca, Al, and Si oxides. This is particularly apparent in the acoustic anisotropy, which is essential for understanding the relationship between seismically observed anisotropy and mantle flow. The acoustic anisotropy of the phases studied varies from zero to more than 50% and is found to depend on pressure strongly, and in some cases nonmonotonically. For example, the anisotropy in MgO decreases with pressure up to 15 GPa before increasing upon further compression, reaching 50% at a pressure of 130 GPa. Compression also has a strong effect on the elasticity through pressure-induced phase transitions in several systems. For example, the transition from stishovite to CaCl2 structure in silica is accompanied by a discontinuous change in the shear (S) wave velocity that is so large (60%) that it may be observable seismologically. Unifying patterns emerge as well: Eulerian finite strain theory is found to provide a good description of the pressure dependence of the elastic constants for most phases. This is in contrast to an evaluation of Birch’s law, which shows that this systematic accounts only roughly for the effect of pressure, composition, and structure on the longitudinal (P) wave velocity. The growing body of theoretical work now allows a detailed comparison with seismological observations. The athermal elastic wave velocities of most important mantle phases are found to be higher than the seismic wave velocities of the mantle by amounts that are consistent with the anticipated effects of temperature and iron content on the P and S wave velocities of the phases studied. An examination of future directions focuses on strategies for extending first-principles studies to more challenging but geophysically relevant situations such as solid solutions, high-temperature conditions, and mineral composites.
References
- Aki, K., P. G. Richards, Quantitative Seismology: Theory and Methods, 2, W. H. Freeman, New York, 1980.
- Alfe, D., G. Kresse, M. J. Gillan, Structure and dynamics of liquid iron under Earth's core conditions, Phys. Rev. B, 61, 132–142, 2000.
- Anderson, D. L., Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots, and deep slab anomalies, J. Geophys. Res., 92, 13968–13980, 1987.
- Anderson, D. L., J. W. Given, Absorption-band Q model for the Earth, J. Geophys. Res., 87, 3893–3904, 1982.
- Anderson, O. K., Linear methods in band theory, Phys. Rev. B, 12, 3060–3083, 1975.
- Anderson, O. L., D. Isaak, H. Oda, High-temperature elastic constant data on minerals relevant to geophysics, Rev. Geophys., 30, 57–90, 1992.
- Andrault, D., G. Fiquet, F. Guyot, M. Hanfl, Pressure-induced Landau-type transition in stishovite, Science, 282, 720–724, 1998.
- Backus, G. E., Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67, 4427–4440, 1962.
- Bagno, P., O. Jepsen, O. Gunnarsson, Ground-state properties of 3rd-row elements with nonlocal density functionals, Phys. Rev. B, 40, 1997–2000, 1989.
- Baroni, S., P. Giannozzi, A. Testa, Green's-function approach to linear response in solid, Phys. Rev. Lett., 58, 1861–1864, 1987.
- Barron, T. H. K., M. L. Klein, Second-order elastic constants of a solid under stress, Proc. Phys. Soc., 85, 523–532, 1965.
- Bass, J. D., R. C. Liebermann, D. J. Weidner, S. J. Finch, Elastic properties from acoustic and volume compression experiments, Phys. Earth Planet. Inter., 25, 140–158, 1981.
- Birch, F., The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan's theory of theory of finite strain, J. Appl. Phys., 9, 279–288, 1938.
- Birch, F., Elasticity and constitution of the Earth's interior, J. Geophys. Res., 57, 227–286, 1952.
- Birch, F., The velocity of compressional waves in rocks to 10 kilobars, part 2, J. Geophys. Res., 66, 2199–2224, 1961.
- Bukowinski, M. S. T., Quantum geophysics, Annu. Rev. Earth Planet. Sci., 22, 167–205, 1984.
- Bukowinski, M. S. T., First principles equations of state of MgO and CaO, Geophys. Res. Lett., 12, 536–539, 1985.
- Bunge, H. J., Texture Analysis in Materials Sciences, Butterworths, London, 1982.
- Campbell, A. J., D. L. Heinz, A high pressure test of Birch law, Science, 257, 66–68, 1992.
- Car, R., M. Parrinello, Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett., 55, 2471–2474, 1985.
- Ceperley, D. M., B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett., 45, 566–569, 1980.
- Chai, M., J. M. Brown, The elastic constants of a pyropegrossular-almandine garnet to 20 GPa, Geophys. Res. Lett., 24, 523–526, 1997.
- Chang, P., E. K. Graham, Elastic properties of oxides in the NaCl structure, J. Phys. Chem. Solids, 38, 1355–1362, 1977.
- Christensen, N. I., M. H. Salisbury, Seismic anisotropy in the oceanic upper mantle: Evidence from the Bay of Islands ophiolite complex, J. Geophys. Res., 84, 4601–4610, 1979.
- Cohen, A. J., R. J. Gordon, Modified electron-gas study of the stability, elastic properties and high-pressure behavior of MgO and CaO crystal, Phys. Rev. B Solid State, 14, 4593–4605, 1976.
- Cohen, M. L., V. Heine, The fitting of pseudopotentials to experimental data and their subsequent application, Solid State Phys., 24, 238–249, 1970.
- Cohen, R. E., Calculation of elasticity and high-pressure instabities in corundum and stishovite with the potential induced breathing model, Geophys. Res. Lett., 14, 37–40, 1987a.
- Cohen, R. E., Elasticity and equation of state of MgSiO3-perovskite, Geophys. Res. Lett., 14, 1053–1056, 1987b.
- Cohen, R. E., Bonding and elasticity of stishovite SiO2 at high pressure: Linearised augmented plane wave calculations, Am. Mineral., 76, 733–742, 1991.
- Cohen, R. E., First-principles predictions of elasticity and phase transitions in high pressure SiO2 and geophysical implications, High-Pressure Research: Application to Earth and Planetary Sciences, Geophys. Monogr. Ser., 67 Y. Syono, M. H. Manghnani, 425–431, AGU, Washington, D. C., 1992.
10.1029/GM067p0425 Google Scholar
- Dahlen, F. A., J. Tromp, Theoretical Global Seismology, Princeton Univ. Press, Princeton, N. J., 1998.
- da Silva, C., L. Stixrude, R. M. Wentzcovitch, Elastic constants and anisotropy of fosterite at high pressure, Geophys. Res. Lett., 24, 1963–1966, 1997.
- da Silva, C., B. B. Karki, L. Stixrude, R. M. Wentzcovitch, Ab initio study of the elastic behavior of MgSiO3 ilmenite at high pressure, Geophys. Res. Lett., 26, 943–946, 1999.
- Davies, G. F., Effective elastic moduli under hydrostatic stress, I, Quasi-harmonic theory, J. Phys. Chem. Solids, 35, 1513–1520, 1974.
- deGironcoli, S., P. Gianozzi, S. Baroni, Structure and thermodynamics of SixGe-1.x alloys from ab initio Monte Carlo simulations, Phys. Rev. Lett., 66, 2116–2119, 1991.
- Demuth, T., Y. Jeanvoine, J. Hafner, J. G. Angyan, Polymorphism in silica studied in the local density and generalized-gradient approximations, J. Phys. Condens. Matter, 11, 3833–3874, 1999.
- Dovesi, R., R. Orlando, C. Roetti, C. Pisani, V. R. Saunders, The periodic Hartree-Fock method and its implementation in the CRYSTAL code, Phys. Status Solidi B, 217, 63–88, 2000.
- Duan, W., B. B. Karki, R. M. Wentzcovitch, High pressure elasticity of alumina studied by first principles, Am. Mineral., 84, 1961–1966, 1999.
- Duffy, T. S., D. L. Anderson, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, 1895–1912, 1989.
- Duffy, T. S., R. J. Hemley, H. K. Mao, Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa, Phys. Rev. Lett., 74, 1371–1374, 1995.
- Dziewonski, A. M., D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.
- Fujisawa, H., Elastic wave velocities of fosterite and its β-spinel form and chemical boundary hypothesis for the 410-km discontinuity, J. Geophys. Res., 103, 9591–9608, 1998.
- Gaherty, J. B., T. H. Jordan, L. S. Gee, Seismic structure of the upper mantle in a central Pacific corridor, J. Geophys. Res., 101, 22291–22309, 1996.
- Garnero, E. J., D. V. Helmberger, Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central Pacific, Geophys. Res. Lett., 23, 977–980, 1996.
- Garnero, E. J., T. Lay, Lateral variation in lowermost mantle shear wave anisotropy beneath the North Pacific and Alaska, J. Geophys. Res., 102, 8121–8135, 1997.
- Gieske, J. H., G. R. Barsch, Pressure dependence of the elastic constants of single crystalline aluminum oxide, Phys. Status Solidi, 29, 121–131, 1968.
- Hamann, D. R., Generalized gradient theory for silica phase transitions, Phys. Rev. Lett., 76, 660–663, 1996.
- Hamann, D. R., M. Schlüter, C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett., 43, 1494–1497, 1979.
- Hashin, Z., S. Shtrikman, A variational approach to the theory of the elastic behavior of polycrystals, J. Mech. Phys. Solids, 10, 343–352, 1962.
- Hazen, R. M., L. W. Finger, Bulk modulus-volume relationship for cation-anion polyhedra, J. Geophys. Res., 84, 6723–6728, 1979.
- Heine, V., The pseudopotential concept, Solid State Phys., 24, 1–37, 1970.
- Helbig, K., Foundations of Anisotropy for Exploration Seismics, Pergamon, New York, 1984.
- Helffrich, G., C. R. Bina, Frequency dependence of the visibility and depths of mantle seismic discontinuities, Geophys. Res. Lett., 21, 2613–2616, 1994.
- Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. London, Ser. A, 65, 349–354, 1952.
- Hohenberg, P., W. Kohn, Inhomogeneous electron gas, Phys. Rev. B, 136, 864–871, 1964.
- Ihm, J., Total energy calculations in solid-state physics, Rep. Prog. Phys., 51, 105–142, 1988.
- Isaak, D. G., R. E. Cohen, M. E. Mehl, Calculated elastic constants and thermal properties of MgO at high pressures and temperatures, J. Geophys. Res., 95, 7055–7067, 1990.
- Isaak, D. G., O. L. Anderson, R. E. Cohen, The relationship between shear and compressional velocities at high pressures: Reconciliation of seismic tomography and mineral physics, Geophys. Res. Lett., 19, 741–744, 1992.
- Ishii, M., J. Tromp, Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle, Science, 285, 1231–1236, 1999.
- Ita, J., R. E. Cohen, Effects of pressure on diffusion and vacancy formation in MgO from nonempirical free-energy integrations, Phys. Rev. Lett., 79, 3198–3201, 1997.
- Jackson, D. D., D. L. Anderson, Physical mechanisms of seismic-wave attenuation, Rev. Geophys., 8, 1–63, 1970.
- Jansen, H. J. F., A. J. Freeman, Total-energy full-potential linearized augmented-plane-wave method for bulk solids-Electronic and structural properties of tungsten, Phys. Rev. B, 30, 561–569, 1984.
- Jeanloz, R., Universal equation of state, Phys. Rev. B, 38, 805–807, 1988.
- Jeanloz, R., E. Knittle, Density and composition of the lower mantle, Philos. Trans. R. Soc. London, Ser. A, 238, 377–389, 1989.
- Jeanloz, R., S. Morris, Temperature distribution in the crust and mantle, Annu. Rev. Earth Planet. Sci., 14, 377–415, 1986.
- Jeanloz, R., A. Thompson, Phase transitions and mantle discontinuities, Rev. Geophys., 21, 51–74, 1983.
- Jones, R. O., O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689–746, 1989.
- Kanamori, H., D. L. Anderson, Importance of physical dispersion in surface-wave and free-oscillation problems: A review, Rev. Geophys., 15, 105–112, 1977.
- Kaneshima, S., P. G. Silver, Anisotropic loci in the mantle beneath central Peru, Phys. Earth Planet. Inter., 88, 257–272, 1995.
- Karato, S., Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20, 1623–1626, 1993.
- Karato, S., Some remarks on the origin of seismic anisotropy in the D″ layer, Earth Planets Space, 50, 1019–1028, 1998a.
- Karato, S., Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection, Pure Appl. Geophys., 151, 565–587, 1998b.
- Karato, S., B. B. Karki, Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21771–21783, 2001.
- Karato, S., H. A. Spetzler, Defect microdynamics in minerals and solid-state mechanisms of seismic-wave attenuation and velocity dispersion in the mantle, Rev. Geophys., 28, 399–421, 1990.
- Karki, B. B., High pressure structure and elasticity of the major silicate and oxide minerals of the Earth's lower mantle,Ph.D.thesis, Univ. of Edinburgh,Edinburgh, Scotland,1997.
- Karki, B. B., J. Crain, First-principles determination of elastic properties of CaSiO3 perovskite at lower mantle pressures, Geophys. Res. Lett., 25, 2741–2744, 1998a.
- Karki, B. B., J. Crain, Structure and elasticity of CaO at high pressure, J. Geophys. Res., 103, 12405–12411, 1998b.
- Karki, B. B., L. Stixrude, Seismic velocities of major silicate and oxide phases of the lower mantle, J. Geophys. Res., 104, 13025–13033, 1999.
- Karki, B. B., L. Stixrude, S. J. Clark, M. C. Warren, G. J. Ackland, J. Crain, Structure and elasticity of MgO at high pressure, Am. Mineral., 82, 52–61, 1997a.
- Karki, B. B., M. C. Warren, L. Stixrude, G. J. Ackland, andJ. Crain, Ab initio studies of high-pressure structural transformations in silica,Phys. Rev. B, 55, 3465–3472,1997b. (Correction, Phys. Rev. B, 56, 2884 ,1997.).
- Karki, B. B., L. Stixrude, S. J. Clark, M. C. Warren, G. J. Ackland, J. Crain, Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures, Am. Mineral., 82, 635–638, 1997c.
- Karki, B. B., L. Stixrude, J. Crain, Ab initio elasticity of three high-pressure polymorphs of silica, Geophys. Res. Lett., 24, 3269–3272, 1997d.
- Karki, B. B., G. J. Ackland, J. Crain, Elastic instabilities from ab-initio stress-strain relations, J. Phys. C, 9, 8579–8589, 1997e.
- Karki, B. B., R. M. Wentzcovitch, S. deGironcoli, S. Baroni, Elastic anisotropy and wave velocities of MgO at lower mantle conditions, Science, 286, 1705–1707, 1999.
- Karki, B. B., W. Duan, C. R. S. da Silva, R. M. Wentzcovitch, Ab initio structure of MgSiO3 ilmenite at high pressure, Am. Mineral., 85, 317–320, 2000.
- Kendall, J. M., P. G. Silver, Constraints from seismic anisotropy on the nature of the lowermost mantle, Nature, 381, 409–412, 1996.
- Kiefer, B., L. Stixrude, R. M. Wentzcovitch, Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure, Geophys. Res. Lett., 24, 2841–2844, 1997.
- Kiefer, B., L. Stixrude, J. Hafner, G. Kresse, Structure and elasticity of wadsleyite at high pressures, Am. Mineral., 2001.
- Knittle, E., R. Jeanloz, High-pressure X-ray-diffraction and optical-absorption studies of CsI, J. Phys. Chem. Solids, 46, 1179–1184, 1985.
- Kohn, W., L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 140, 1133–1138, 1965.
- Lay, T., Q. Williams, E. J. Garnero, The core-mantle boundary layer and deep Earth dynamics, Nature, 392, 461–468, 1998.
- Lee, M. H., Advanced pseudopotentials for large scale electronic structure calculations,Ph.D.thesis, Univ. of Cambridge,Cambridge, England,1995.
- Li, B., R. C. Liebermann, D. J. Weidner, Elastic moduli of wadsleyite (β-Mg2SiO4) to 7 gigapascals and 873 Kelvin, Science, 281, 675–677, 1998.
- Liebermann, R. C., B. Li, Elasticity at high pressures and temperatures, Rev. Mineral., 37, 459–492, 1998.
- Lundqvist, S., N. H. March, Theory of the Inhomogeneous Electron Gas, Plenum, New York, 1987.
- Mainprice, D., G. Barruol, W. Ben Ismail, The seismic anisotropy of the Earth's mantle: From single crystal to polycrystal, Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, Geophys Monogr. Ser., 117 S. Karato, et al., 237–264, AGU, Washington, D. C., 2000.
10.1029/GM117p0237 Google Scholar
- Mao, H. K., L. C. Chen, R. J. Hemley, A. P. Jephcoat, Y. Wu, W. A. Bassett, Stability and equation of state of CaSiO3 perovskite to 134 GPa, J. Geophys. Res., 94, 17889–17894, 1989.
- Masters, G., P. M. Shearer, Seismic models of the Earth: Elastic and anelastic, Global Earth Physics: A Handbook of Physical Constants, AGU Ref. Shelf Ser., 1 T. J. Ahrens, 88–103, AGU, Washington, D. C., 1995.
10.1029/RF001p0088 Google Scholar
- Masters, G., S. Johnson, G. Laske, H. Bolton, A shear-velocity model of the mantle, Philos. Trans. R. Astron. Soc. A, 354, 1385–1410, 1996.
- Matsui, M., M. Akaogi, T. Matsumoto, Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3, Phys. Chem. Miner., 14, 101–106, 1987.
- Meade, C., P. G. Silver, S. Kaneshima, Laboratory and seismological observations of lower mantle isotropy, Geophys. Res. Lett., 22, 1293–1296, 1995.
- Mehl, M. J., R. J. Hemley, L. L. Boyer, Potential-induced breathing model for the elastic moduli and high-pressure behavior of the cubic alkaline-Earth oxides, Phys. Rev. B Condens. Matter, 33, 8685–8696, 1986.
- Mehl, M. J., R. E. Cohen, H. Krakauer, Linearized augmented plane wave electronic structure calculations for MgO and CaO, J. Geophys. Res., 93, 8009–8022, 1988.
- Mizushima, K., S. Yip, E. Kaxiras, Ideal crystal stability and pressure-induced phase transition in silicon, Phys. Rev. B, 50, 14952–14959, 1994.
- Monkhorst, H. J., J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B Solid State, 13, 5188–5192, 1976.
- Montagner, J. P., Where can seismic anisotropy be detected in the Earth mantle? In boundary layers, Pure Appl. Geophys., 151, 223–256, 1998.
- Montagner, J. P., N. L. N. Kennett, How to reconcile body-wave and normal mode reference Earth model, Geophys. J. Int., 125, 229–248, 1996.
- Moruzzi, V. L., J. F. Janak, A. R. Williams, Calculated Electronic Properties of Metals, Pergamon, New York, 1978.
- Musgrave, M. J. P., Crystal Acoustics, Holden-Day, Boca Raton, Fla., 1970.
- Nastar, M., F. Willaime, Tight-binding calculations of the elastic-constants of fcc and hcp transition metals, Phys. Rev. B, 51, 6896–6907, 1995.
- Nielsen, O. H., R. Martin, Quantum mechanical theory of stress and force, Phys. Rev. B, 32, 3780–3791, 1985.
- Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford Univ. Press, New York, 1985.
- Oganov, A. R., J. P. Brodholt, G. D. Price, Ab initio elasticity and thermal equation of state of MgSiO3 perovskite, Earth Planet. Sci. Lett., 184, 555–560, 2001.
- Payne, M. C., M. P. Teter, D. C. Allen, T. A. Arias, J. D. Joannopoulos, Iterative minimisation techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64, 1045–1097, 1992.
- Perdew, J. P., A. Zunger, Self-interaction correction to density functional approximations for many-electron systems, Phys. Rev. B, 23, 5048–5079, 1981.
- Perdew, J. P., K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865–3868, 1996.
- Pickett, W. E., Pseudopotential methods in condensed matter applications, Comput. Phys. Rep., 9, 115–197, 1989.
- Ribe, N. M., Seismic anisotropy and mantle flow, J. Geophys. Res., 94, 4213–4223, 1989.
- Rigden, S. M., G. D. Gwanmesia, I. Jackson, R. C. Lieberman, Progress in high-pressure ultrasonic interferometry, the pressure dependence of elasticity of Mg2SiO4 polymorphs, and constraints on composition of the transition zone of the Earth's mantle, High Pressure Research: Applications to Earth and Planetary Sciences, Geophys. Monogr. Ser., 67 Y. Syono, M. H. Munghnani, 167–182, AGU, Washington, D. C., 1992.
10.1029/GM067p0167 Google Scholar
- Rivers, M. L., I. S. E. Carmichael, Ultrasonic studies of silicate melts, J. Geophys. Res., 92, 9247–9270, 1987.
- Robertson, G. S., J. H. Woodhouse, Ratio of relative S to P velocity heterogeneity in the lower mantle, J. Geophys. Res., 101, 20041–20052, 1996.
- Romanowicz, B., Seismic tomography of the Earth's mantle, Annu. Rev. Earth Planet. Sci., 19, 77–99, 1991.
- Ruff, L. J., State of stress within the Earth,in IASPEI Handbook on Earthquake and Engineering Seismology,edited by W. Lee, H. Kanamori, and P. Jennings, Int. Union of Geod. and Geophys.,Toronto, Ont., Canada,in press, 2001.
- Saitta, A. M., S. deGironcoli, S. Baroni, Structural and electronic properties of a wide-gap quaternary solid solution: (Zn, Mg)(S, Se, Phys. Rev. Lett., 80, 4939–4942, 1998.
- Salje, E. K. H., Phase Transitions in Ferroelastic and Co-Elastic Crystals, Cambridge Univ. Press, New York, 1990.
- Shearer, P. M., Upper mantle seismic discontinuities, Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, Geophys. Monogr. Ser., 117 S. Karato, et al., 115–131, AGU, Washington, D. C., 2000.
- Sherman, D. M., Equation of state, elastic properties, and stability of CaSiO3 perovskite: First principles (periodic Hartree-Fock) results, J. Geophys. Res., 98, 19795–19805, 1993.
- Sinelnikov, Y. D., G. Chen, D. R. Neuville, M. T. Vaughan, R. C. Liebermann, Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition, Science, 281, 677–679, 1998.
- Singh, D. J., Planewaves, Pseudopotentials, and the LAPW Method, Kluwer Acad., Norwell, Mass., 1994.
10.1007/978-1-4757-2312-0 Google Scholar
- Sinogeikin, S. V., J. D. Bass, Single-crystal elasticity of MgO at high pressure, Phys. Rev. B, 59, 14141–14144, 1999.
- Soderlind, P., M. A. Moriarty, J. M. Willis, First-principles theory of iron up to Earth-core pressures: Structural, vibrational and elastic properties, Phys. Rev. B, 53, 14063–14072, 1996.
- Steinle-Neumann, G., L. Stixrude, R. E. Cohen, First principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B, 60, 791–799, 1999.
- Stixrude, L., Structure and sharpness of phase transitions and mantle discontinuities, J. Geophys. Res., 102, 14835–14852, 1997.
- Stixrude, L., Elastic constants and anisotropy of MgSiO3 perovskite, periclase, and SiO2 at high pressure, The Core-Mantle Boundary Region, Geodyn. Ser., 28 M. Gurnis, et al., 83–96, AGU, Washington, D. C., 1999.
- Stixrude, L., R. E. Cohen, Stability of orthorhombic MgSiO3-perovskite in the Earth's lower mantle, Nature, 364, 613–616, 1993.
- Stixrude, L., R. J. Hemley, Y. Fei, H.-K. Mao, Thermoelasticity of silicate perovskite and magnesiowüstite and the stratification of the Earth's mantle, Science, 257, 1099–1101, 1992.
- Stixrude, L., R. E. Cohen, D. J. Singh, Iron at high pressure: Linearized augmented plane wave calculations in the generalized gradient approximation, Phys. Rev. B, 50, 6442–6445, 1994.
- Stixrude, L., R. E. Cohen, R. J. Hemley, Theory of minerals at high pressure, Rev. Mineral., 37, 639–671, 1998.
- Tang, M., S. Yip, Atomic size effects in pressure-induced amorphization of a binary covalent lattice, Phys. Rev. Lett., 75, 2738–2741, 1995.
- Troullier, N., J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993–2003, 1991.
- Turcotte, D. L., G. Schubert, Geodynamics, John Wiley, New York, 1982.
- Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892–7895, 1990.
- van derHilst, R., H. Karason, Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: Toward a hybrid convection model, Science, 283, 1885–1888, 1999.
- van derHilst, R., R. Engdahl, W. Spakman, G. Nolet, Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature, 353, 37–43, 1991.
- van derHilst, R., S. Widiyantoro, E. R. Engdahl, Evidence for deep mantle circulation from global tomography, Nature, 386, 578–584, 1997.
- Wallace, D. C., Thermodynamics of Crystals, John Wiley, New York, 1972.
10.1119/1.1987046 Google Scholar
- Wang, J., S. Yip, S. R. Phillpot, D. Wolf, Mechanical instabilities in homogeneous crystals, Phys. Rev. B, 52, 12627–12635, 1995.
- Wang, Y., D. J. Weidner, F. Guyot, Thermal equation of state of CaSiO3 perovskite, J. Geophys. Res., 101, 661–672, 1996.
- Watt, J. P., Polyxstal: A fortran program to calculate average elastic properties of minerals from single-crystal elasticity data, Comput. Geosci., 13, 441–462, 1987.
- Watt, J. P., G. F. Davies, R. J. O'Connell, The elastic properties of composite materials, Rev. Geophys., 14, 541–563, 1976.
- Wei, S. H., H. Krakauer, Local density functional calculation of pressure induced metalization of BaSe and BaTe, Phys. Rev. Lett., 55, 1200–1203, 1985.
- Weidner, D. J., A mineral physics test of a pyrolite mantle, Geophys. Res. Lett., 12, 417–420, 1985.
- Weidner, D. J., E. Ito, Elasticity of MgSiO3 in the ilmenite phase, Phys. Earth Planet. Inter., 40, 65–70, 1985.
- Weidner, D. J., M. T. Vaughan, Elasticity of pyroxenes: Effects of composition versus crystal structure, J. Geophys. Res., 87, 9349–9353, 1982.
- Weidner, D. J., J. D. Bass, A. E. Ringwood, W. Sinclair, The single-crystal elastic moduli of stishovite, J. Geophys. Res., 87, 4740–4746, 1982.
- Weidner, D. J., H. Sawamoto, S. Sasaki, M. Kumazawa, Single-crystal elastic properties of the spinel phase of Mg2SiO4, J. Geophys. Res., 89, 7852–7860, 1984.
- , Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis H.-R. Wenk, Academic, San Diego, Calif., 1985.
- Wentzcovitch, R. M., Invariant molecular dynamics approach to structural phase transitions, Phys. Rev. B, 44, 2358–2361, 1991.
- Wentzcovitch, R. M., J. L. Martins, First principles molecular dynamics of Li: Test of a new algorithm, Solid State Commun., 78, 831–834, 1991.
- Wentzcovitch, R. M., G. D. Price, High pressure studies of mantle minerals by ab initio variable cell shape molecular dynamics, Molecular Engineering B. Silvi, P. Darco, 39–61, Kluwer Acad., Norwell, Mass., 1996.
10.1007/BF00161722 Google Scholar
- Wentzcovitch, R. M., J. L. Martins, G. D. Price, Ab initio molecular dynamics with variable cell shape: Application to MgSiO3 perovskite, Phys. Rev. Lett., 70, 3947–3950, 1993.
- Wentzcovitch, R. M., N. Ross, G. D. Price, Ab initio study of MgSiO3 and CaSiO3 perovskites at lower mantle conditions, Phys. Earth Planet. Inter., 90, 101–112, 1995a.
- Wentzcovitch, R. M., D. A. Hugh-Jones, R. J. Angel, G. D. Price, Ab initio study of MgSiO3 C2/c enstatite, Phys. Chem. Miner., 22, 453–460, 1995b.
- Wentzcovitch, R. M., C. R. S. Da Silva, J. R. Chelikowsky, N. Binggeli, Phase transition in quartz near the amorphization transformation, Phys. Rev. Lett., 80, 2149–2152, 1998a.
- Wentzcovitch, R. M., B. B. Karki, S. Karato, C. R. S. da Silva, High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications, Earth Planet. Sci. Lett., 164, 371–378, 1998b.
- Wolverton, C., A. Zunger, Ising-like description of structurally relaxed ordered and disordered alloy, Phys. Rev. Lett., 75, 3162–3165, 1995.
- Yaganeh-Haeri, A., Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite, Phys. Earth Planet. Inter., 87, 111–121, 1994.
- Yoneda, A., M. Morioka, Pressure derivatives of elastic constants of single crystal forsterite, High Pressure Research: Applications to Earth and Planetary Sciences, Geophys. Monogr. Ser., 67 Y. Syono, M. H. Munghnani, 207–214, AGU, Washington, D. C., 1992.
10.1029/GM067p0207 Google Scholar
- Zha, C.-S., T. S. Duffy, R. T. Downs, H.-K. Mao, R. J. Hemley, Sound velocity and elasticity of single-crystal forsterite to 16 GPa, J. Geophys. Res., 101, 17535–17546, 1996.
- Zha, C.-S., T. S. Duffy, R. T. Downs, H. K. Mao, R. J. Hemley, D. J. Weidner, Single-crystal elasticity of β-Mg2SiO4 to pressure of the 410 km seismic discontinuity in the Earth's mantle, Earth Planet. Sci. Lett., 147, E9–E15, 1997.
- Zha, C.-S., T. S. Duffy, R. T. Downs, H. K. Mao, R. J. Hemley, Brillouin scattering and X-ray diffraction of San Carlos olivine: Direct pressure determination to 32 GPa, Earth Planet. Sci. Lett., 159, 25–33, 1998.
- Zha, C.-S., H. K. Mao, R. J. Hemley, Elasticity of MgO and a primary pressure scale to 55 GPa, Proc. Natl. Acad. Sci., 97, 13494–13499, 2000.
- Zhao, Y. S., D. L. Anderson, Mineral physics constraints on the chemical composition of the Earth's lower mantle, Phys. Earth Planet. Inter., 85, 273–292, 1994.