Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2
Abstract
In laboratory experiments with the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica, the ratio of particulate inorganic carbon (PIC) to particulate organic carbon (POC) production decreased with increasing CO2 concentration ([CO2]). This was due to both reduced PIC and enhanced POC production at elevated [CO2]. Carbon dioxide concentrations covered a range from a preindustrial level to a value predicted for 2100 according to a “business as usual” anthropogenic CO2 emission scenario. The laboratory results were used to employ a model in which the immediate effect of a decrease in global marine calcification relative to POC production on the potential capacity for oceanic CO2 uptake was simulated. Assuming that overall marine biogenic calcification shows a similar response as obtained for E. huxleyi or G. oceanica in the present study, the model reveals a negative feedback on increasing atmospheric CO2 concentrations owing to a decrease in the PIC/POC ratio.
Number of times cited: 144
- M. Rosario Lorenzo, Concepción Iñiguez, Jorun K. Egge, Aud Larsen, Stella A. Berger, Candela García-Gómez and María Segovia, Increased CO 2 and iron availability effects on carbon assimilation and calcification on the formation of Emiliania huxleyi blooms in a coastal phytoplankton community, Environmental and Experimental Botany, 10.1016/j.envexpbot.2017.12.003, 148, (47-58), (2018).
- Makoto Furukawa, Toru Sato, Yoshimi Suzuki, Beatriz E. Casareto and Shinichiro Hirabayashi, Numerical modelling of physiological and ecological impacts of ocean acidification on coccolithophores, Journal of Marine Systems, 10.1016/j.jmarsys.2018.02.008, 182, (12-30), (2018).
- Han Zhang and Long Cao, Simulated effects of interactions between ocean acidification, marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles, Science China Earth Sciences, 10.1007/s11430-017-9173-y, 61, 6, (804-822), (2018).
- Yuanyuan Feng, Michael Y. Roleda, Evelyn Armstrong, Philip W. Boyd and Catriona L. Hurd, Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi, Limnology and Oceanography, 62, 2, (519-540), (2016).
- Mani Ganesh, Pushparaj Hemalatha, Mei Mei Peng and Hyun Tae Jang, One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO 2 adsorption, Arabian Journal of Chemistry, 10.1016/j.arabjc.2013.04.031, 10, (S1501-S1505), (2017).
- Sarban Sengupta, Prakash Chandra Gorain and Ruma Pal, Aspects and prospects of algal carbon capture and sequestration in ecosystems: a review, Chemistry and Ecology, 10.1080/02757540.2017.1359262, 33, 8, (695-707), (2017).
- Marie Boye, Mohamed A. Adjou, Gabriel Dulaquais and Paul Tréguer, Trace metal limitations (Co, Zn) increase PIC/POC ratio in coccolithophore Emiliania huxleyi, Marine Chemistry, 10.1016/j.marchem.2017.03.006, 192, (22-31), (2017).
- Jianhai Lv, Yaoqiu Kuang, Hui Zhao and Andreas Andersson, Patterns of coccolithophore pigment change under global acidification conditions based on in-situ observations at BATS site between July 1990–Dec 2008, Frontiers of Earth Science, 10.1007/s11707-015-0503-x, 11, 2, (297-307), (2017).
- Oliver Andrews, Erik Buitenhuis, Corinne Le Quéré and Parvadha Suntharalingam, Biogeochemical modelling of dissolved oxygen in a changing ocean, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 10.1098/rsta.2016.0328, 375, 2102, (20160328), (2017).
- Emilio Marañón, William M. Balch, Pedro Cermeño, Natalia González, Cristina Sobrino, Ana Fernández, María Huete‐Ortega, Daffne C. López‐Sandoval, Maximino Delgado, Marta Estrada, Marta Álvarez, Elisa Fernández‐Guallart and Carles Pelejero, Coccolithophore calcification is independent of carbonate chemistry in the tropical ocean, Limnology and Oceanography, 61, 4, (1345-1357), (2016).
- Sara Milner, Gerald Langer, Michaël Grelaud and Patrizia Ziveri, Ocean warming modulates the effects of acidification on Emiliania huxleyi calcification and sinking, Limnology and Oceanography, 61, 4, (1322-1336), (2016).
- Young Ho Ko, Kitack Lee, Ki Hyuk Eom and In‐Seong Han, Organic alkalinity produced by phytoplankton and its effect on the computation of ocean carbon parameters, Limnology and Oceanography, 61, 4, (1462-1471), (2016).
- William M. Balch, Nicholas R. Bates, Phoebe J. Lam, Benjamin S. Twining, Sarah Z. Rosengard, Bruce C. Bowler, Dave T. Drapeau, Rebecca Garley, Laura C. Lubelczyk, Catherine Mitchell and Sara Rauschenberg, Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance, Global Biogeochemical Cycles, 30, 8, (1124-1144), (2016).
- Thomas Coad, Andrew McMinn, Daiki Nomura and Andrew Martin, Effect of elevated CO 2 concentration on microalgal communities in Antarctic pack ice, Deep Sea Research Part II: Topical Studies in Oceanography, 10.1016/j.dsr2.2016.01.005, 131, (160-169), (2016).
- Uta Gruenert, Jan Benda, Caroline Müller and Uta Raeder, Vertical segregation of two cell-cycle phases of the calcifying freshwater phytoflagellate Phacotus lenticularis (Chlorophyta) , Journal of Plankton Research, 10.1093/plankt/fbv093, 38, 1, (94-105), (2015).
- Alison L. Webb, Gill Malin, Frances E. Hopkins, Kai Lam Ho, Ulf Riebesell, Kai G. Schulz, Aud Larsen and Peter S. Liss, Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions, Environmental Chemistry, 10.1071/EN14268, 13, 2, (314), (2016).
- H. L. O. McClelland, N. Barbarin, L. Beaufort, M. Hermoso, P. Ferretti, M. Greaves and R. E. M. Rickaby, Calcification response of a key phytoplankton family to millennial-scale environmental change, Scientific Reports, 10.1038/srep34263, 6, 1, (2016).
- Naomi Harada, Review: Potential catastrophic reduction of sea ice in the western Arctic Ocean: Its impact on biogeochemical cycles and marine ecosystems, Global and Planetary Change, 10.1016/j.gloplacha.2015.11.005, 136, (1-17), (2016).
- Clara M. H. Teniswood, Donna Roberts, William R. Howard, Stephen G. Bray and Jodie E. Bradby, Microstructural shell strength of the Subantarctic pteropod Limacina helicina antarctica, Polar Biology, 10.1007/s00300-016-1888-z, 39, 9, (1643-1652), (2016).
- Han Zhang and Long Cao, Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification, Scientific Reports, 10.1038/srep20284, 6, 1, (2016).
- Natalie M. Freeman and Nicole S. Lovenduski, Decreased calcification in the Southern Ocean over the satellite record, Geophysical Research Letters, 42, 6, (1834-1840), (2015).
- Tao Xing, Kunshan Gao and John Beardall, Response of Growth and Photosynthesis of Emiliania huxleyi to Visible and UV Irradiances under Different Light Regimes, Photochemistry and Photobiology, 91, 2, (343-349), (2015).
- Laura A. Newcomb, Marco Milazzo, Jason M. Hall-Spencer and Emily Carrington, Ocean acidification bends the mermaid's wineglass, Biology Letters, 10.1098/rsbl.2014.1075, 11, 9, (20141075), (2015).
- Caihua Ma, Kui You, Dechun Ji, Weiwei Ma and Fengqi Li, Primary discussion of a carbon sink in the oceans, Journal of Ocean University of China, 10.1007/s11802-015-2548-6, 14, 2, (284-292), (2015).
- Rachel E. Diner, Ina Benner, Uta Passow, Tomoko Komada, Edward J. Carpenter and Jonathon H. Stillman, Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus, Marine Biology, 10.1007/s00227-015-2669-x, 162, 6, (1287-1305), (2015).
- Iris E. Hendriks, Carlos M. Duarte, Ylva S. Olsen, Alexandra Steckbauer, Laura Ramajo, Tommy S. Moore, Julie A. Trotter and Malcolm McCulloch, Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems, Estuarine, Coastal and Shelf Science, 10.1016/j.ecss.2014.07.019, 152, (A1-A8), (2015).
- Michael Elliott, Ángel Borja, Abigail McQuatters-Gollop, Krysia Mazik, Silvana Birchenough, Jesper H. Andersen, Suzanne Painting and Myron Peck, Force majeure: Will climate change affect our ability to attain Good Environmental Status for marine biodiversity?, Marine Pollution Bulletin, 10.1016/j.marpolbul.2015.03.015, 95, 1, (7-27), (2015).
- K. F. Kvale, K. J. Meissner, D. P. Keller, M. Eby and A. Schmittner, Explicit Planktic Calcifiers in the University of Victoria Earth System Climate Model, Version 2.9, Atmosphere-Ocean, 10.1080/07055900.2015.1049112, 53, 3, (332-350), (2015).
- Abigail McQuatters-Gollop, Martin Edwards, Pierre Helaouët, David G. Johns, Nicholas J.P. Owens, Dionysios E. Raitsos, Declan Schroeder, Jennifer Skinner and Rowena F. Stern, The Continuous Plankton Recorder survey: How can long-term phytoplankton datasets contribute to the assessment of Good Environmental Status?, Estuarine, Coastal and Shelf Science, 10.1016/j.ecss.2015.05.010, 162, (88-97), (2015).
- Matthew D. Wolhowe, Fredrick G. Prahl, Angelicque E. White, Brian N. Popp and Anaid Rosas-Navarro, A biomarker perspective on coccolithophorid growth and export in a stratified sea, Progress in Oceanography, 10.1016/j.pocean.2013.12.001, 122, (65-76), (2014).
- Shin-ya Fukuda, Yurina Suzuki and Yoshihiro Shiraiwa, Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment, Photosynthesis Research, 10.1007/s11120-014-9976-9, 121, 2-3, (299-309), (2014).
- SR Fielding, Predicting coccolithophore rain ratio responses to calcite saturation state, Marine Ecology Progress Series, 10.3354/meps10657, 500, (57-65), (2014).
- Stéphanie Duchamp-Alphonse, Silvia Gardin and Annachiara Bartolini, Calcareous nannofossil response to the Weissert episode (Early Cretaceous): Implications for palaeoecological and palaeoceanographic reconstructions, Marine Micropaleontology, 10.1016/j.marmicro.2014.10.002, 113, (65-78), (2014).
- João Neto, José Juanes, Are Pedersen and Clare Scanlan, Marine Macroalgae and the Assessment of Ecological Conditions, Marine Algae, 10.1201/b17540-4, (97-139), (2014).
- C.L. De La Rocha and U. Passow, The Biological Pump, Treatise on Geochemistry, 10.1016/B978-0-08-095975-7.00604-5, (93-122), (2014).
- N Korbee, NP Navarro, M García-Sánchez, PSM Celis-Plá, E Quintano, MS Copertino, A Pedersen, R Mariath, N Mangaiyarkarasi, Á Pérez-Ruzafa, FL Figueroa and B Martínez, A novel in situ system to evaluate the effect of high CO2 on photosynthesis and biochemistry of seaweeds, Aquatic Biology, 10.3354/ab00594, 22, (245-259), (2014).
- Anne Willem Omta, George A. K. van Voorn, Rosalind E. M. Rickaby and Michael J. Follows, On the potential role of marine calcifiers in glacial‐interglacial dynamics, Global Biogeochemical Cycles, 27, 3, (692-704), (2013).
- C. M. H. Teniswood, D. Roberts, W. R. Howard and J. E. Bradby, A quantitative assessment of the mechanical strength of the polar pteropod Limacina helicina antarctica shell, ICES Journal of Marine Science, 10.1093/icesjms/fst100, 70, 7, (1499-1505), (2013).
- Christoph Heinze and Marion Gehlen, Modeling Ocean Biogeochemical Processes and the Resulting Tracer Distributions, Ocean Circulation and Climate - A 21st Century Perspective, 10.1016/B978-0-12-391851-2.00026-X, (667-694), (2013).
- Amanda Pantorno, Daryl P. Holland, Slobodanka Stojkovic and John Beardall, Impacts of nitrogen limitation on the sinking rate of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) , Phycologia, 10.2216/12-064.1, 52, 3, (288-294), (2013).
- Cátia Carreira, Mikal Heldal and Gunnar Bratbak, Effect of increased pCO2 on phytoplankton–virus interactions, Biogeochemistry, 10.1007/s10533-011-9692-x, 114, 1-3, (391-397), (2012).
- Roberto Graziano, Sedimentology, biostratigraphy and event stratigraphy of the Early Aptian Oceanic Anoxic Event (OAE1A) in the Apulia Carbonate Platform Margin – Ionian Basin System (Gargano Promontory, southern Italy), Cretaceous Research, 10.1016/j.cretres.2012.05.014, 39, (78-111), (2013).
- V. V. S. S. Sarma, Net Community Production in the Northern Indian Ocean, Indian Ocean Biogeochemical Processes and Ecological Variability, (239-256), (2013).
- Narimane Dorey, Frank Melzner, Sophie Martin, François Oberhänsli, Jean-Louis Teyssié, Paco Bustamante, Jean-Pierre Gattuso and Thomas Lacoue-Labarthe, Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis, Marine Biology, 10.1007/s00227-012-2059-6, 160, 8, (2007-2022), (2012).
- Guodong Jia, Shendong Xu, Weifang Chen, Fei Lei, Yang Bai and Chih-An Huh, 100-year ecosystem history elucidated from inner shelf sediments off the Pearl River estuary, China, Marine Chemistry, 10.1016/j.marchem.2013.02.005, 151, (47-55), (2013).
- Richard A. Feely, James Orr, Victoria J. Fabry, Joan A. Kleypas, Christopher L. Sabine and Christopher Langdon, Present and Future Changes in Seawater Chemistry Due to Ocean Acidification, Carbon Sequestration and Its Role in the Global Carbon Cycle, (175-188), (2013).
- Ian S.F. Jones and Daniel P. Harrison, The Enhancement of Marine Productivity for Climate Stabilization and Food Security, Handbook of Microalgal Culture, (692-703), (2013).
- Richard A. Feely, Christopher L. Sabine, Robert H. Byrne, Frank J. Millero, Andrew G. Dickson, Rik Wanninkhof, Akihiko Murata, Lisa A. Miller and Dana Greeley, Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean, Global Biogeochemical Cycles, 26, 3, (2012).
- Stephane C. Lefebvre, Ina Benner, Jonathon H. Stillman, Alexander E. Parker, Michelle K. Drake, Pascale E. Rossignol, Kristine M. Okimura, Tomoko Komada and Edward J. Carpenter, Nitrogen source and p synergistically affect carbon allocation, growth and morphology of the coccolithophore miliania huxleyi: potential implications of ocean acidification for the carbon cycle, Global Change Biology, 18, 2, (493-503), (2011).
- Avery McCarthy, Susan P. Rogers, Stephen J. Duffy and Douglas A. Campbell, ELEVATED CARBON DIOXIDE DIFFERENTIALLY ALTERS THE PHOTOPHYSIOLOGY OF THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) AND EMILIANIA HUXLEYI (HAPTOPHYTA), Journal of Phycology, 48, 3, (635-646), (2012).
- M.N. ISLAM, B.E. CASARETO, T. HIGUCHI, M.P. NIRAULA and Y. SUZUKI, Contribution of coral rubble associated microbial community to the dissolution of calcium carbonate under high pCO2, Galaxea, Journal of Coral Reef Studies, 10.3755/galaxea.14.119, 14, 1, (119-131), (2012).
- A. McQuatters-Gollop, Challenges for implementing the Marine Strategy Framework Directive in a climate of macroecological change, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 10.1098/rsta.2012.0401, 370, 1980, (5636-5655), (2012).
- Chengxu Zhou, Ying Jiang, Baoning Liu, Xiaojun Yan and Wendong Zhang, The relationship between calcification and photosynthesis in the coccolithophorid Pleurochrysis carterae, Acta Ecologica Sinica, 10.1016/j.chnaes.2011.12.003, 32, 1, (38-43), (2012).
- Sandra Herrmann, Andrew F. Weller, Jorijntje Henderiks and Hans R. Thierstein, Global coccolith size variability in Holocene deep-sea sediments, Marine Micropaleontology, 10.1016/j.marmicro.2011.09.006, 82-83, (1-12), (2012).
- Richard E. Zeebe, History of Seawater Carbonate Chemistry, Atmospheric CO 2 , and Ocean Acidification , Annual Review of Earth and Planetary Sciences, 10.1146/annurev-earth-042711-105521, 40, 1, (141-165), (2012).
- Kai T. Lohbeck, Ulf Riebesell and Thorsten B. H. Reusch, Adaptive evolution of a key phytoplankton species to ocean acidification, Nature Geoscience, 10.1038/ngeo1441, 5, 5, (346-351), (2012).
- U Passow and CA Carlson, The biological pump in a high CO2 world, Marine Ecology Progress Series, 10.3354/meps09985, 470, (249-271), (2012).
- Heather Stoll, Gerald Langer, Nobumichi Shimizu and Kinuyo Kanamaru, B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations, Geochimica et Cosmochimica Acta, 10.1016/j.gca.2011.12.003, 80, (143-157), (2012).
- Nicolas Barbarin, Aurélie Bonin, Emanuela Mattioli, Emmanuelle Pucéat, Henri Cappetta, Benjamin Gréselle, Bernard Pittet, Emmanuelle Vennin and Michael Joachimski, Evidence for a complex Valanginian nannoconid decline in the Vocontian basin (South East France), Marine Micropaleontology, 10.1016/j.marmicro.2011.11.005, 84-85, (37-53), (2012).
- JA Raven and K Crawfurd, Environmental controls on coccolithophore calcification, Marine Ecology Progress Series, 10.3354/meps09993, 470, (137-166), (2012).
- K Gao, EW Helbling, DP Häder and DA Hutchins, Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming, Marine Ecology Progress Series, 10.3354/meps10043, 470, (167-189), (2012).
- J. Sardans, A. Rivas-Ubach and J. Peñuelas, The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives, Perspectives in Plant Ecology, Evolution and Systematics, 10.1016/j.ppees.2011.08.002, 14, 1, (33-47), (2012).
- Gerald Langer and Maya Bode, CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporus, "Geochemistry, Geophysics, Geosystems", 12, 5, (2011).
- Zhimian Cao and Minhan Dai, Shallow‐depth CaCO3 dissolution: Evidence from excess calcium in the South China Sea and its export to the Pacific Ocean, Global Biogeochemical Cycles, 25, 2, (2011).
- John R. Reinfelder, Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton, Annual Review of Marine Science, 10.1146/annurev-marine-120709-142720, 3, 1, (291-315), (2011).
- W.R. Howard, D. Roberts, A.D. Moy, M.C.M. Lindsay, R.R. Hopcroft, T.W. Trull and S.G. Bray, Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic Zone, Deep Sea Research Part II: Topical Studies in Oceanography, 10.1016/j.dsr2.2011.05.031, 58, 21-22, (2293-2300), (2011).
- Sophie Richier, Sarah Fiorini, Marie-Emmanuelle Kerros, Peter von Dassow and Jean-Pierre Gattuso, Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level, Marine Biology, 10.1007/s00227-010-1580-8, 158, 3, (551-560), (2010).
- George G. Waldbusser, Ryan A. Steenson and Mark A. Green, Oyster Shell Dissolution Rates in Estuarine Waters: Effects of pH and Shell Legacy, Journal of Shellfish Research, 10.2983/035.030.0308, 30, 3, (659-669), (2011).
- K. Denman, J. R. Christian, N. Steiner, H.-O. Portner and Y. Nojiri, Potential impacts of future ocean acidification on marine ecosystems and fisheries: current knowledge and recommendations for future research, ICES Journal of Marine Science, 10.1093/icesjms/fsr074, 68, 6, (1019-1029), (2011).
- Roberto Danovaro, Cinzia Corinaldesi, Antonio Dell'Anno, Jed A. Fuhrman, Jack J. Middelburg, Rachel T. Noble and Curtis A. Suttle, Marine viruses and global climate change, FEMS Microbiology Reviews, 35, 6, (993-1034), (2011).
- Tasneem Abbasi and S. A. Abbasi, Ocean Acidification: The Newest Threat to the Global Environment, Critical Reviews in Environmental Science and Technology, 10.1080/10643389.2010.481579, 41, 18, (1601-1663), (2011).
- Ronald Eisler, Mode of Action, Oceanic Acidification, 10.1201/b11411-5, (2012).
- Henry A. Ruhl, Michel André, Laura Beranzoli, M. Namik Çağatay, Ana Colaço, Mathilde Cannat, Juanjo J. Dañobeitia, Paolo Favali, Louis Géli, Michael Gillooly, Jens Greinert, Per O.J. Hall, Robert Huber, Johannes Karstensen, Richard S. Lampitt, Kate E. Larkin, Vasilios Lykousis, Jürgen Mienert, J. Miguel Miranda, Roland Person, Imants G. Priede, Ingrid Puillat, Laurenz Thomsen and Christoph Waldmann, Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas, Progress in Oceanography, 10.1016/j.pocean.2011.05.001, 91, 1, (1-33), (2011).
- Corinna Borchard, Alberto V. Borges, Nicole Händel and Anja Engel, Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study, Journal of Experimental Marine Biology and Ecology, 10.1016/j.jembe.2011.10.004, 410, (61-71), (2011).
- David A. Hutchins, Forecasting the rain ratio, Nature, 10.1038/476041a, 476, 7358, (41-42), (2011).
- CHRISTOPHER P. JURY, ROBERT F. WHITEHEAD and ALINA M. SZMANT, Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates, Global Change Biology, 16, 5, (1632-1644), (2009).
- Kristy J. Kroeker, Rebecca L. Kordas, Ryan N. Crim and Gerald G. Singh, Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecology Letters, 13, 11, (1419-1434), (2010).
- J. R. Christian, V. K. Arora, G. J. Boer, C. L. Curry, K. Zahariev, K. L. Denman, G. M. Flato, W. G. Lee, W. J. Merryfield, N. T. Roulet and J. F. Scinocca, The global carbon cycle in the Canadian Earth system model (CanESM1): Preindustrial control simulation, Journal of Geophysical Research: Biogeosciences, 115, G3, (2010).
- C. Turley, M. Eby, A.J. Ridgwell, D.N. Schmidt, H.S. Findlay, C. Brownlee, U. Riebesell, V.J. Fabry, R.A. Feely and J.-P. Gattuso, The societal challenge of ocean acidification, Marine Pollution Bulletin, 10.1016/j.marpolbul.2010.05.006, 60, 6, (787-792), (2010).
- Maria Triantaphyllou, Margarita Dimiza, Eva Krasakopoulou, Elisa Malinverno, Valia Lianou and Ekaterini Souvermezoglou, Seasonal variation in Emiliania huxleyi coccolith morphology and calcification in the Aegean Sea (Eastern Mediterranean), Geobios, 10.1016/j.geobios.2009.09.002, 43, 1, (99-110), (2010).
- MacKenzie L. Zippay and Gretchen E. Hofmann, Effect of pH on Gene Expression and Thermal Tolerance of Early Life History Stages of Red Abalone ( Haliotis rufescens ) , Journal of Shellfish Research, 10.2983/035.029.0220, 29, 2, (429-439), (2010).
- Jerry C. Blackford, Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective, Journal of Marine Systems, 10.1016/j.jmarsys.2009.12.016, 81, 1-2, (12-18), (2010).
- I.E. Hendriks, C.M. Duarte and M. Álvarez, Vulnerability of marine biodiversity to ocean acidification: A meta-analysis, Estuarine, Coastal and Shelf Science, 10.1016/j.ecss.2009.11.022, 86, 2, (157-164), (2010).
- Matthias Hofmann and Hans Joachim Schellnhuber, Ocean acidification: a millennial challenge, Energy & Environmental Science, 10.1039/c000820f, 3, 12, (1883), (2010).
- Sinéad Collins and Andy Gardner, Integrating physiological, ecological and evolutionary change: a Price equation approach, Ecology Letters, 12, 8, (744-757), (2009).
- M. Hofmann and H.-J. Schellnhuber, Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes, Proceedings of the National Academy of Sciences, 10.1073/pnas.0813384106, 106, 9, (3017-3022), (2009).
- Scott C. Doney, Victoria J. Fabry, Richard A. Feely and Joan A. Kleypas, Ocean Acidification: The Other CO 2 Problem , Annual Review of Marine Science, 10.1146/annurev.marine.010908.163834, 1, 1, (169-192), (2009).
- Isabella Raffi, Jan Backman, James C. Zachos and Appy Sluijs, The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic, Marine Micropaleontology, 10.1016/j.marmicro.2008.12.005, 70, 3-4, (201-212), (2009).
- Dana Clark, Miles Lamare and Mike Barker, Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species, Marine Biology, 10.1007/s00227-009-1155-8, 156, 6, (1125-1137), (2009).
- Lydie Herfort, Brenda Thake and Isabelle Taubner, BICARBONATE STIMULATION OF CALCIFICATION AND PHOTOSYNTHESIS IN TWO HERMATYPIC CORALS, Journal of Phycology, 44, 1, (91-98), (2008).
- Yves Goddéris, Yannick Donnadieu, Colomban de Vargas, Raymond T. Pierrehumbert, Gilles Dromart and Bas van de Schootbrugge, Causal or casual link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2?, Earth and Planetary Science Letters, 10.1016/j.epsl.2007.11.051, 267, 1-2, (247-255), (2008).
- U. Riebesell, R. G. J. Bellerby, A. Engel, V. J. Fabry, D. A. Hutchins, T. B. H. Reusch, K. G. Schulz and F. M. M. Morel, Comment on "Phytoplankton Calcification in a High-CO2 World", Science, 10.1126/science.1161096, 322, 5907, (1466b-1466b), (2008).
- Fabrizio Tremolada, Bianca De Bernardi and Elisabetta Erba, Size variations of the calcareous nannofossil taxon Discoaster multiradiatus (Incertae sedis) across the Paleocene–Eocene thermal maximum in ocean drilling program holes 690B and 1209B, Marine Micropaleontology, 10.1016/j.marmicro.2008.01.010, 67, 3-4, (239-254), (2008).
- Yuanyuan Feng, Mark E. Warner, Yaohong Zhang, Jun Sun, Fei-Xue Fu, Julie M. Rose and David A. Hutchins, Interactive effects of increased pCO 2 , temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae) , European Journal of Phycology, 10.1080/09670260701664674, 43, 1, (87-98), (2008).
- R.S Lampitt, E.P Achterberg, T.R Anderson, J.A Hughes, M.D Iglesias-Rodriguez, B.A Kelly-Gerreyn, M Lucas, E.E Popova, R Sanders, J.G Shepherd, D Smythe-Wright and A Yool, Ocean fertilization: a potential means of geoengineering?, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 10.1098/rsta.2008.0139, 366, 1882, (3919-3945), (2008).
- Isabella Raffi and Bianca De Bernardi, Response of calcareous nannofossils to the Paleocene–Eocene Thermal Maximum: Observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge — SW Atlantic), Marine Micropaleontology, 10.1016/j.marmicro.2008.07.002, 69, 2, (119-138), (2008).
- M. D. Iglesias-Rodriguez, E. T. Buitenhuis, J. A. Raven, O. Schofield, A. J. Poulton, S. Gibbs, P. R. Halloran and H. J. W. de Baar, Response to Comment on "Phytoplankton Calcification in a High-CO2 World", Science, 10.1126/science.1161501, 322, 5907, (1466c-1466c), (2008).
- R. A. Feely, C. L. Sabine, J. M. Hernandez-Ayon, D. Ianson and B. Hales, Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf, Science, 10.1126/science.1155676, 320, 5882, (1490-1492), (2008).
- P. Cermeno, S. Dutkiewicz, R. P. Harris, M. Follows, O. Schofield and P. G. Falkowski, The role of nutricline depth in regulating the ocean carbon cycle, Proceedings of the National Academy of Sciences, 10.1073/pnas.0811302106, 105, 51, (20344-20349), (2008).
- M. D. Iglesias-Rodriguez, P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, P. von Dassow, E. Rehm, E. V. Armbrust and K. P. Boessenkool, Phytoplankton Calcification in a High-CO2 World, Science, 10.1126/science.1154122, 320, 5874, (336-340), (2008).
- John M. Guinotte and Victoria J. Fabry, Ocean Acidification and Its Potential Effects on Marine Ecosystems, Annals of the New York Academy of Sciences, 1134, 1, (320-342), (2008).
- W. M. Berelson, W. M. Balch, R. Najjar, R. A. Feely, C. Sabine and K. Lee, Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget, Global Biogeochemical Cycles, 21, 1, (2007).
- Ian S. F. Jones, The Enhancement of Marine Productivity for Climate Stabilization and Food Security, Handbook of Microalgal Culture, (534-544), (2007).
- Andy Ridgwell and J. C. Hargreaves, Regulation of atmospheric CO2 by deep‐sea sediments in an Earth system model, Global Biogeochemical Cycles, 21, 2, (2007).
- Jorijntje Henderiks and Mark Pagani, Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone‐based pCO2 records, Paleoceanography, 22, 3, (2007).
- Long Cao, Ken Caldeira and Atul K. Jain, Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation, Geophysical Research Letters, 34, 5, (2007).
- Paul Loubere, Samantha A. Siedlecki and Louisa I. Bradtmiller, Organic carbon and carbonate fluxes: Links to climate change, Deep Sea Research Part II: Topical Studies in Oceanography, 10.1016/j.dsr2.2007.02.001, 54, 5-7, (437-446), (2007).
- Ingrid Zondervan, The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review, Deep Sea Research Part II: Topical Studies in Oceanography, 10.1016/j.dsr2.2006.12.004, 54, 5-7, (521-537), (2007).
- Nicholas R. Bates and Andrew J. Peters, The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean, Marine Chemistry, 10.1016/j.marchem.2007.08.002, 107, 4, (547-558), (2007).
- Mitsuru Yamamura, Hodaka Kawahata, Katsumi Matsumoto, Reishi Takashima and Hiroshi Nishi, Paleoceanography of the northwestern Pacific during the Albian, Palaeogeography, Palaeoclimatology, Palaeoecology, 10.1016/j.palaeo.2007.07.002, 254, 3-4, (477-491), (2007).
- Fabrizio Tremolada, Elisabetta Erba and Timothy J. Bralower, A review of calcareous nannofossil changes during the early Aptian Oceanic Anoxic Event 1a and the Paleocene-Eocene Thermal Maximum: The influence of fertility, temperature, and pCO2, Special Paper 424: Large Ecosystem Perturbations: Causes and Consequences, 10.1130/2007.2424(05), (87-96), (2007).
- Andrew J. Davies, J. Murray Roberts and Jason Hall-Spencer, Preserving deep-sea natural heritage: Emerging issues in offshore conservation and management, Biological Conservation, 10.1016/j.biocon.2007.05.011, 138, 3-4, (299-312), (2007).
- Andreas J. Andersson, Fred T. Mackenzie and Abraham Lerman, Coastal ocean CO2–carbonic acid–carbonate sediment system of the Anthropocene, Global Biogeochemical Cycles, 20, 1, (2006).
- Shijun Jiang and Sherwood W. Wise, Surface-water chemistry and fertility variations in the tropical Atlantic across the Paleocene/Eocene Thermal Maximum as evidenced by calcareous nannoplankton from ODP Leg 207, Hole 1259B, Revue de Micropaléontologie, 10.1016/j.revmic.2006.10.002, 49, 4, (227-244), (2006).
- Zhiqiang Lu, Nianzhi Jiao and Huiyong Zhang, Physiological changes in marine picocyanobacterial Synechococcus strains exposed to elevated CO 2 partial pressure , Marine Biology Research, 10.1080/17451000601055419, 2, 6, (424-430), (2006).
- Ken Caldeira and Michael E. Wickett, Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean, Journal of Geophysical Research: Oceans, 110, C9, (2005).
- Noriko Nakayama, Edward T. Peltzer, Peter Walz and Peter G. Brewer, First results from a controlled deep sea CO2 perturbation experiment: Evidence for rapid equilibration of the oceanic CO2 system at depth, Journal of Geophysical Research: Oceans, 110, C9, (2005).
- C. Langdon and M. J. Atkinson, Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment, Journal of Geophysical Research: Oceans, 110, C9, (2005).
- Bruno Delille, Jérôme Harlay, Ingrid Zondervan, Stephan Jacquet, Lei Chou, Roland Wollast, Richard G. J. Bellerby, Michel Frankignoulle, Alberto Vieira Borges, Ulf Riebesell and Jean‐Pierre Gattuso, Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochemical Cycles, 19, 2, (2005).
- Fabrizio Tremolada, Bas Van de Schootbrugge and Elisabetta Erba, Early Jurassic schizosphaerellid crisis in Cantabria, Spain: Implications for calcification rates and phytoplankton evolution across the Toarcian oceanic anoxic event, Paleoceanography, 20, 2, (2005).
- James C. Orr, Victoria J. Fabry, Olivier Aumont, Laurent Bopp, Scott C. Doney, Richard A. Feely, Anand Gnanadesikan, Nicolas Gruber, Akio Ishida, Fortunat Joos, Robert M. Key, Keith Lindsay, Ernst Maier-Reimer, Richard Matear, Patrick Monfray, Anne Mouchet, Raymond G. Najjar, Gian-Kasper Plattner, Keith B. Rodgers, Christopher L. Sabine, Jorge L. Sarmiento, Reiner Schlitzer, Richard D. Slater, Ian J. Totterdell, Marie-France Weirig, Yasuhiro Yamanaka and Andrew Yool, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 10.1038/nature04095, 437, 7059, (681-686), (2005).
- Jörg Mutterlose, André Bornemann and Jens O. Herrle, Mesozoic calcareous nannofossils — state of the art, Paläontologische Zeitschrift, 10.1007/BF03021757, 79, 1, (113-133), (2005).
- Birgit Schneider, Anja Engel and Reiner Schlitzer, Effects of depth‐ and CO2‐dependent C:N ratios of particulate organic matter (POM) on the marine carbon cycle, Global Biogeochemical Cycles, 18, 2, (2004).
- Elisabetta Erba and Fabrizio Tremolada, Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia, Paleoceanography, 19, 1, (2004).
- Ulf Riebesell, Effects of CO2 Enrichment on Marine Phytoplankton, Journal of Oceanography, 10.1007/s10872-004-5764-z, 60, 4, (719-729), (2004).
- Jun Kita and Takashi Ohsumi, Perspectives on Biological Research for CO2 Ocean Sequestration, Journal of Oceanography, 10.1007/s10872-004-5762-1, 60, 4, (695-703), (2004).
- C. Heinze, Simulating oceanic CaCO3 export production in the greenhouse, Geophysical Research Letters, 31, 16, (2004).
- Richard E. Zeebe and Peter Westbroek, A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean, Geochemistry, Geophysics, Geosystems, 4, 12, (2003).
- S.‐N. Chung, K. Lee, R. A. Feely, C. L. Sabine, F. J. Millero, R. Wanninkhof, J. L. Bullister, R. M. Key and T.‐H. Peng, Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry, Global Biogeochemical Cycles, 17, 4, (2003).
- André Bornemann, Ute Aschwer and Jörg Mutterlose, The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic–Cretaceous boundary, Palaeogeography, Palaeoclimatology, Palaeoecology, 10.1016/S0031-0182(03)00507-8, 199, 3-4, (187-228), (2003).
- Wolfgang Koeve, Upper ocean carbon fluxes in the Atlantic Ocean: The importance of the POC:PIC ratio, Global Biogeochemical Cycles, 16, 4, (4-1-4-17), (2002).
- Hezi Gildor and Michael J. Follows, Two‐way interactions between ocean biota and climate mediated by biogeochemical cycles, Israel Journal of Chemistry, 42, 1, (15-27), (2010).
- Ingrid Zondervan, Björn Rost and Ulf Riebesell, Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths, Journal of Experimental Marine Biology and Ecology, 10.1016/S0022-0981(02)00037-0, 272, 1, (55-70), (2002).
- , Further Readings in Geomicrobiology, Geomicrobiology Journal, 10.1080/01490450252864307, 19, 2, (289-292), (2002).
- Jelle Bijma, Bärbel Hönisch and Richard E. Zeebe, Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial‐age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark, "Geochemistry, Geophysics, Geosystems", 3, 11, (1-7), (2002).
- Rumana Sultana, Beatriz E. Casareto, Rumi Sohrin, Toshiyuki Suzuki, Md. Shafiul Alam, Hiroyuki Fujimura and Yoshimi Suzuki, Response of Subtropical Coastal Sediment Systems of Okinawa, Japan, to Experimental Warming and High pCO2, Frontiers in Marine Science, 10.3389/fmars.2016.00100, 3, (2016).
- Yuanyuan Feng, Michael Y. Roleda, Evelyn Armstrong, Cliff S. Law, Philip W. Boyd and Catriona L. Hurd, Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i>, Biogeosciences, 10.5194/bg-15-581-2018, 15, 2, (581-595), (2018).
- Paul A. O'Brien, Kathleen M. Morrow, Bette L. Willis and David G. Bourne, Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated, Frontiers in Marine Science, 10.3389/fmars.2016.00047, 3, (2016).
- Natasha A. Gafar, Bradley D. Eyre and Kai G. Schulz, A Conceptual Model for Projecting Coccolithophorid Growth, Calcification and Photosynthetic Carbon Fixation Rates in Response to Global Ocean Change, Frontiers in Marine Science, 10.3389/fmars.2017.00433, 4, (2018).
- Scarlett Sett, Lennart T. Bach, Kai G. Schulz, Signe Koch-Klavsen, Mario Lebrato, Ulf Riebesell and Vengatesen Thiyagarajan (Rajan), Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2, PLoS ONE, 10.1371/journal.pone.0088308, 9, 2, (e88308), (2014).
- Takahiro Irie, Kazuhiro Bessho, Helen S. Findlay, Piero Calosi and Zoe Finkel, Increasing Costs Due to Ocean Acidification Drives Phytoplankton to Be More Heavily Calcified: Optimal Growth Strategy of Coccolithophores, PLoS ONE, 10.1371/journal.pone.0013436, 5, 10, (e13436), (2010).
- Rowan Haigh, Debby Ianson, Carrie A. Holt, Holly E. Neate, Andrew M. Edwards and Vengatesen Thiyagarajan (Rajan), Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific, PLOS ONE, 10.1371/journal.pone.0117533, 10, 2, (e0117533), (2015).
- Jörg C. Frommlet, Daniel Wangpraseurt, Maria L. Sousa, Bárbara Guimarães, Mariana Medeiros da Silva, Michael Kühl and João Serôdio, Symbiodinium-Induced Formation of Microbialites: Mechanistic Insights From in Vitro Experiments and the Prospect of Its Occurrence in Nature, Frontiers in Microbiology, 10.3389/fmicb.2018.00998, 9, (2018).
- Christopher T. Johns, Austin R. Grubb, Jozef I. Nissimov, Frank Natale, Viki Knapp, Alwin Mui, Helen F. Fredricks, Benjamin A. S. Van Mooy and Kay D. Bidle, The mutual interplay between calcification and coccolithovirus infection, Environmental Microbiology, , (2018).




