Interplanetary acceleration of coronal mass ejections
Abstract
Using an observed relation between speeds of CMEs near the Sun and in the solar wind, we determine an “effective” acceleration acting on the CMEs. We found a linear relation between this effective acceleration and the initial speed of the CMEs. The acceleration is similar to that of the slow solar wind in magnitude. The average solar wind speed naturally divides CMEs into fast and slow ones. Based on the relation between the acceleration and initial speed, we derive an empirical model to predict the arrival of CMEs at 1 AU.
Number of times cited: 266
- Tshimangadzo Merline Matamba and John Bosco Habarulema, Ionospheric Responses to CME‐ and CIR‐Driven Geomagnetic Storms Along 30°E–40°E Over the African Sector From 2001 to 2015, Space Weather, 16, 5, (538-556), (2018).
- Yuming Wang, Chenglong Shen, Rui Liu, Jiajia Liu, Jingnan Guo, Xiaolei Li, Mengjiao Xu, Qiang Hu and Tielong Zhang, Understanding the Twist Distribution Inside Magnetic Flux Ropes by Anatomizing an Interplanetary Magnetic Cloud, Journal of Geophysical Research: Space Physics, 123, 5, (3238-3261), (2018).
- Xiaowei Zhao, Ying D. Liu, Huidong Hu and Rui Wang, Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space, The Astrophysical Journal, 837, 1, (4), (2017).
- Hyeonock Na, Y.-J. Moon and Harim Lee, Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections, The Astrophysical Journal, 839, 2, (82), (2017).
- Noé Lugaz, Manuela Temmer, Yuming Wang and Charles J. Farrugia, The Interaction of Successive Coronal Mass Ejections: A Review, Solar Physics, 10.1007/s11207-017-1091-6, 292, 4, (2017).
- E. Palmerio, E. K. J. Kilpua, A. W. James, L. M. Green, J. Pomoell, A. Isavnin and G. Valori, Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations, Solar Physics, 10.1007/s11207-017-1063-x, 292, 2, (2017).
- Beena Bhatt and Harish Chandra, Solar flare associated coronal mass ejections causing geo-effectiveness and Forbush decreases, Astrophysics and Space Science, 362, 2, (2017).
- Ward Manchester, Emilia K. J. Kilpua, Ying D. Liu, Noé Lugaz, Pete Riley, Tibor Török and Bojan Vršnak, The Physical Processes of CME/ICME Evolution, Space Science Reviews, 10.1007/s11214-017-0394-0, 212, 3-4, (1159-1219), (2017).
- Victorial B. Ojih and Francisca N. Okeke, Application of Ojih-Okeke modified empirical coronal mass ejection arrival (ECA) model in predicting the arrival time of coronal mass ejections (CMEs), International Journal of Physical Sciences, 12, 16, (199), (2017).
- Evangelos Paouris and Helen Mavromichalaki, Interplanetary Coronal Mass Ejections Resulting from Earth-Directed CMEs Using SOHO and ACE Combined Data During Solar Cycle 23, Solar Physics, 10.1007/s11207-017-1050-2, 292, 2, (2017).
- Sun Lu-yuan, Influence of Convective Effect of Solar Winds on the CME Transit Time, Chinese Astronomy and Astrophysics, 41, 4, (517), (2017).
- D. Rodkin, F. Goryaev, P. Pagano, G. Gibb, V. Slemzin, Y. Shugay, I. Veselovsky and D. H. Mackay, Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011, Solar Physics, 292, 7, (2017).
- James Chen, Physics of erupting solar flux ropes: Coronal mass ejections (CMEs)—Recent advances in theory and observation, Physics of Plasmas, 10.1063/1.4993929, 24, 9, (090501), (2017).
- Emilia Kilpua, Hannu E. J. Koskinen and Tuija I. Pulkkinen, Coronal mass ejections and their sheath regions in interplanetary space, Living Reviews in Solar Physics, 10.1007/s41116-017-0009-6, 14, 1, (2017).
- Mateja Dumbović, Nandita Srivastava, Yamini K. Rao, Bojan Vršnak, Andy Devos and Luciano Rodriguez, Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System, Solar Physics, 10.1007/s11207-017-1120-5, 292, 8, (2017).
- Abha
Singh, V.S. Rathore, R.P.
Singh and A.K. Singh, Source
identification of moderate (−100nT
, Advances in Space Research, 10.1016/j.asr.2016.12.006, 59, 5, (1209-1222), (2017). - Bin Zhuang, Yuming Wang, Chenglong Shen, Siqing Liu, Jingjing Wang, Zonghao Pan, Huimin Li and Rui Liu, The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth, The Astrophysical Journal, 845, 2, (117), (2017).
- Carolina Salas Matamoros, Karl Ludwig Klein and Gerard Trottet, Microwave radio emissions as a proxy for coronal mass ejection speed in arrival predictions of interplanetary coronal mass ejections at 1 AU, Journal of Space Weather and Space Climate, 7, (A2), (2017).
- Evangelos Paouris and Helen Mavromichalaki, Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections, Solar Physics, 292, 12, (2017).
- Takuya Takahashi and Kazunari Shibata, Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection, The Astrophysical Journal, 837, 2, (L17), (2017).
- M. Syed Ibrahim, P. K. Manoharan and A. Shanmugaraju, Propagation of Coronal Mass Ejections Observed During the Rising Phase of Solar Cycle 24, Solar Physics, 292, 9, (2017).
- Steven R. Cranmer, Sarah E. Gibson and Pete Riley, Origins of the Ambient Solar Wind: Implications for Space Weather, Space Science Reviews, 10.1007/s11214-017-0416-y, 212, 3-4, (1345-1384), (2017).
- A. W. James, L. M. Green, E. Palmerio, G. Valori, H. A. S. Reid, D. Baker, D. H. Brooks, L. van Driel-Gesztelyi and E. K. J. Kilpua, On-Disc Observations of Flux Rope Formation Prior to Its Eruption, Solar Physics, 292, 5, (2017).
- I. V. Kuzmenko and V. V. Grechnev, Development and Parameters of a Non-Self-Similar CME Caused by the Eruption of a Quiescent Prominence, Solar Physics, 292, 10, (2017).
- M. Temmer, M. A. Reiss, L. Nikolic, S. J. Hofmeister and A. M. Veronig, Preconditioning of Interplanetary Space Due to Transient CME Disturbances, The Astrophysical Journal, 835, 2, (141), (2017).
- N. Gopalswamy, S. Akiyama, S. Yashiro and H. Xie, Coronal flux ropes and their interplanetary counterparts, Journal of Atmospheric and Solar-Terrestrial Physics, (2017).
- T. Asikainen and M. Ruopsa, Solar wind drivers of energetic electron precipitation, Journal of Geophysical Research: Space Physics, 121, 3, (2209-2225), (2016).
- P. Mäkelä, N. Gopalswamy and S. Yashiro, The radial speed‐expansion speed relation for Earth‐directed CMEs, Space Weather, 14, 5, (368-378), (2016).
- M. Temmer, Kinematical properties of coronal mass ejections, Astronomische Nachrichten, 337, 10, (1010-1015), (2016).
- G. Michalek, A. Shanmugaraju, N. Gopalswamy, S. Yashiro and S. Akiyama, Statistical Analysis of Periodic Oscillations in LASCO Coronal Mass Ejection Speeds, Solar Physics, 291, 12, (3751), (2016).
- S. McKenna-Lawlor, W. Ip, B. Jackson, D. Odstrcil, P. Nieminen, H. Evans, J. Burch, K. Mandt, R. Goldstein, I. Richter and M. Dryer, Space Weather at Comet 67P/Churyumov–Gerasimenko Before its Perihelion, Earth, Moon, and Planets, 117, 1, (1), (2016).
- Clezio Marcos Denardini, Sergio Dasso and J. Americo Gonzalez-Esparza, Review on space weather in Latin America. 1. The beginning from space science research, Advances in Space Research, 10.1016/j.asr.2016.03.012, 58, 10, (1916-1939), (2016).
- Yutian Chi, Chenglong Shen, Yuming Wang, Mengjiao Xu, Pinzhong Ye and Shui Wang, Statistical Study of the Interplanetary Coronal Mass Ejections from 1995 to 2015, Solar Physics, 291, 8, (2419), (2016).
- Yi-ting Zhu, Wei-guo Zong and Shi-xin Pei, Relationship between X-class Flares and Geomagnetic Effects, Chinese Astronomy and Astrophysics, 40, 1, (32), (2016).
- V. Pant, S. Willems, L. Rodriguez, M. Mierla, D. Banerjee and J. A. Davies, AUTOMATED DETECTION OF CORONAL MASS EJECTIONS INSTEREOHELIOSPHERIC IMAGER DATA, The Astrophysical Journal, 833, 1, (80), (2016).
- Nishant Mittal and V.K. Verma, On geomagnetic storms and associated solar activity phenomena observed during 1996–2009, Acta Astronautica, 121, (179), (2016).
- Ying D. Liu, Huidong Hu, Chi Wang, Janet G. Luhmann, John D. Richardson, Zhongwei Yang and Rui Wang, ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS: II. SLOW EVENTS AND COMPARISON WITH OTHERS, The Astrophysical Journal Supplement Series, 222, 2, (23), (2016).
- I. Cabello, H. Cremades, L. Balmaceda and I. Dohmen, First Simultaneous Views of the Axial and Lateral Perspectives of a Coronal Mass Ejection, Solar Physics, 291, 6, (1799), (2016).
- S. Krauss, M. Temmer, A. Veronig, O. Baur and H. Lammer, Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, Journal of Geophysical Research: Space Physics, 120, 10, (8848-8860), (2015).
- A. J. Prise, L. K. Harra, S. A. Matthews, C. S. Arridge and N. Achilleos, Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn, Journal of Geophysical Research: Space Physics, 120, 3, (1566-1588), (2015).
- Lucie Green and Deb Baker, Coronal mass ejections: a driver of severe space weather, Weather, 70, 1, (31-35), (2015).
- Kimberley Tucker‐Hood, Chris Scott, Mathew Owens, David Jackson, Luke Barnard, Jackie A. Davies, Steve Crothers, Chris Lintott, Robert Simpson, Neel P. Savani, J. Wilkinson, B. Harder, G. M. Eriksson, E. M. L Baeten and Lily Lau Wan Wah, Validation of a priori CME arrival predictions made using real‐time heliospheric imager observations, Space Weather, 13, 1, (35-48), (2015).
- S. Singh and A. P. Mishra, Interaction of solar plasma near-Earth with reference to geomagnetic storms during maxima of solar cycle 24, Indian Journal of Physics, 89, 12, (1227), (2015).
- Wageesh Mishra, Nandita Srivastava and D. Chakrabarty, Evolution and Consequences of Interacting CMEs of 9 – 10 November 2012 Using STEREO/SECCHI and In Situ Observations, Solar Physics, 290, 2, (527), (2015).
- P. Corona-Romero, J. A. Gonzalez-Esparza, E. Aguilar-Rodriguez, V. De-la-Luz and J. C. Mejia-Ambriz, Kinematics of ICMEs/Shocks: Blast Wave Reconstruction Using Type-II Emissions, Solar Physics, 290, 9, (2439), (2015).
- Tong Shi, Yikang Wang, Linfeng Wan, Xin Cheng, Mingde Ding and Jie Zhang, PREDICTING THE ARRIVAL TIME OF CORONAL MASS EJECTIONS WITH THE GRADUATED CYLINDRICAL SHELL AND DRAG FORCE MODEL, The Astrophysical Journal, 806, 2, (271), (2015).
- Nishtha Sachdeva, Prasad Subramanian, Robin Colaninno and Angelos Vourlidas, CME PROPAGATION: WHERE DOES AERODYNAMIC DRAG “TAKE OVER”?, The Astrophysical Journal, 809, 2, (158), (2015).
- Nishant Mittal and Udit Narain, On the arrival times of halo Coronal Mass Ejections in the vicinity of the Earth, NRIAG Journal of Astronomy and Geophysics, 4, 1, (100), (2015).
- Ying D. Liu, Huidong Hu, Rui Wang, Zhongwei Yang, Bei Zhu, Yi A. Liu, Janet G. Luhmann and John D. Richardson, PLASMA AND MAGNETIC FIELD CHARACTERISTICS OF SOLAR CORONAL MASS EJECTIONS IN RELATION TO GEOMAGNETIC STORM INTENSITY AND VARIABILITY, The Astrophysical Journal, 809, 2, (L34), (2015).
- H. Cremades, F. A. Iglesias, O. C. St. Cyr, H. Xie, M. L. Kaiser and N. Gopalswamy, Low-Frequency Type-II Radio Detections and Coronagraph Data Employed to Describe and Forecast the Propagation of 71 CMEs/Shocks, Solar Physics, 290, 9, (2455), (2015).
- I. Parnahaj and K. Kudela, Forbush decreases at a middle latitude neutron monitor: relations to geomagnetic activity and to interplanetary plasma structures, Astrophysics and Space Science, 359, 1, (2015).
- Antoine Strugarek, Nils Janitzek, Arrow Lee, Philipp Löschl, Bernhard Seifert, Sanni Hoilijoki, Emil Kraaikamp, Alankrita Isha Mrigakshi, Thomas Philippe, Sheila Spina, Malte Bröse, Sonny Massahi, Liam O’Halloran, Victor Pereira Blanco, Christoffer Stausland, Philippe Escoubet and Günter Kargl, A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR), Journal of Space Weather and Space Climate, 5, (A4), (2015).
- E. Romero-Hernandez, J. A. Gonzalez-Esparza, E. Aguilar-Rodriguez, V. Ontiveros-Hernandez and P. Villanueva-Hernandez, Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz, Solar Physics, 10.1007/s11207-015-0690-3, 290, 9, (2553-2566), (2015).
- G. Michalek, N. Gopalswamy, S. Yashiro and K. Bronarska, Dynamics of CMEs in the LASCO Field of View, Solar Physics, 290, 3, (903), (2015).
- Harim Lee, Y.-J. Moon and V. M. Nakariakov, RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS IN THE SUN, The Astrophysical Journal, 803, 1, (L7), (2015).
- Panditi Vemareddy and Wageesh Mishra, A FULL STUDY ON THE SUN–EARTH CONNECTION OF AN EARTH-DIRECTED CME MAGNETIC FLUX ROPE, The Astrophysical Journal, 814, 1, (59), (2015).
- Chenglong Shen, Yuming Wang, Zonghao Pan, Bin Miao, Pinzhong Ye and S. Wang, Full‐halo coronal mass ejections: Arrival at the Earth, Journal of Geophysical Research: Space Physics, 119, 7, (5107-5116), (2014).
- R.‐S. Kim, Y.‐J. Moon, N. Gopalswamy, Y.‐D. Park and Y.‐H. Kim, Two‐step forecast of geomagnetic storm using coronal mass ejection and solar wind condition, Space Weather, 12, 4, (246-256), (2014).
- Xinhua Zhao and Murray Dryer, Current status of CME/shock arrival time prediction, Space Weather, 12, 7, (448-469), (2014).
- V. Vasanth and S. Umapathy, Studies on Longer Wavelength Type II Radio Bursts Associated with Flares and CMEs during the Rise and Decay Phase of 23rd Solar Cycle, Journal of Astrophysics, 2014, (1), (2014).
- C. Gressl, A. M. Veronig, M. Temmer, D. Odstrčil, J. A. Linker, Z. Mikić and P. Riley, Comparative Study of MHD Modeling of the Background Solar Wind, Solar Physics, 10.1007/s11207-013-0421-6, 289, 5, (1783-1801), (2013).
- Parvaiz A. Khan, Sharad C. Tripathi, O. A. Troshichev, Malik A. Waheed, A. M. Aslam and A. K. Gwal, Solar transients disturbing the terrestrial magnetic environment at higher latitudes, Astrophysics and Space Science, 349, 2, (647), (2014).
- V. G. Eselevich and M. V. Eselevich, Physical differences between the initial phase of the formation of two types of coronal mass ejections, Astronomy Reports, 58, 4, (260), (2014).
- Ying D. Liu, Janet G. Luhmann, Primož Kajdič, Emilia K.J. Kilpua, Noé Lugaz, Nariaki V. Nitta, Christian Möstl, Benoit Lavraud, Stuart D. Bale, Charles J. Farrugia and Antoinette B. Galvin, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections, Nature Communications, 5, (2014).
- A. Belov, A. Abunin, M. Abunina, E. Eroshenko, V. Oleneva, V. Yanke, A. Papaioannou, H. Mavromichalaki, N. Gopalswamy and S. Yashiro, Coronal Mass Ejections and Non-recurrent Forbush Decreases, Solar Physics, 289, 10, (3949), (2014).
- P. Pagano, D. H. Mackay and S. Poedts, Simulating AIA observations of a flux rope ejection, Astronomy & Astrophysics, 568, (A120), (2014).
- T. Iju, M. Tokumaru and K. Fujiki, Kinematic Properties of Slow ICMEs and an Interpretation of a Modified Drag Equation for Fast and Moderate ICMEs, Solar Physics, 289, 6, (2157), (2014).
- S. Dolei, A. Bemporad and D. Spadaro, Measurements with STEREO/COR1 data of drag forces acting on small-scale blobs falling in the intermediate corona, Astronomy & Astrophysics, 562, (A74), (2014).
- A. Shanmugaraju and Bojan Vršnak, Transit Time of Coronal Mass Ejections under Different Ambient Solar Wind Conditions, Solar Physics, 289, 1, (339), (2014).
- Ying D. Liu, Zhongwei Yang, Rui Wang, Janet G. Luhmann, John D. Richardson and Noé Lugaz, SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM, The Astrophysical Journal, 793, 2, (L41), (2014).
- Y. Zhang, A. M. Du, D. Du and W. Sun, Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model, Solar Physics, 289, 8, (3159), (2014).
- R. C. Colaninno, A. Vourlidas and C. C. Wu, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging, Journal of Geophysical Research: Space Physics, 118, 11, (6866-6879), (2013).
- G. Millward, D. Biesecker, V. Pizzo and C. A. Koning, An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA‐Enlil heliospheric model, Space Weather, 11, 2, (57-68), (2013).
- N. P. Savani, A. Vourlidas, A. Pulkkinen, T. Nieves‐Chinchilla, B. Lavraud and M. J. Owens, Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth, Space Weather, 11, 5, (245-261), (2013).
- N. Gopalswamy, P. Mäkelä, H. Xie and S. Yashiro, Testing the empirical shock arrival model using quadrature observations, Space Weather, 11, 11, (661-669), (2013).
- O. C. St.Cyr and J. M. Davila, The STEREO Space Weather Broadcast, Space Weather, (205-209), (2013).
- Eino Valtonen, Geoeffective Coronal Mass Ejections and Energetic Particles, Solar Eruptions and Energetic Particles, (335-344), (2013).
- Alisson Dal Lago, Walter D. Gonzalez, Aline De Lucas, Carlos Roberto Braga, Lucas Ramos Vieira, Tardelli Ronan Coelho Stekel and Marlos Rockenbach, CME dynamics using coronagraph and interplanetary ejecta data, Advances in Space Research, 51, 10, (1942), (2013).
- Hyeonock Na, Y.-J. Moon, Soojeong Jang, Kyoung-Sun Lee and Hae-Yeon Kim, Comparison of Cone Model Parameters for Halo Coronal Mass Ejections, Solar Physics, 288, 1, (313), (2013).
- B. Vršnak, T. Žic, D. Vrbanec, M. Temmer, T. Rollett, C. Möstl, A. Veronig, J. Čalogović, M. Dumbović, S. Lulić, Y.-J. Moon and A. Shanmugaraju, Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model, Solar Physics, 285, 1-2, (295), (2013).
- Nat Gopalswamy, Coronal Mass Ejections and Type II Radio Bursts, Solar Eruptions and Energetic Particles, (207-220), (2013).
- Benoit Lavraud and Alexis Rouillard, Properties and processes that influence CME geo-effectiveness , Proceedings of the International Astronomical Union, 8, S300, (273), (2013).
- D. F. Webb, N. U. Crooker, S. P. Plunkett and O. C. St. Cyr, The Solar Sources of Geoeffective Structures, Space Weather, (123-141), (2013).
- P. Corona-Romero, J. A. Gonzalez-Esparza and E. Aguilar-Rodriguez, Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with Type II Radio-Burst Emission: An Analytic Study, Solar Physics, 285, 1-2, (391), (2013).
- A. Mujiber Rahman, A. Shanmugaraju, S. Umapathy and Y.-J. Moon, A statistical study on the stand-off distances of interplanetary coronal mass ejections, Journal of Atmospheric and Solar-Terrestrial Physics, 105-106, (181), (2013).
- V. Vasanth and S. Umapathy, A Statistical Study on CMEs Associated with DH-Type-II Radio Bursts Based on Their Source Location (Limb and Disk Events), Solar Physics, 282, 1, (239), (2013).
- V. Vasanth and S. Umapathy, A Statistical Study on DH CMEs and Its Geoeffectiveness, ISRN Astronomy and Astrophysics, 2013, (1), (2013).
- Francesca Zuccarello, Laura Balmaceda, Gael Cessateur, Hebe Cremades, Salvatore L. Guglielmino, Jean Lilensten, Thierry Dudok de Wit, Matthieu Kretzschmar, Fernando M. Lopez, Marilena Mierla, Susanna Parenti, Jens Pomoell, Paolo Romano, Luciano Rodriguez, Nandita Srivastava, Rami Vainio, Matt West and Francesco P. Zuccarello, Solar activity and its evolution across the corona: recent advances, Journal of Space Weather and Space Climate, 3, (A18), (2013).
- T. Iju, M. Tokumaru and K. Fujiki, Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23, Solar Physics, 288, 1, (331), (2013).
- N.C. Joshi, W. Uddin, A.K. Srivastava, R. Chandra, N. Gopalswamy, P.K. Manoharan, M.J. Aschwanden, D.P. Choudhary, R. Jain, N.V. Nitta, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, P. Kayshap, A.K. Awasthi, V.C. Dwivedi and K. Mahalakshmi, A multiwavelength study of eruptive events on January 23, 2012 associated with a major solar energetic particle event, Advances in Space Research, 52, 1, (1), (2013).
- J. P. Byrne, D. M. Long, P. T. Gallagher, D. S. Bloomfield, S. A. Maloney, R. T. J. McAteer, H. Morgan and S. R. Habbal, Improved methods for determining the kinematics of coronal mass ejections and coronal waves, Astronomy & Astrophysics, 557, (A96), (2013).
- A. H. Wang, S. T. Wu and N. Gopalswamy, Magnetohydrodynamic Analysis of January 20, 2001, CME‐CME Interaction Event, Particle Acceleration in Astrophysical Plasmas: Geospace and Beyond, (185-195), (2013).
- P. Pagano, D. H. Mackay and S. Poedts, Effect of gravitational stratification on the propagation of a CME, Astronomy & Astrophysics, 560, (A38), (2013).
- A. A. Mohamed, N. Gopalswamy, S. Yashiro, S. Akiyama, P. Mäkelä, H. Xie and H. Jung, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23, Journal of Geophysical Research: Space Physics, 117, A1, (2012).
- B. Veenadhari, R. Selvakumaran, Rajesh Singh, Ajeet K. Maurya, N. Gopalswamy, Sushil Kumar and T. Kikuchi, Coronal mass ejection–driven shocks and the associated sudden commencements/sudden impulses, Journal of Geophysical Research: Space Physics, 117, A4, (2012).
- N. Gopalswamy, P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie, R. J. MacDowall and M. L. Kaiser, Radio‐loud CMEs from the disk center lacking shocks at 1 AU, Journal of Geophysical Research: Space Physics, 117, A8, (2012).
- J. M. Schmidt and Iver H. Cairns, Type II radio bursts: 1. New entirely analytic formalism for the electron beams, Langmuir waves, and radio emission, Journal of Geophysical Research: Space Physics, 117, A4, (2012).
- J. M. Schmidt and Iver H. Cairns, Type II radio bursts: 2. Application of the new analytic formalism, Journal of Geophysical Research: Space Physics, 117, A11, (2012).
- Fang Shen, S. T. Wu, Xueshang Feng and Chin‐Chun Wu, Acceleration and deceleration of coronal mass ejections during propagation and interaction, Journal of Geophysical Research: Space Physics, 117, A11, (2012).
- Prasad Subramanian, Alejandro Lara and Andrea Borgazzi, Can solar wind viscous drag account for coronal mass ejection deceleration?, Geophysical Research Letters, 39, 19, (2012).
- Zhanle Du, Correlations Between CME Parameters and Sunspot Activity, Solar Physics, 278, 1, (203), (2012).
- B. M. Bein, S. Berkebile-Stoiser, A. M. Veronig, M. Temmer and B. Vršnak, IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS, The Astrophysical Journal, 755, 1, (44), (2012).
- G. Michalek, Dynamics of CMEs in the LASCO Field of View – Statistical Analysis, Solar Physics, 276, 1-2, (277), (2012).
- C. R. A. Augusto, V. Kopenkin, C. E. Navia, K. H. Tsui, H. Shigueoka, A. C. Fauth, E. Kemp, E. J. T. Manganote, M. A. Leigui de Oliveira, P. Miranda, R. Ticona and A. Velarde, VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS, The Astrophysical Journal, 759, 2, (143), (2012).
- M. Youssef, On the Interplanetary Coronal Mass Ejection Shocks in the Vicinity of the Earth, Earth, Moon, and Planets, 109, 1-4, (13), (2012).
- O. Prakash, S. Umapathy, A. Shanmugaraju and V. Vasanth, Kinematics and Flare Properties of Radio-Loud CMEs, Solar Physics, 281, 2, (765), (2012).
- E. K. J. Kilpua, M. Mierla, L. Rodriguez, A. N. Zhukov, N. Srivastava and M. J. West, Estimating Travel Times of Coronal Mass Ejections to 1 AU Using Multi-spacecraft Coronagraph Data, Solar Physics, 279, 2, (477), (2012).
- Wataru Miyake and Tsutomu Nagatsuma, On the Predictive Ability of Geomagnetic Disturbances from Solar Wind Measurements at Separated Solar Longitude, International Journal of Astronomy and Astrophysics, 02, 02, (63), (2012).
- P. Corona‐Romero and J. A. Gonzalez‐Esparza, Numeric and analytic study of interplanetary coronal mass ejection and shock evolution: Driving, decoupling, and decaying, Journal of Geophysical Research: Space Physics, 116, A5, (2011).
- T. V. Falkenberg, A. Taktakishvili, A. Pulkkinen, S. Vennerstrom, D. Odstrcil, D. Brain, G. Delory and D. Mitchell, Evaluating predictions of ICME arrival at Earth and Mars, Space Weather, 9, 9, (2011).
- C. J. Davis, C. A. de Koning, J. A. Davies, D. Biesecker, G. Millward, M. Dryer, C. Deehr, D. F. Webb, K. Schenk, S. L. Freeland, C. Möstl, C. J. Farrugia and D. Odstrcil, A comparison of space weather analysis techniques used to predict the arrival of the Earth‐directed CME and its shockwave launched on 8 April 2010, Space Weather, 9, 1, (2011).
- P. Mäkelä, N. Gopalswamy, S. Akiyama, H. Xie and S. Yashiro, Energetic storm particle events in coronal mass ejection–driven shocks, Journal of Geophysical Research: Space Physics, 116, A8, (2011).
- A. Lara, A. Flandes, A. Borgazzi and P. Subramanian, Velocity profile of interplanetary coronal mass ejections beyond 1 AU, Journal of Geophysical Research: Space Physics, 116, A12, (2011).
- Yuming Wang, Caixia Chen, Bin Gui, Chenglong Shen, Pinzhong Ye and S. Wang, Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs, Journal of Geophysical Research: Space Physics, 116, A4, (2011).
- Manuela Temmer, Tanja Rollett, Christian Möstl, Astrid M. Veronig, Bojan Vršnak and Dusan Odstrčil, INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS, The Astrophysical Journal, 743, 2, (101), (2011).
- B. Schmieder, P. Démoulin, E. Pariat, T. Török, G. Molodij, C.H. Mandrini, S. Dasso, R. Chandra, W. Uddin, P. Kumar, P.K. Manoharan, P. Venkatakrishnan and N. Srivastava, Actors of the main activity in large complex centres during the 23 solar cycle maximum, Advances in Space Research, 47, 12, (2081), (2011).
- P. Corona-Romero and J. A. Gonzalez-Esparza, Dynamic evolution of interplanetary shock waves driven by CMEs, Proceedings of the International Astronomical Union, 7, S286, (159), (2011).
- Anand D. Joshi and Nandita Srivastava, ACCELERATION OF CORONAL MASS EJECTIONS FROM THREE-DIMENSIONAL RECONSTRUCTION OFSTEREOIMAGES, The Astrophysical Journal, 739, 1, (8), (2011).
- Raman Selvamurugan, B.M. Pathan, A.N. Hanchinal and A. Dhar, Geomagnetic pulsation over conjugate locations during geomagnetic storms and substorm, Advances in Space Research, 48, 10, (1591), (2011).
- Daniel B. Berdichevsky, Guillermo Stenborg and Angelos Vourlidas, DERIVING THE PHYSICAL PARAMETERS OF A SOLAR EJECTION WITH AN ISOTROPIC MAGNETOHYDRODYNAMIC EVOLUTIONARY MODEL, The Astrophysical Journal, 741, 1, (47), (2011).
- P.K. Manoharan and A. Mujiber Rahman, Coronal mass ejections—Propagation time and associated internal energy, Journal of Atmospheric and Solar-Terrestrial Physics, 73, 5-6, (671), (2011).
- B. M. Bein, S. Berkebile-Stoiser, A. M. Veronig, M. Temmer, N. Muhr, I. Kienreich, D. Utz and B. Vršnak, IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. I. STATISTICS AND CORONAL MASS EJECTION SOURCE REGION CHARACTERISTICS, The Astrophysical Journal, 738, 2, (191), (2011).
- R.‐S. Kim, K.‐S. Cho, Y.‐J. Moon, M. Dryer, J. Lee, Y. Yi, K.‐H. Kim, H. Wang, Y.‐D. Park and Yong Ha Kim, An empirical model for prediction of geomagnetic storms using initially observed CME parameters at the Sun, Journal of Geophysical Research: Space Physics, 115, A12, (2010).
- T. V. Falkenberg, B. Vršnak, A. Taktakishvili, D. Odstrcil, P. MacNeice and M. Hesse, Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters, Space Weather, 8, 6, (2010).
- Yu. I. Yermolaev and M. Yu. Yermolaev, Solar and interplanetary sources of geomagnetic storms: Space weather aspects, Izvestiya, Atmospheric and Oceanic Physics, 10.1134/S0001433810070017, 46, 7, (799-819), (2010).
- W. B. Song, An Analytical Model to Predict the Arrival Time of Interplanetary CMEs, Solar Physics, 261, 2, (311), (2010).
- P. Pappa Kalaivani, S. Umapathy, A. Shanmugaraju and O. Prakash, Characteristics of coronal mass ejection associated with DH type II radio bursts (All and Limb events), Astrophysics and Space Science, 330, 2, (237), (2010).
- N. Gopalswamy, H. Xie, P. Mäkelä, S. Akiyama, S. Yashiro, M. L. Kaiser, R. A. Howard and J.-L. Bougeret, INTERPLANETARY SHOCKS LACKING TYPE II RADIO BURSTS, The Astrophysical Journal, 710, 2, (1111), (2010).
- A. Shanmugaraju, Y.-J. Moon, K.-S. Cho, S. C. Bong, N. Gopalswamy, S. Akiyama, S. Yashiro, S. Umapathy and B. Vrsnak, QUASI-PERIODIC OSCILLATIONS IN LASCO CORONAL MASS EJECTION SPEEDS, The Astrophysical Journal, 708, 1, (450), (2010).
- B. Vršnak, T. Žic, T. V. Falkenberg, C. Möstl, S. Vennerstrom and D. Vrbanec, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections, Astronomy and Astrophysics, 512, (A43), (2010).
- C. J. Davis, J. Kennedy and J. A. Davies, Assessing the Accuracy of CME Speed and Trajectory Estimates from STEREO Observations Through a Comparison of Independent Methods, Solar Physics, 263, 1-2, (209), (2010).
- I. G. Richardson and H. V. Cane, Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties, Solar Physics, 264, 1, (189), (2010).
- X. S. Feng, Y. Zhang, L. P. Yang, S. T. Wu and M. Dryer, An operational method for shock arrival time prediction by one‐dimensional CESE‐HD solar wind model, Journal of Geophysical Research: Space Physics, 114, A10, (2009).
- S. Dasso, C. H. Mandrini, B. Schmieder, H. Cremades, C. Cid, Y. Cerrato, E. Saiz, P. Démoulin, A. N. Zhukov, L. Rodriguez, A. Aran, M. Menvielle and S. Poedts, Linking two consecutive nonmerging magnetic clouds with their solar sources, Journal of Geophysical Research: Space Physics, 114, A2, (2009).
- Pete Riley and D. J. McComas, Derivation of fluid conservation relations to infer near‐Sun properties of coronal mass ejections from in situ measurements, Journal of Geophysical Research: Space Physics, 114, A9, (2009).
- N. Gopalswamy, P. Mäkelä, H. Xie, S. Akiyama and S. Yashiro, CME interactions with coronal holes and their interplanetary consequences, Journal of Geophysical Research: Space Physics, 114, A3, (2009).
- Peng‐Xin Gao, Ke‐Jun Li and Xiang‐Jun Shi, Hemispheric variation of coronal mass ejections in cycle 23, Monthly Notices of the Royal Astronomical Society, 400, 3, (1383-1388), (2009).
- HuiJun Li, XueShang Feng, PingBing Zuo and YanQiong Xie, Observations of the field-aligned residual flow inside magnetic cloud structure, Science in China Series E: Technological Sciences, 52, 9, (2555), (2009).
- K. J. Li, P. X. Gao, Q. X. Li, J. Mu and T. W. Su, Cyclical Behavior of Coronal Mass Ejections, Solar Physics, 257, 1, (149), (2009).
- N. Gopalswamy, W. T. Thompson, J. M. Davila, M. L. Kaiser, S. Yashiro, P. Mäkelä, G. Michalek, J.-L. Bougeret and R. A. Howard, Relation Between Type II Bursts and CMEs Inferred from STEREO Observations, Solar Physics, 259, 1-2, (227), (2009).
- Katsuhide Marubashi, Suk-Kyung Sung, Kyung-Suk Cho and Ronald P. Lepping, Impacts of torus model on studies of geometrical relationships between interplanetary magnetic clouds and their solar origins, Earth, Planets and Space, 61, 5, (589), (2009).
- N. Gopalswamy, S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland and R. Howard, The SOHO/LASCO CME Catalog, Earth, Moon, and Planets, 104, 1-4, (295), (2009).
- Nishant Mittal, Joginder Sharma, Vivek Tomar and Udit Narain, On distribution of CMEs speed in solar cycle 23, Planetary and Space Science, 57, 1, (53), (2009).
- Peng-Xin Gao and Ke-Jun Li, A cyclic behavior of CME accelerations for accelerating and decelerating events, Research in Astronomy and Astrophysics, 9, 10, (1165), (2009).
- M. Temmer, S. Preiss and A. M. Veronig, CME Projection Effects Studied with STEREO/COR and SOHO/LASCO, Solar Physics, 256, 1-2, (183), (2009).
- Hui Song, Changyi Tan, Ju Jing, Haimin Wang, Vasyl Yurchyshyn and Valentyna Abramenko, Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions, Solar Physics, 254, 1, (101), (2009).
- A. Shanmugaraju, Y.-J. Moon, Bojan Vrsnak and Dijana Vrbanec, Radial Evolution of Well-Observed Slow CMEs in the Distance Range 2 – 30 R ⊙, Solar Physics, 257, 2, (351), (2009).
- Badruddin and Y.P. Singh, Geoeffectiveness of magnetic cloud, shock/sheath, interaction region, high-speed stream and their combined occurrence, Planetary and Space Science, 10.1016/j.pss.2008.12.009, 57, 3, (318-331), (2009).
- S.-K. Sung, K. Marubashi, K.-S. Cho, Y.-H. Kim, K.-H. Kim, J. Chae, Y.-J. Moon and I.-H. Kim, A COMPARISON OF THE INITIAL SPEED OF CORONAL MASS EJECTIONS WITH THE MAGNETIC FLUX AND MAGNETIC HELICITY OF MAGNETIC CLOUDS, The Astrophysical Journal, 699, 1, (298), (2009).
- Nishant Mittal, Kumud Pandey, Udit Narain and S. S. Sharma, On properties of narrow CMEs observed with SOHO/LASCO, Astrophysics and Space Science, 323, 2, (135), (2009).
- A. Mahrous, M. El-Nawawy, M. Hammam and N. Ahmed, Empirical model of the transit time of interplanetary coronal mass ejections, Solar System Research, 43, 2, (128), (2009).
- A. Borgazzi, A. Lara, E. Echer and M. V. Alves, Dynamics of coronal mass ejections in the interplanetary medium, Astronomy & Astrophysics, 498, 3, (885), (2009).
- A. W. Case, H. E. Spence, M. J. Owens, P. Riley and D. Odstrcil, Ambient solar wind's effect on ICME transit times, Geophysical Research Letters, 35, 15, (2008).
- N. Gopalswamy and H. Xie, Comment on “Prediction of the 1‐AU arrival times of CME‐associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model” by K.‐H. Kim et al., Journal of Geophysical Research: Space Physics, 113, A10, (2008).
- K.‐H. Kim, Y.‐J. Moon and K.‐S. Cho, Reply to comment by N. Gopalswamy and H. Xie on “Prediction of the 1‐AU arrival times of CME‐associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model”, Journal of Geophysical Research: Space Physics, 113, A10, (2008).
- J. M. Schmidt and N. Gopalswamy, Synthetic radio maps of CME‐driven shocks below 4 solar radii heliocentric distance, Journal of Geophysical Research: Space Physics, 113, A8, (2008).
- H. J. Li, F. S. Wei, X. S. Feng and Y. Q. Xie, On improvement to the Shock Propagation Model (SPM) applied to interplanetary shock transit time forecasting, Journal of Geophysical Research: Space Physics, 113, A9, (2008).
- D. A. Biesecker, D. F. Webb and O. C. St. Cyr, STEREO Space Weather and the Space Weather Beacon, Space Science Reviews, 136, 1-4, (45), (2008).
- B. Vršnak, D. Vrbanec and J. Čalogović, Dynamics of coronal mass ejections, Astronomy & Astrophysics, 490, 2, (811), (2008).
- Peng-Xin Gao and Ke-Jun Li, Speed Distributions of CMEs in Cycle 23 at Low and High Latitudes, Chinese Journal of Astronomy and Astrophysics, 8, 2, (146), (2008).
- A. Shanmugaraju, Y.-J. Moon, K.-S. Cho, N. Gopalswamy and S. Umapathy, Investigation of CME dynamics in the LASCO field of view, Astronomy & Astrophysics, 484, 2, (511), (2008).
- Richard A. Harrison, Christopher J. Davis, Christopher J. Eyles, Danielle Bewsher, Steve R. Crothers, Jackie A. Davies, Russell A. Howard, Daniel J. Moses, Dennis G. Socker, Jeffrey S. Newmark, Jean-Philippe Halain, Jean-Marc Defise, Emmanuel Mazy, Pierre Rochus, David F. Webb and George M. Simnett, First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun – Earth Line, Solar Physics, 247, 1, (171), (2008).
- R. P. Kane, Latitude Dependence of the Variations of Sunspot Group Numbers (SGN) and Coronal Mass Ejections (CMEs) in Cycle 23, Solar Physics, 249, 2, (355), (2008).
- N. Gopalswamy, Solar connections of geoeffective magnetic structures, Journal of Atmospheric and Solar-Terrestrial Physics, 10.1016/j.jastp.2008.06.010, 70, 17, (2078-2100), (2008).
- Monique Pick and Nicole Vilmer, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection, The Astronomy and Astrophysics Review, 10.1007/s00159-008-0013-x, 16, 1-2, (1-153), (2008).
- A. Dickson Benjamin and S. R. Prabhakaran Nayar, Dependence of the Characteristics of Solar Wind Discontinuities and Shocks with Heliolatitude and Radial Distance, Solar Physics, 252, 1, (195), (2008).
- Ajaysinh K. Jadeja, K. N. Iyer, Hari Om Vats and P. K. Manoharan, Geo-effectiveness of CMEs, Journal of Astrophysics and Astronomy, 29, 1-2, (287), (2008).
- G. Michalek, N. Gopalswamy and S. Yashiro, Space Weather Application Using Projected Velocity Asymmetry of Halo CMEs, Solar Physics, 248, 1, (113), (2008).
- P. Pagano, J. C. Raymond, F. Reale and S. Orlando, Modeling magnetohydrodynamics and non-equilibrium SoHO/UVCS line emission of CME shocks, Astronomy & Astrophysics, 481, 3, (835), (2008).
- R. A. Jones, A. R. Breen, R. A. Fallows, A. Canals, M. M. Bisi and G. Lawrence, Interaction between coronal mass ejections and the solar wind, Journal of Geophysical Research: Space Physics, 112, A8, (2007).
- Ming Xiong, Huinan Zheng, S. T. Wu, Yuming Wang and Shui Wang, Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness, Journal of Geophysical Research: Space Physics, 112, A11, (2007).
- J. Zhang, I. G. Richardson, D. F. Webb, N. Gopalswamy, E. Huttunen, J. C. Kasper, N. V. Nitta, W. Poomvises, B. J. Thompson, C.‐C. Wu, S. Yashiro and A. N. Zhukov, Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, Journal of Geophysical Research: Space Physics, 112, A10, (2007).
- K.‐H. Kim, Y.‐J. Moon and K.‐S. Cho, Prediction of the 1‐AU arrival times of CME‐associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model, Journal of Geophysical Research: Space Physics, 112, A5, (2007).
- N. Gopalswamy, S. Yashiro and S. Akiyama, Geoeffectiveness of halo coronal mass ejections, Journal of Geophysical Research: Space Physics, 112, A6, (2007).
- M. J. Reiner, M. L. Kaiser and J.‐L. Bougeret, Coronal and Interplanetary Propagation of CME/Shocks from Radio, In Situ and White‐Light Observations, The Astrophysical Journal, 663, 2, (1369), (2007).
- B. Vršnak and T. Žic, Transit times of interplanetary coronal mass ejections and the solar wind speed, Astronomy & Astrophysics, 472, 3, (937), (2007).
- Nat Gopalswamy, Properties of Interplanetary Coronal Mass Ejections, Space Science Reviews, 124, 1-4, (145), (2007).
- Bojan Vršnak, Manuela Temmer and Astrid M. Veronig, Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters, Solar Physics, 240, 2, (315), (2007).
- P. X. Gao, Q. X. Li and S. H. Zhong, Distribution of latitudes and speeds of Coronal Mass Ejections in the northern and southern hemispheres in cycle 23, Journal of Astrophysics and Astronomy, 28, 4, (207), (2007).
- H. Xie, N. Gopalswamy, P. K. Manoharan, A. Lara, S. Yashiro and S. Lepri, Long‐lived geomagnetic storms and coronal mass ejections, Journal of Geophysical Research: Space Physics, 111, A1, (2006).
- H. Gleisner and J. Watermann, Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectiveness, Space Weather, 4, 6, (2006).
- H. Xie, N. Gopalswamy, L. Ofman, O. C. St. Cyr, G. Michalek, A. Lara and S. Yashiro, Improved input to the empirical coronal mass ejection (CME) driven shock arrival model from CME cone models, Space Weather, 4, 10, (2006).
- Tomoko Nakagawa, Nat Gopalswamy and Seiji Yashiro, Solar wind speed within 20 R of the Sun estimated from limb coronal mass ejections, Journal of Geophysical Research: Space Physics, 111, A1, (2006).
- G. Michalek, N. Gopalswamy, A. Lara and S. Yashiro, Properties and geoeffectiveness of halo coronal mass ejections, Space Weather, 4, 10, (2006).
- Eino Valtonen, Geoeffective coronal mass ejections and energetic particles, Solar Eruptions and Energetic Particles, 10.1029/165GM31, (335-344), (2006).
- Yu.I. Yermolaev and M.Yu. Yermolaev, Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events, Advances in Space Research, 37, 6, (1175), (2006).
- A. Ciaravella, J. C. Raymond and S. W. Kahler, Ultraviolet Properties of Halo Coronal Mass Ejections: Doppler Shifts, Angles, Shocks, and Bulk Morphology, The Astrophysical Journal, 652, 1, (774), (2006).
- R. J. Forsyth, V. Bothmer, C. Cid, N. U. Crooker, T. S. Horbury, K. Kecskemety, B. Klecker, J. A. Linker, D. Odstrcil, M. J. Reiner, I. G. Richardson, J. Rodriguez-Pacheco, J. M. Schmidt and R. F. Wimmer-Schweingruber, ICMEs in the Inner Heliosphere: Origin, Evolution and Propagation Effects, Space Science Reviews, 10.1007/s11214-006-9022-0, 123, 1-3, (383-416), (2006).
- Nat Gopalswamy, Coronal mass ejections of solar cycle 23, Journal of Astrophysics and Astronomy, 27, 2-3, (243), (2006).
- Xueshang Feng and Xinhua Zhao, A New Prediction Method for the Arrival Time of Interplanetary Shocks, Solar Physics, 238, 1, (167), (2006).
- B. Vršnak, Forces governing coronal mass ejections, Advances in Space Research, 38, 3, (431), (2006).
- Xueshang Feng and Xinhua Zhao, Geoeffective Analysis of CMEs Under Current Sheet Magnetic Coordinates, Astrophysics and Space Science, 305, 1, (37), (2006).
- R. P. Kane, Comparison of the Variations of CMEs and ICMEs with those of other Solar and Interplanetary Parameters During Solar Cycle 23, Solar Physics, 233, 1, (107), (2006).
- R. Schwenn, J. C. Raymond, D. Alexander, A. Ciaravella, N. Gopalswamy, R. Howard, H. Hudson, P. Kaufmann, A. Klassen, D. Maia, G. Munoz-Martinez, M. Pick, M. Reiner, N. Srivastava, D. Tripathi, A. Vourlidas, Y.-M. Wang and J. Zhang, Coronal Observations of CMEs, Space Science Reviews, 10.1007/s11214-006-9016-y, 123, 1-3, (127-176), (2006).
- Yuming Wang, Xianghui Xue, Chenglong Shen, Pinzhong Ye, S. Wang and Jie Zhang, Impact of Major Coronal Mass Ejections on Geospace during 2005 September 7–13, The Astrophysical Journal, 646, 1, (625), (2006).
- G. Siscoe and R. Schwenn, CME Disturbance Forecasting, Space Science Reviews, 123, 1-3, (453), (2006).
- Hui Song, Vasyl Yurchyshyn, Guo Yang, Changyi Tan, Weizhong Chen and Haimin Wang, The Automatic Predictability of Super Geomagnetic Storms from halo CMEs associated with Large Solar Flares, Solar Physics, 238, 1, (141), (2006).
- A. Q. Chen, P. F. Chen and C. Fang, On the CME velocity distribution, Astronomy & Astrophysics, 456, 3, (1153), (2006).
- Nat Gopalswamy, Sachiko Akiyama, Seiji Yashiro and J. Kasper, Comment on “Interplanetary shocks unconnected with earthbound coronal mass ejections” by T. A. Howard and S. J. Tappin, Geophysical Research Letters, 33, 11, (2006).
- Ruiguang Wang and Jingxiu Wang, Investigation of the cosmic ray ground level enhancements during solar cycle 23, Advances in Space Research, 38, 3, (489), (2006).
- Curt A. de Koning, John T. Steinberg, J. T. Gosling, Daniel B. Reisenfeld, Ruth M. Skoug, O. C. St. Cyr, M. L. Malayeri, André Balogh, Adam Rees and D. J. McComas, An unusually fast interplanetary coronal mass ejection observed by Ulysses at 5 AU on 15 November 2003, Journal of Geophysical Research: Space Physics, 110, A1, (2005).
- X. H. Xue, C. B. Wang and X. K. Dou, An ice‐cream cone model for coronal mass ejections, Journal of Geophysical Research: Space Physics, 110, A8, (2005).
- N. Gopalswamy, S. Yashiro, G. Michalek, H. Xie, R. P. Lepping and R. A. Howard, Solar source of the largest geomagnetic storm of cycle 23, Geophysical Research Letters, 32, 12, (2005).
- Robert F. Penna and Alice C. Quillen, Decay of interplanetary coronal mass ejections and Forbush decrease recovery times, Journal of Geophysical Research: Space Physics, 110, A9, (2005).
- M. J. Reiner, B. V. Jackson, D. F. Webb, D. R. Mizuno, M. L. Kaiser and J.‐L. Bougeret, Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations, Journal of Geophysical Research: Space Physics, 110, A9, (2005).
- M. J. Owens, P. J. Cargill, C. Pagel, G. L. Siscoe and N. U. Crooker, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions, Journal of Geophysical Research: Space Physics, 110, A1, (2005).
- Vasyl Yurchyshyn, Qiang Hu and Valentyna Abramenko, Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta, Space Weather, 3, 8, (2005).
- Ming XIONG, Hui‐Nan ZHENG, Yu‐Ming WANG, Xiang‐Rong FU, Shui WANG and Xian‐Kang DOU, A Numerical Simulation on the Solar‐Terrestrial Transit Time of Successive CMEs during November 4‐5, 1998, Chinese Journal of Geophysics, 48, 4, (805-813), (2013).
- V. Yurchyshyn, S. Yashiro, V. Abramenko, H. Wang and N. Gopalswamy, Statistical Distributions of Speeds of Coronal Mass Ejections, The Astrophysical Journal, 619, 1, (599), (2005).
- Yu.I. Yermolaev, M.Yu. Yermolaev, G.N. Zastenker, L.M. Zelenyi, A.A. Petrukovich and J.-A. Sauvaud, Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: a review, Planetary and Space Science, 53, 1-3, (189), (2005).
- W. Miyake, Y. Saito, H. Hayakawa and A. Matsuoka, On the correlation of the solar wind observed at the L5 point and at the Earth, Advances in Space Research, 36, 12, (2328), (2005).
- N. Gopalswamy, A. Lara, P.K. Manoharan and R.A. Howard, An empirical model to predict the 1-AU arrival of interplanetary shocks, Advances in Space Research, 36, 12, (2289), (2005).
- T. A. Howard and S. J. Tappin, Statistical survey of earthbound interplanetary shocks, associated coronal mass ejections and their space weather consequences, Astronomy & Astrophysics, 440, 1, (373), (2005).
- N. Gopalswamy, S. Yashiro, S. Krucker, G. Stenborg and R. A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections, Journal of Geophysical Research: Space Physics, 109, A12, (2004).
- P. K. Manoharan, N. Gopalswamy, S. Yashiro, A. Lara, G. Michalek and R. A. Howard, Influence of coronal mass ejection interaction on propagation of interplanetary shocks, Journal of Geophysical Research: Space Physics, 109, A6, (2004).
- S. Yashiro, N. Gopalswamy, G. Michalek, O. C. St. Cyr, S. P. Plunkett, N. B. Rich and R. A. Howard, A catalog of white light coronal mass ejections observed by the SOHO spacecraft, Journal of Geophysical Research: Space Physics, 109, A7, (2004).
- Hong Xie, Leon Ofman and Gareth Lawrence, Cone model for halo CMEs: Application to space weather forecasting, Journal of Geophysical Research: Space Physics, 109, A3, (2004).
- Nandita Srivastava and P. Venkatakrishnan, Solar and interplanetary sources of major geomagnetic storms during 1996–2002, Journal of Geophysical Research: Space Physics, 109, A10, (2004).
- Yu‐Ming WANG, Pin‐Zhong YE and Shui WANG, An Interplanetary Origin of Great Geomagnetic Storms: Multiple Magnetic Clouds, Chinese Journal of Geophysics, 47, 3, (417-423), (2013).
- B. Vršnak, D. Ruždjak, D. Sudar and N. Gopalswamy, Kinematics of coronal mass ejections between 2 and 30 solar radii, Astronomy & Astrophysics, 423, 2, (717), (2004).
- B.T Tsurutani, W.D Gonzalez, X.-Y Zhou, R.P Lepping and V Bothmer, Properties of slow magnetic clouds, Journal of Atmospheric and Solar-Terrestrial Physics, 66, 2, (147), (2004).
- G. Michałek, N. Gopalswamy, A. Lara and P. K. Manoharan, Arrival time of halo coronal mass ejections in the vicinity of the Earth, Astronomy & Astrophysics, 423, 2, (729), (2004).
- C. Cid, M. A. Hidalgo, E. Saiz, Y. Cerrato and J. Sequeiros, Sources of intense geomagnetic storms over the rise of solar cycle 23, Solar Physics, 10.1007/s11207-004-1243-3, 223, 1-2, (231-243), (2004).
- Y. M. Wang, P. Z. Ye and S. Wang, Multiple magnetic clouds: Several examples during March–April 2001, Journal of Geophysical Research: Space Physics, 108, A10, (2003).
- L. Burlaga, D. Berdichevsky, N. Gopalswamy, R. Lepping and T. Zurbuchen, Merged interaction regions at 1 AU, Journal of Geophysical Research: Space Physics, 108, A12, (2003).
- J. Américo González‐Esparza, Alejandro Lara, Eduardo Pérez‐Tijerina, Alfredo Santillán and Nat Gopalswamy, A numerical study on the acceleration and transit time of coronal mass ejections in the interplanetary medium, Journal of Geophysical Research: Space Physics, 108, A1, (2003).
- James Chen and Jonathan Krall, Acceleration of coronal mass ejections, Journal of Geophysical Research: Space Physics, 108, A11, (2003).
- K.‐S. Cho, Y.‐J. Moon, M. Dryer, C. D. Fry, Y.‐D. Park and K.‐S. Kim, A statistical comparison of interplanetary shock and CME propagation models, Journal of Geophysical Research: Space Physics, 108, A12, (2003).
- C. D. Fry, M. Dryer, Z. Smith, W. Sun, C. S. Deehr and S.‐I. Akasofu, Forecasting solar wind structures and shock arrival times using an ensemble of models, Journal of Geophysical Research: Space Physics, 108, A2, (2003).
- H. V. Cane and I. G. Richardson, Interplanetary coronal mass ejections in the near‐Earth solar wind during 1996–2002, Journal of Geophysical Research: Space Physics, 108, A4, (2003).
- N. Gopalswamy, P. K. Manoharan and S. Yashiro, Comment on “Coronal mass ejections, interplanetary ejecta and geomagnetic storms” by H. V. Cane, I. G. Richardson, and O. C. St. Cyr, Geophysical Research Letters, 30, 24, (2003).
- H. V. Cane and I. G. Richardson, Reply to comment on “Coronal mass ejections, interplanetary ejecta and geomagnetic storms” by Gopalswamy et al., Geophysical Research Letters, 30, 24, (2003).
- J. Zhang, K. P. Dere, R. A. Howard and V. Bothmer, Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000, The Astrophysical Journal, 582, 1, (520), (2003).
- N. Gopalswamy, Coronal mass ejections: Initiation and detection, Advances in Space Research, 31, 4, (869), (2003).
- S. Yashiro, N. Gopalswamy, G. Michalek and R.A. Howard, Properties of narrow coronal massejections observed with LASCO, Advances in Space Research, 32, 12, (2631), (2003).
- B. R. Ragot and S. W. Kahler, Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F‐Coronal Brightness, The Astrophysical Journal, 594, 2, (1049), (2003).
- J.A. González-Esparza, J. Cantó, R.F. González, A. Lara and A.C. Raga, Propagation of CMEs in the interplanetary medium: Numerical and analytical results, Advances in Space Research, 32, 4, (513), (2003).
- Bojan Vršnak and Nat Gopalswamy, Influence of the aerodynamic drag on the motion of interplanetary ejecta, Journal of Geophysical Research: Space Physics, 107, A2, (SSH 2-1-SSH 2-6), (2002).
- X. P. Zhao, S. P. Plunkett and W. Liu, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model, Journal of Geophysical Research: Space Physics, 107, A8, (SSH 13-1-SSH 13-9), (2002).
- Y. M. Wang, P. Z. Ye, S. Wang, G. P. Zhou and J. X. Wang, A statistical study on the geoeffectiveness of Earth‐directed coronal mass ejections from March 1997 to December 2000, Journal of Geophysical Research: Space Physics, 107, A11, (SSH 2-1-SSH 2-9), (2002).
- Robert J. Leamon, Richard C. Canfield and Alexei A. Pevtsov, Properties of magnetic clouds and geomagnetic storms associated with eruption of coronal sigmoids, Journal of Geophysical Research: Space Physics, 107, A9, (SSH 1-1-SSH 1-9), (2002).
- C.D. Fry, W. Sun, C. Deehr, M. Dryer, Z. Smith and S.-I. Akasofu, Real-Time Space Weather Forecasting Driven by Solar Observations, Solar-terrestrial Magnetic Activity and Space Environment - Proceedings of the COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) held in the NA OC in Beijing, China September 10-12, 2001, 10.1016/S0964-2749(02)80189-5, (401-407), (2002).
- N. Gopalswamy, Relation Between Coronal Mass Ejections and their Interplanetary Counterparts, Solar-terrestrial Magnetic Activity and Space Environment - Proceedings of the COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) held in the NA OC in Beijing, China September 10-12, 2001, 10.1016/S0964-2749(02)80148-2, (157-164), (2002).
- N. Gopalswamy, S. Yashiro, G. Michalek, M.L. Kaiser, R.A. Howard and J.-L. Bougeret, Statistical Properties of Radio-Rich Coronal Mass Ejections, Solar-terrestrial Magnetic Activity and Space Environment - Proceedings of the COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) held in the NA OC in Beijing, China September 10-12, 2001, 10.1016/S0964-2749(02)80150-0, (169-172), (2002).
- R.P. Lepping, D. Berdichevsky, A. Szabo, A.J. Lazarus and B.J. Thompson, Upstream shocks and interplanetary magnetic cloud speed and expansion: Sun, WIND, and Earth observations, Space Weather Study Using Multipoint Techniques, Proceedings of the COSPAR Colloquium, 10.1016/S0964-2749(02)80210-4, (87-96), (2002).
- N. Gopalswamy, Space weather study using combined coronagraphic and in situ observations, Space Weather Study Using Multipoint Techniques, Proceedings of the COSPAR Colloquium, 10.1016/S0964-2749(02)80204-9, (39-47), (2002).
- Y.‐J. Moon, G. S. Choe, Haimin Wang, Y. D. Park, N. Gopalswamy, Guo Yang and S. Yashiro, A Statistical Study of Two Classes of Coronal Mass Ejections, The Astrophysical Journal, 581, 1, (694), (2002).
- Mathew J. Owens, Correlation of magnetic field intensities and solar wind speeds of events observed by ACE, Journal of Geophysical Research, 107, A5, (2002).
- N. Gopalswamy and M.L. Kaiser, Solar eruptions and long wavelength radio bursts: The 1997 May 12 event, Advances in Space Research, 29, 3, (307), (2002).
- P. K. Manoharan, M. Tokumaru, M. Pick, P. Subramanian, F. M. Ipavich, K. Schenk, M. L. Kaiser, R. P. Lepping and A. Vourlidas, Coronal Mass Ejection of 2000 July 14 Flare Event: Imaging from Near‐Sun to Earth Environment, The Astrophysical Journal, 559, 2, (1180), (2001).
- B. Vršnak, H. Aurass, J. Magdalenić and N. Gopalswamy, Band-splitting of coronal and interplanetary type II bursts, Astronomy & Astrophysics, 377, 1, (321), (2001).
- X. P. Zhao, J. T. Hoeksema and K. Marubashi, Magnetic cloud B events and their dependence on cloud parameters, Journal of Geophysical Research: Space Physics, 106, A8, (15643-15656), (2001).
- Yolande Leblanc, George A. Dulk, Angelos Vourlidas and Jean‐Louis Bougeret, Tracing shock waves from the corona to 1 AU: Type II radio emission and relationship with CMEs, Journal of Geophysical Research: Space Physics, 106, A11, (25301-25312), (2001).
- M. J. Reiner, M. L. Kaiser, N. Gopalswamy, H. Aurass, G. Mann, A. Vourlidas and M. Maksimovic, Statistical analysis of coronal shock dynamics implied by radio and white‐light observations, Journal of Geophysical Research: Space Physics, 106, A11, (25279-25289), (2001).
- N. Gopalswamy, A. Lara, M. L. Kaiser and J.‐L. Bougeret, Near‐Sun and near‐Earth manifestations of solar eruptions, Journal of Geophysical Research: Space Physics, 106, A11, (25261-25277), (2001).
- Allan J. Tylka, New insights on solar energetic particles from Wind and ACE, Journal of Geophysical Research: Space Physics, 106, A11, (25333-25352), (2001).
- Bojan Vršnak, Dynamics of solar coronal eruptions, Journal of Geophysical Research: Space Physics, 106, A11, (25249-25259), (2001).
- Nat Gopalswamy, Alejandro Lara, Seiji Yashiro, Mike L. Kaiser and Russell A. Howard, Predicting the 1‐AU arrival times of coronal mass ejections, Journal of Geophysical Research: Space Physics, 106, A12, (29207-29217), (2001).
- N. Gopalswamy, S. Yashiro, M. L. Kaiser, R. A. Howard and J.‐L. Bougeret, Characteristics of coronal mass ejections associated with long‐wavelength type II radio bursts, Journal of Geophysical Research: Space Physics, 106, A12, (29219-29229), (2001).
- M. J. Reiner, M. L. Kaiser and J.‐L. Bougeret, Radio signatures of the origin and propagation of coronal mass ejections through the solar corona and interplanetary medium, Journal of Geophysical Research: Space Physics, 106, A12, (29989-30000), (2001).
- N. Gopalswamy and B.J. Thompson, Early life of coronal mass ejections, Journal of Atmospheric and Solar-Terrestrial Physics, 62, 16, (1457), (2000).
- H. V. Cane, I. G. Richardson and O. C. St. Cyr, Coronal mass ejections, interplanetary ejecta and geomagnetic storms, Geophysical Research Letters, 27, 21, (3591-3594), (2000).
- V. Krupar, J. P. Eastwood, O. Kruparova, O. Santolik, J. Soucek, J. Magdalenić, A. Vourlidas, M. Maksimovic, X. Bonnin, V. Bothmer, N. Mrotzek, A. Pluta, D. Barnes, J. A. Davies, J. C. Martínez Oliveros and S. D. Bale, AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION, The Astrophysical Journal, 10.3847/2041-8205/823/1/L5, 823, 1, (L5), (2016).
- Brian E. Wood, Chin-Chun Wu, Ronald P. Lepping, Teresa Nieves-Chinchilla, Russell A. Howard, Mark G. Linton and Dennis G. Socker, A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012 , The Astrophysical Journal Supplement Series, 10.3847/1538-4365/229/2/29, 229, 2, (29), (2017).
- Huidong Hu, Ying D. Liu, Rui Wang, Christian Möstl and Zhongwei Yang, SUN-TO-EARTH CHARACTERISTICS OF THE 2012 JULY 12 CORONAL MASS EJECTION AND ASSOCIATED GEO-EFFECTIVENESS, The Astrophysical Journal, 10.3847/0004-637X/829/2/97, 829, 2, (97), (2016).
- Carlos Roberto Braga, Alisson Dal Lago, Ezequiel Echer, Guillermo Stenborg and Rafael Rodrigues Souza de Mendonça, Pseudo-automatic Determination of Coronal Mass Ejections’ Kinematics in 3D, The Astrophysical Journal, 10.3847/1538-4357/aa755f, 842, 2, (134), (2017).




