A Review of the Factors Influencing Arctic Mixed-Phase Clouds: Progress and Outlook
Ivy Tan
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada; formerly at NASA Goddard Space Flight Center Greenbelt, MD, USA, and affiliated with University of Maryland, Baltimore County, Baltimore, MD, USA
Search for more papers by this authorGeorgia Sotiropoulou
Department of Meteorology, and Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden; currently at the Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Search for more papers by this authorPatrick C. Taylor
Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
Search for more papers by this authorLauren Zamora
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorManfred Wendisch
Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
Search for more papers by this authorIvy Tan
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada; formerly at NASA Goddard Space Flight Center Greenbelt, MD, USA, and affiliated with University of Maryland, Baltimore County, Baltimore, MD, USA
Search for more papers by this authorGeorgia Sotiropoulou
Department of Meteorology, and Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden; currently at the Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Search for more papers by this authorPatrick C. Taylor
Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
Search for more papers by this authorLauren Zamora
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorManfred Wendisch
Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
Search for more papers by this authorSylvia C. Sullivan
Search for more papers by this authorCorinna Hoose
Search for more papers by this authorSummary
Mixed-phase clouds are ubiquitous in the Arctic and play a critical role in Earth's energy budget at the surface and top-of-the-atmosphere. These clouds typically occupy the lower and mid-level troposphere and are composed of purely supercooled liquid droplets or mixtures of supercooled liquid water droplets and ice crystals. Here, we review progress in our understanding of the factors that control the formation and dissipation of Arctic mixed-phase clouds, including the thermodynamic structure of the lower troposphere, warm and moist air intrusions into the Arctic, large-scale subsidence, and aerosol particles. We then provide a brief survey of numerous Arctic field campaigns that targeted local cloud-controlling factors and follow this with specific examples of how the Arctic Cloud Observations Using airborne measurements during polar Day (ACLOUD)/ Physical feedback of Arctic PBL, Sea ice, Cloud And AerosoL (PASCAL) and Airborne measurements of radiative and turbulent FLUXes of energy and momentum in the Arctic boundary layer (AFLUX) field campaigns that took place in the vicinity of Svalbard in 2019 were able to advance our understanding on this topic to demonstrate the value of field campaigns. Finally, we conclude with a discussion of the outlook of future research in the study of Arctic cloud-controlling factors and provide several recommendations for the observational and modeling community to advance our understanding of the role of Arctic mixed-phase clouds in a rapidly changing climate.
References
- Abbatt , J. P. D. , Leaitch , W. R. , Aliabadi , A. A. , Bertram , A. K. , Blanchet , J.-P. , Boivin-Rioux , A. , et al. ( 2019 ). New insights into aerosol and climate in the Arctic . Atmospheric Chemistry and Physics. , 19 , 2527 – 2650 .
-
Albrecht , B. A.
(
1989
).
Aerosols, cloud microphysics, and fractional cloudiness
.
Science
,
45
(
4923
),
1227
–
1230
.
10.1126/science.245.4923.1227 Google Scholar
- Ali , S. M. , & Pithan , F. ( 2020 ). Following moist intrusions into the Arctic using SHEBA observations in a Lagrangian perspective . Quarterly Journal of the Royal Meteorological Society , 146 ( 732 ), 3522 – 3533 .
- Alterskjær , K. , Kristánsson , J. E. , & Hoose , C. ( 2010 ). Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic? Journal of Geophysical Research , 115 ( D22 ).
- Archuleta , C. M. , DeMott , P. J. , & Kreidenweis , S. M. ( 2005 ). Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures . Atmospheric Chemistry and Physics , 5 , 2617 – 2634 .
- Ardyna , M. , Babin , M. , Gosselin , M. , Devred , E. , Rainville , L. , & Tremblay , J. E. ( 2014 ). Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms . Geophysical Research Letters , 41 ( 17 ), 6207 – 6212 .
- Arrigo , K. R. , van Dijken , G. , & Pabi , S. ( 2008 ). Impact of a shrinking Arctic ice cover on marine primary production . Geophysical Research Letters , 35 ( 19 ).
- Avramov , A. , Ackerman , A. S. , Fridlind , A. , Diedenhoven , B. V. , Botta , G. , Aydin , K. , et al. ( 2011 ). Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC . Journal of Geophysical Research , 116 ( D1 ).
- Baccarini , A. , Karlsson , L. , Dommen , J. , Duplessis , P. , Vullers , J. , Brooks , I. M. , et al. ( 2020 ). Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions . Nature Communications , 11 ( 1 ), 1 – 11 .
- Baek , E.-H. , Kim , J. H. , Park , S. , Kim , B. M. , & Jeong , J. H. ( 2020 ). Impact of poleward heat and moisture transports on Arctic clouds and climate simulation . Atmospheric Chemistry and Physics , 20 ( 5 ), 2953 – 2966 .
- Baggett , C. , Lee , S. , & Feldstein , S. ( 2016 ). An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming . Journal of the Atmospheric Sciences , 73 , 4329 – 4347 .
- Barrie , L. A. ( 1986 ). Arctic air pollution: An overview of current knowledge . Atmospheric Environment , 20 ( 4 ), 643 – 663 .
- Barton , N. P. , Klein , S. A. , & Boyle , J. S. ( 2014 ). On the contribution of longwave radiation to global climate model biases in Arctic lower tropospheric stability . Journal of Climate , 27 ( 19 ), 7250 – 7269 .
-
Barton , N. P.
,
Klein , S. A.
,
Boyle , J. S.
, &
Zhang , Y. Y.
(
2012
).
Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics
.
Journal of Geophysical Research
,
117
(
D15
).
10.1029/2012JD017589 Google Scholar
- Bellouin , N. , Quaas , J. , Gryspeerdt , E. , Kinne , S. , Stier , P. , Watson-Parris , D. , et al. ( 2020 ). Bounding global aerosol radiative forcing of climate change . Reviews of Geophysics , 58 ( 1 ), e2019RG000660 .
- Bierwirth , E. , Ehrlich , A. , Wendisch , M. , Gayet , J.-F. , Gourbeyre , C. , Dupuy , R. , et al. ( 2013 ). Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry . Atmospheric Measurement Techniques , 6 ( 5 ), 1189 – 1200 .
- Bigg , E. K. ( 1996 ). Ice forming nuclei in the high Arctic . Tellus B: Chemical and Physical Meteorology , 48 ( 2 ), 223 – 233 .
- Bigg , E. K. , & Leck , C. ( 2001 ). Cloud-active particles over the central Arctic Ocean . Journal of Geophysical Research , 106 ( D23 ), 32155 – 32166 .
- Bigg , K. E. , Leck , C. , & Nilsson , D. E. ( 1996 ). Sudden changes in Arctic atmospheric aerosol concentrations during summer and autumn . Tellus B: Chemical and Physical Meteorology , 48 ( 2 ), 252 – 271 .
- Bintanja , R. , Graversen , R. G. , & Hazeleger , W. ( 2011 ). Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space . Nature Geoscience , 4 ( 11 ), 758 – 761 .
- Bodas-Salcedo , A. , Web , M. J. , Bony , S. , Chepfer , H. , Dufresne , J. L. , Klein , S. A. , et al. ( 2011 ). COSP: Satellite simulation software for model assessment . Bulletin of the American Meteorological Society , 92 ( 8 ), 1023 – 1043 .
- Boé , J. , Hall , A. , & Qu , X. ( 2009 ). Current GCMs' unrealistic negative feedback in the Arctic . Journal of Climate , 22 , 4682 – 4695 .
- Boeke , R. C. , & Taylor , P. C. ( 2016 ). Evaluation of the Arctic surface radiation budget in CMIP5 models . Journal of Geophysical Research , 121 , 8525 – 8548 .
- Boisvert , L. N. , Petty , A. A. , & Stroeve , J. C. ( 2015 ). The impact of the extreme winter 2015/16 Arctic cyclone on the Barents-Kara Seas . Monthly Weather Review , 144 ( 11 ), 4279 – 4287 .
- Borys , R. D. ( 1989 ). Studies of ice nucleation by Arctic aerosol on AGASP-II . Journal of Atmospheric Chemistry , 9 ( 1–3 ), 169 – 185 .
- Borys , R. D. , Lowenthal , D. H. , & Mitchell , D. L. ( 2000 ). The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds . Atmospheric Environment , 34 ( 16 ), 2593 – 2602 .
-
Boucher , O.
,
Randall , D.
,
P. Artaxo
, et al. (
2013
).
Clouds and aerosols
. In
T. F. Stocker
,
D. Qin
, &
G. K. Plattner
, et al. (Eds.),
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
.
Cambridge University Press
.
10.1007/s40641-015-0010-x Google Scholar
-
Bourgeois , Q.
, &
Bey , I.
(
2011
).
Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions
.
Journal of Geophysical Research
,
116
(
D8
).
10.1029/2010JD015096 Google Scholar
- Brock , C. A. , Cozic , J. , Bahreini , R. , Froyd , K. D. , Middlebrook , A. M. , McComiskey , A. , et al. ( 2011 ). Characteristics, sources, and transport of aerosols measured in spring 2008 during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project . Atmospheric Chemistry and Physics , 11 ( 6 ), 2423 – 2453 .
- Brooks , I. M. , Tjernström , M. , Persson , P. O. G. , Shupe , M. D. , Atkinson , R. A. , Canut , G. , et al. ( 2017 ). The turbulent structure of the Arctic summer boundary layer during the Arctic summer cloud-ocean study . Journal of Geophysical Research , 122 ( 18 ), 9685 – 9704 .
- Browse , J. , Carslaw , K. S. , Arnold , S. R. , Pringle , K. , & Boucher , O. ( 2012 ). The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol . Atmospheric Chemistry and Physics , 12 ( 15 ), 6775 – 6798 .
- Budyko , M. I. ( 1969 ). The effect of solar radiation variations on the climate of the Earth . Tellus , 21 ( 5 ), 611 – 619 .
- Bullard , J. E. , Baddock , M. , Bradwell , T. , Crusius , J. , Darlington , E. , Gaiero , D. , et al. ( 2016 ). High-latitude dust in the Earth system . Reviews of Geophysics , 54 , 447 – 485 .
- Burkart , J. , Willis , M. D. , Bozem , H. , Thomas , J. L. , Law , K. , Hoor , P. , et al. ( 2017 ). Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer . Atmospheric Chemistry and Physics , 17 ( 8 ), 5515 – 5535 .
- Burrows , S. M. , Hoose , C. , Pöschl , U. , & Lawrence , M. G. ( 2013 ). Ice nuclei in marine air: Biogenic particles or dust . Atmospheric Chemistry and Physics , 13 ( 1 ), 245 – 267 .
- Cesana , G. , Waliser , D. E. , Jiang , X. , & Li , J.-L. F. ( 2015 ). Multimodel evaluation of cloud phase transition using satellite and reanalysis data . Journal of Geophysical Research , 120 , 7871 – 7892 .
- Cess , R. D. , Potter , G. L. , Blanchet , J. P. , Boer , G. J. , Ghan , S. J. , Kiehl , J. T. , et al ( 1989 ). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models . Science , 245 ( 4917 ), 513 – 516 .
- Cho , H.-M. , Nasiri , S. L. , Yang , P. , Laszlo , I. , & Zhao , X. ( 2013 ). Detection of optically thin mineral dust aerosol layers over the ocean using MODIS . Journal of Atmospheric and Oceanic Technology Atmospheric and Oceanic Technology , 30 ( 5 ), 896 – 916 .
- Chylek , P. , & Borel , C. ( 2004 ). Mixed phase cloud water/ice structure from high spatial reso- lution satellite data . Geophysical Research Letters , 31 ( 14 ), L14104 .
- Coopman , Q. , Garrett , T. J. , Finch , D. P. , & Riedi , J. ( 2018a ). High sensitivity of Arctic liquid clouds to long-range anthropogenic aerosol transport . Geophysical Research Letters , 45 ( 1 ), 372 – 381 .
- Coopman , Q. , Riedi , J. , Finch , D. P. , & Garrett , T. J. ( 2018b ). Evidence for changes in Arctic cloud phase due to long-range pollution transport . Geophysical Research Letters , 45 ( 19 ), 10709 – 10718 .
- Coopman , Q. , Riedi , J. , Zeng , S. , & Garrett , T. J. ( 2020 ). Space-based analysis of the cloud thermodynamic phase transition for varying microphysical and meteorological regimes . Geophysical Research Letters , 47 ( 6 ), e2020GL087122 .
- Costa , A. , Meyers , M. , Afchine , A. , Luebke , A. , Gu nther , G. , Dorsey , J. R. , et al ( 2017 ). Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime . Atmospheric Chemistry and Physics , 17 ( 19 ), 12219 – 12238 .
- Cox , C. J. , Walden , V. P. , Rowe , P. M. , & Shupe , M. D. ( 2015 ). Humidity trends imply increased sensitivity to clouds in a warming Arctic . Nature Communications , 6 ( 1 ), 1 – 8 .
- Creamean , J. , de Boer , G. , Telg , H. , Mei , F. , Dexheimer , D. , Shupe , M. D. , et al. ( 2021 ). Assessing the vertical structure of Arctic aerosols using balloon-borne measurements . Atmospheric Chemistry and Physics , 21 ( 3 ), 1737 – 1757 .
- Creamean , J. , Hill , T. , DeMott , P. J. , Uetake , J. , Kreidenweis , S. , & Douglas , T. A. ( 2018 ). The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska . Atmospheric Chemistry and Physics , 18 , 555 – 570 .
- Creamean , J. , Hill , T. , DeMott , P. J. , Uetake , J. , Kreidenweis , S. , & Douglas , T. A. ( 2020 ). Thawing permafrost: An overlooked source of seeds for Arctic cloud formation . Environmental Research Letters , 15 ( 8 ).
- Creamean , J. M. , Cross , J. N. , Pickart , R. , McRaven , L. , Lin , P. , Pacini , A. , et al. ( 2019 ). Ice nucleating particles carried from below a phytoplankton bloom to the Arctic atmosphere . Geophysical Research Letters , 46 , 8572 – 8581 .
- Croft , B. , Martin , R. V. , Leaitch , W. R. , Tunved , P. , Breider , T. J. , D'Andrea , S. D. , & Pierce , J. R. ( 2016 ). Processes controlling the annual cycle of Arctic aerosol number and size distributions . Atmospheric Chemistry and Physics , 16 ( 6 ), 3665 – 3682 .
- Cronin , T. W. , & Tziperman , E. ( 2015 ). Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming . Proceedings of the National Academy of Sciences , 112 ( 37 ), 11490 – 11495 .
- Curry , J. A. ( 1995 ). Interactions among aerosols, clouds, and climate of the Arctic ocean . Science of the Total Environment , 160 , 777–791.
-
Curry , J. A.
,
Ebert , E. E.
, &
Herman , G. F.
(
1988
).
Mean and turbulence structure of the summertime Arctic cloudy boundary layer
.
Quarterly Journal of the Royal Meteorological Society
,
144
,
715
–
746
.
10.1002/qj.49711448109 Google Scholar
- Curry , J. A. , Hobbs , P. V. , King , M. D. , Randall , D. A. , Minnis , P. , Isaac , G. A. , et al. ( 2000 ). FIRE Arctic clouds experiment . Bulletin of the American Meteorological Society , 81 ( 1 ), 5 – 30 .
- Curry , J. A. , Pinto , J. O. , Benner , T. , & Tschudi , M. ( 1997 ). Evolution of the cloudy boundary layer during the autumnal freezing of the Beaufort Sea . Journal of Geophysical Research , 102 ( D12 ), 13851 – 13860 .
- Curry , J. A. , Rossow , W. B. , Randall , D. , & Schramm , J. L. ( 1996 ). Overview of Arctic cloud and radiation characteristics . Journal of Climate , 9 ( 8 ), 1731 – 1764 .
- Cziczo , D. J. , Froyd , K. D. , Gallavardin , S. J. , Moehler , O. , Benz , S. , Saathoff , H. , & Murphy , D. M. ( 2009 ). Deactivation of ice nuclei due to atmospherically relevant surface coatings . Environmental Research Letters , 4 ( 4 ), 044013.
- Dai , A. , Luo , M. , Song , M. , & Liu , J. ( 2019 ). Arctic amplification is caused by sea-ice loss under increasing CO2 . Nature Communications , 10 ( 1 ), 1 – 13 .
- D'Alessandro , J. J. , Diao , M. , Wu , C. , Liu , X. , Jensen , J. B. , & Stephens , B. B. ( 2019 ). Cloud phase and relative humidity distributions over the Southern Ocean in Austral summer based on in situ observations and CAM5 simulations . Journal of Climate , 32 ( 10 ), 2781 – 2805 .
- Dalsøren , S. , Samset , B. H. , Myhre , G. , Corbett , J. J. , Minjares , R. , Lack , D. , & Fuglestvedt , J. S. ( 2013 ). Environmental impacts of shipping in 2030 with a particular focus on the Arctic region . Atmospheric Chemistry and Physics , 13 ( 4 ), 1941 – 1955 .
- de Boer , G. , Eloranta , E. W. , & Shupe , M. D. ( 2009 ). Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations . Journal of the Atmospheric Sciences , 66 ( 9 ), 2874 – 2887 .
- de Boer , G. , Hashino , T. , & Tripoli , G. J. ( 2010 ). Ice nucleation through immersion freezing in mixed-phase stratiform clouds: Theory and numerical simulations . Atmospheric Research , 96 ( 2–3 ), 315 – 324 .
- Demott , P. J. , Prenni , A. J. , McMeeking , G. R. , Sullivan , R. C. , Petters , M. D. , Tobo , Y. , et al. ( 2015 ). Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles . Atmospheric Chemistry and Physics , 15 ( 1 ), 393 – 409 .
- Deslippe , J. R. , Hartmann , M. , Simard , S. W. , & Mohn , W. W. ( 2012 ). Long-term warming alters the composition of Arctic soil microbial communities . FEMS Microbiology Ecology , 82 ( 2 ), 303 – 315 .
- Devasthale , A. , Sedlar , J. , & Tjernström , M. ( 2011 ). Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes . Atmospheric Chemistry and Physics , 11 , 9813 – 9823 .
- Di Pierro , M. , Jaeglé , L. , Eloranta , E. W. , & Sharma , S. ( 2013 ). Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012) . Atmospheric Chemistry and Physics , 13 ( 14 ), 7075 – 7095 .
- Dimitrelos , A. , Ekman , A. M. L. , Caballero , R. , & Savre , J. ( 2020 ). A sensitivity study of Arctic air-mass transformation using large eddy simulation . Journal of Geophysical Research , 125 ( 6 ).
- Dunne , E.M. , Gordon , H. , Kürten , A. , Almeida , J. , Duplissy , J. , Williamson , C. , et al. ( 2016 ). Global atmospheric particle formation from CERN CLOUD measurements . Science , 354 ( 6316 ), 1119 – 1124 .
- Eastman , R. , & Warren , S. G. ( 2010 ). Interannual variations of Arctic cloud types in relation to sea ice . Journal of Climate , 23 ( 15 ), 4216 – 4232 .
-
Eastwood , M.
,
Cremel , S.
,
Wheeler , M.
,
Murray , B. J.
,
Girard , E.
, &
Bertram , A. K.
(
2009
).
Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles
.
Geophysical Research Letters.
,
36
(
2
).
10.1029/2008GL035997 Google Scholar
- Egerer , U. , Ehrlich , A. , Gottschalk , M. , Neggers , R. A. , Siebert , H. , & Wendisch , M. ( 2021 ). Case study of a humidity layer above Arctic stratocumulus using balloon-borne turbulence and radiation measurements and large eddy simulations . Atmospheric Chemistry and Physics , 1 – 27 .
- Eirund , G. K. , Possner , A. , & Lohmann , U. ( 2019 ). Response of Arctic mixed-phase clouds to aerosol perturbations under different surface forcings . Atmospheric Chemistry and Physics , 19 ( 15 ), 9847 – 9864 .
- English , J. , Kay , J. E. , Gettelman , A. , Liu , X. , Wang , Y. , Zhang , Y. , & Chepfer , H. ( 2014 ). Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5 . Journal of Climate , 27 ( 13 ), 5174 – 5197 .
- Engvall , A.-C. , Krejci , R. , Ström , J. , Treffeisen , R. , Scheele , R. , Hermansen , O. , & Paatero , J. ( 2008 ). Changes in aerosol properties during spring-summer period in the Arctic troposphere . Atmospheric Chemistry and Physics , 8 ( 3 ), 445 – 462 .
- Fan , J. , Wang , Y. , Rosenfeld , D. , & Liu , X. ( 2016 ). Review of aerosol–cloud interactions: Mechanisms, significance, and challenges . Journal of the Atmospheric Sciences , 73 ( 11 ), 4221 – 4252 .
-
Fan , Y.
,
Ovtchinnikov , M.
,
Comstock , J. M.
,
McFarlane , S. A.
, &
Khain , A.
(
2009
).
Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size- resolved aerosol and cloud microphysics
.
Journal of Geophysical Research
,
114
(
D4
).
10.1029/2008JD010782 Google Scholar
- Fan , Y. , Ovtchinnikov , M. , & Shaw , R. A. ( 2015 ). Long-lifetime ice particles in mixed-phase stratiform clouds: Quasi-steady and recycled growth . Journal of Geophysical Research , 120 ( 22 ), 11617 – 11635 .
- Field , P. R. , Lawson , R. P. , Brown , P. R. A. , Lloyd , G. , Westbrook , C. , Moisseev , D. , et al. ( 2017 ). Secondary ice production: Current state of the science and recommendations for the future . Meteorological Monographs , 58 .
- Filioglou , M. , Mielonen , T. , Balis , D. , Giannakaki , E. , Arola , A. , Kokkola , H. , et al. ( 2019 ). Aerosol effect on the cloud phase of low-level clouds over the Arctic . Journal of Geophysical Research , 124 ( 14 ), 7886 – 7899 .
- Frey , W. R. , & Kay , J. E. ( 2018 ). The influence of extratropical cloud phase and amount feedbacks on climate sensitivity . Climate Dynamics , 50 ( 7 ), 3097 – 3116 .
- Fridlind , A. M. , & Ackerman , A. S. ( 2018 ). Simulations of Arctic mixed-phase boundary layer clouds: Advances in understanding and outstanding questions . In: Mixed-Phase Clouds (pp. 153–183). Elsevier.
- Fridlind , A. M. , Ackerman , A. S. , McFarquhar , G. , Zhang , G. , Poellot , M. R. , DeMott , P. J. , et al. ( 2007 ). Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. model results . Journal of Geophysical Research , 112 (D24).
- Fridlind , A. M. , Diedenhoven , B. V. , Ackerman , A. S. , Avramov , A. , Mrowiec , A. , Morrison , H. , et al. ( 2012 ). A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes . Journal of the Atmospheric Sciences , 69 ( 1 ), 365 – 389 .
- Fu , S. , & Xue , H. ( 2017 ). The effect of ice nuclei efficiency on Arctic mixed-phase clouds from large-eddy simulations . Journal of the Atmospheric Sciences. , 74 ( 12 ), 3901 – 3913 .
- Gagné , M. E. , Fyfe , J. C. , Gillett , N. P. , Polyakov , I. V. , & Flato , G. M. ( 2017 ). Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century . Geophysical Research Letters , 44 ( 14 ), 7338 – 7346 .
- Ganeshan , M. , & Wu , D. L. ( 2015 ). An investigation of the Arctic inversion using COSMIC RO observations . Journal of Geophysical Research , 120 ( 18 ), 9338 – 9351 .
- Garimella , S. , Rothenberg , D. A. , Wolf , M. J. , Wang , C. , & Cziczo , D. J. ( 2018 ). How uncertainty in field measurements of ice nucleating particles influences modeled cloud forcing . Journal of the Atmospheric Sciences , 75 ( 1 ), 179 – 187 .
- Garrett , T. , & Zhao , C. ( 2006 ). Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes . Nature , 440 ( 7085 ), 787 – 789 .
- Garrett , T. J. , Fallgatter , C. , Shkurko , K. , & Howlett , D. ( 2012 ). Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall . Atmospheric Measurement Techniques , 5 ( 11 ), 2625 – 2633 .
-
Garrett , T. J.
,
Maestas , M. M.
,
Krueger , S. K.
, &
Schmidt , C. T.
(
2009
).
Acceleration by aerosol of a radiative-thermodynamic cloud feedback influencing Arctic surface warming
.
Geophysical Research Letters
,
36
(
19
).
10.1029/2009GL040195 Google Scholar
- Gierens , R. , Kneifel , S. , Shupe , M. D. , Ebell , K. , Maturilli , M. , & Löhnert , U. ( 2020 ). Low- level mixed-phase clouds in a complex Arctic environment . Atmospheric Chemistry and Physics , 20 , 3459 – 3481 .
- Girard , E. , & Asl , N. S. ( 2014 ). Relative importance of acid coating on ice nuclei in the deposition and contact modes for wintertime Arctic clouds and radiation . Meteorology and Atmospheric Physics , 123 ( 1 ), 81 – 92 .
- Girard , E. , Blanchet , J.-P. , & Dubois , Y. ( 2005 ). Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert , Nunavut. Atmospheric Research , 73 ( 1–2 ), 131 – 148 .
- Gong , T. , & Luo , D. ( 2017 ). Ural blocking as an amplifier of the Arctic sea ice decline in winter . Journal of Climate , 30 , 2639 – 2654 .
- Graham , R. M. , Rinke , A. , Cohen , L. , Hudson , S. R. , Walden , V. P. , Granskog , M. A. , et al. ( 2017 ). A comparison of the two Arctic atmospheric winter states observed during N-ICE2015 and SHEBA . Journal of Geophysical Research , 122 ( 11 ), 5716 – 5737 .
- Graversen , R. G. , & Langen , P. L. ( 2019 ). On the role of the atmospheric energy transport in 2xCO2-induced polar amplification in CESM1 . Journal of Climate , 32 ( 13 ), 3941 – 3956 .
- Graversen , R. G. , & Wang , M. ( 2009 ). Polar amplification in a coupled climate model with locked albedo . Climate Dynamics , 33 ( 5 ), 629 – 643 .
- Grenier , P. , & Blanchet , J.-P. ( 2010 ). Investigation of the sulphate-induced freezing inhibition effect from CloudSat and CALIPSO measurements . Journal of Geophysical Research , 115 ( D22 ).
- Griesche , H. J. , Ohneiser , K. , Seifert , S. , Ansmann , A. , & Engelmann , R. ( 2020 ). Contrasting ice formation in Arctic clouds: Surface coupled vs decoupled clouds . Atmospheric Chemistry and Physics Discussions , 1 – 22 .
- Grosvenor , D. P. , & Wood , R. ( 2014 ). The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds . Atmospheric Chemistry and Physics , 14 ( 14 ), 7291 – 7321 .
- Gultepe , I. , Isaac , G. , Hudak , D. , Nissen , R. , & Strapp , J. W. ( 2000 ). Dynamical and microphysical characteristics of Arctic clouds during BASE . Journal of Climate. , 13 ( 7 ), 1225 – 1254 .
- Hall , A. ( 2004 ). The role of surface albedo feedback in climate . Journal of Climate. , 17 ( 7 ), 1550 – 1568 .
- Hallen , H. D. , & Philbrick , C. R. ( 2018 ). Lidar detection of small aerosol size distribution. Laser Radar Technology and Applications , XXIII , 10636 .
- Harrington , J. , Reisin , T. , Cotton , W. R. , & Kreidenweis , S. M. ( 1999 ). Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds . Atmospheric Research , 51 ( 1 ), 45 – 75 .
- Hartmann , J. , Albers , F. , Argentini , S. , Bochert , A. , Bonafe , U. , Cohrs , W. , et al. ( 1999 ). Arctic Radiation and Turbulence Interaction Study (ARTIST). Berichtezur Polarforschung (Reports on Polar Research) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven , 305 .
- Hartmann , J. N. C. , Kottmeier , C. , & Wamser , C. ( 1991 ). Radiation and Eddy Flux Experiment 1991 (REFLEX I). Berichtezur Polarforschung , 105 .
- Hartmann , M. , Adachi , K. , Eppers , O. , Haas , C. , Herber , A. , Holzinger , R. , et al. ( 2019a ). Wintertime airborne measurements of ice nucleating particles in the high Arctic: A hint to a marine, biogenic source for ice nucleating particles . Geophysical Research Letters , 47 ( 13 ), e2020GL087770 .
- Hartmann , M. , Blunier , T. , Brügger , S. O. , Schmale , J. , Schwikowski , M. , Vogel , A. , et al. ( 2019b ). Variation of ice nucleating particles in the European Arctic over the last centuries . Geophysical Research Letters , 46 ( 7 ), 4007 – 4016 .
- Hegyi , B. M. , & Taylor , P. C. ( 2018 ). The unprecedented 2016–2017 Arctic sea ice growth season: The crucial role of atmospheric rivers and longwave fluxes . Geophysical Research Letters , 45 ( 10 ), 5204 – 5212 .
- Heintzenberg , J. , Tunved , P. , Gali , M. , & Leck , C. ( 2017 ). New particle formation in the Svalbard region 2006–2015 . Atmospheric Chemistry and Physics , 17 ( 10 ), 6153 – 6175 .
- Herenz , P. , Wex , H. , Henning , S. , Bjerring , T. , Kristensen , F. R. , Roth , A. , et al. ( 2018 ). Measurements of aerosol and CCN properties in the Mackenzie River Delta (Canadian Arctic) during spring–summer transition in may 2014. Atmospheric Chemistry and Physics , 18 ( 7 ), 4477 – 4496 .
- Herman , G. , & Goody , R. ( 1976 ). Formation and persistence of summertime Arctic stratus clouds . Journal of the Atmospheric Sciences , 33 ( 8 ), 1537 – 1553 .
- Hind , A. , Zhang , Q. , & Brattstrom , G. ( 2016 ). Problems encountered when defining Arctic amplification as a ratio . Scientific Reports , 6 ( 30469 ).
- Holland , M. M. , & Bitz , C. M. ( 2003 ). Polar amplification of climate change in coupled models . Climate Dynamics , 21 ( 2–3 ), 221 – 232 .
- Huang , J. , & Jaeglé, L. ( 2017 ). Wintertime enhancements of sea salt aerosol in polar regions consistent with a sea ice source from blowing snow . Atmospheric Chemistry and Physics , 17 , 3699 – 3712 .
- Huang , W. T. K. , Ickes , L. , Tegen , I. , Rinaldi , M. , Ceburnis , D. , & Lohmann , U. ( 2018 ). Global relevance of marine organic aerosol as ice nucleating particles . Atmospheric Chemistry and Physics , 18 ( 15 ), 11423 – 11445 .
-
Huang , Y.
,
Ding , Q.
,
Dong , X.
,
Xi , B.
, &
Baxter , I.
(
2021
).
Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice
.
Communications Earth & Environment
,
2
(
1
),
1
–
10
.
10.1038/s43247-021-00114-w Google Scholar
- Hwang , Y.-T. , Frierson , D. M. W. , & Kay , J. E. ( 2011 ). Coupling between Arctic feedbacks and changes in poleward energy transport . Geophysical Research Letters , 38 ( 17 ).
- Igel , A. , Ekman , A. M. L. , Leck , C. , Tjernström , M. , Savre , J. , & Sedlar , J. ( 2017 ). The free troposphere as a potential source of Arctic boundary layer aerosol particles . Geophysical Research Letters , 44 ( 13 ), 7053 – 7060 .
- Irish , V. E. , Hanna , S. J. , Willis , M. D. , China , W. , Thomas , J. L. , Wentzell , J. B. , et al. ( 2019 ). Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014 . Atmospheric Chemistry and Physics , 19 ( 2 ), 1027 – 1039 .
- Jacob , D. J. , Crawford , J. H. , Maring , H. , Clarke , A. D. , Dibb , J. E. , Emmons , L. K. , et al. ( 2010 ). The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: Design, execution, and first results . Atmospheric Chemistry and Physics , 10 , 5191 – 5212 .
- Jiang , H. , Cotton , W. R. , Pinto , J. O. , Curry , J. A. , & Weissbluth , M. J. ( 2000 ). Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection . Journal of the Atmospheric Sciences , 57 ( 13 ), 2105 – 2117 .
- Johansson , E. , Devasthale , A. , Tjernström , M. , Ekman , A. M. L. , & L'Ecuyer , T. ( 2017 ). Response of the lower troposphere to moisture intrusions into the Arctic . Geophysical Research Letters , 44 , 2527 – 2536 .
-
Jouan , C.
,
Girard , E.
,
Pelon , J.
,
Gultepe , I.
,
Delanoë , J.
, &
Blanchet , J. P.
(
2012
).
Characterization of Arctic ice cloud properties observed during ISDAC
.
Journal of Geophysical Research
,
117
(
D23
).
10.1029/2012JD017889 Google Scholar
- Kalesse , H. , de Boer , G. , Solomon , A. , Oue , M. , Ahlgrimm , M. , Zhang , D. , et al. ( 2016 ). Understanding rapid changes in phase partitioning between cloud liquid and ice in stratiform mixed-phase clouds: An Arctic case study . Monthly Weather Review , 144 ( 12 ), 4805 – 4826 .
- Kanji , Z. , Ladino , L. A. , Wex , H. , Boose , Y. , Burkert-Kohn , M. , Cziczo , D. J. , & Krämer , M. ( 2017 ). Overview of ice nucleating particles . Meteorological Monographs , 58 ( 1 ).
- Kapsch , M.-L. , Graversen , R.G. , & Tjernström , M. ( 2013 ). Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent . Nature Climate Change , 3 , 744 – 748 .
- Karlsson , J. , & Svensson , G. ( 2011 ). The simulation of Arctic clouds and their influence on the winter surface temperature in present-day climate in the CMIP3 multi-model dataset . Climate Dynamics , 36 , 623 – 635 .
- Kato , S. , Rose , F. G. , Rutan , D. A. , Thorsen , T. J. , Loeb , N. G. , Doelling , D. R. , et al. ( 2018 ). Surface irradiances of edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product . Journal of Climate , 31 ( 11 ), 4501 – 4527 .
- Kay , J. E. , & Gettelman , A. ( 2009 ). Cloud influence on and response to seasonal Arctic sea ice loss . Journal of Geophysical Research , 114 ( D18204 ).
- Kay , J. E. , L'Ecuyer , T. , Pendergrass , A. , Chepfer , H. , Guzman , R. , & Yettella , V. ( 2018 ). Scale- aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations . Journal of Geophysical Research , 123 ( 8 ), 4294 – 4309 .
- Khanal , S. , Wang , Z. , & French , J. R. ( 2020 ). Improving middle and high latitude cloud liquid water path measurements from MODIS . Atmospheric Research , 243 ( 105033 ).
- Klein , S. A. , Hall , A. , Norris , J. R. , & Pincus , R. ( 2017 ). Low-cloud feedbacks from cloud- controlling factors: A review . Surveys in Geophysics , 38 , 1307 – 1329 .
- Klein , S. A. , & Hartmann , D. L. ( 1993 ). The seasonal cycle of low stratiform clouds . Journal of Climate , 6 ( 8 ), 1587 – 1606 .
- Klein , S. A. , McCoy , R. B. , Morrison , H. , Ackerman , A. S. , Avramov , A. , de Boer , G. , et al. ( 2009 ). Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase Arctic cloud experiment. I: Single-layer cloud . Quarterly Journal of the Royal Meteorological Society , 135 ( 641 ), 979 – 1002 .
- Klingebiel , M. , de Lozar , A. , Molleker , S. , Weigel , R. , Roth , A. , Schmidt , L. , et al. ( 2015 ). Arctic low-level boundary layer clouds: In situ measurements and simulations of mono-and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds . Atmospheric Chemistry and Physics , 15 ( 2 ), 617 – 631 .
- Knopf , D. A. , & Koop , T. ( 2006 ). Heterogeneous nucleation of ice on surrogates of mineral dust . Journal of Geophysical Research , 111 ( D12 ).
- Knudsen , E. M. , Heinold , B. , Dahlke , S. , Bozem , H. , Crewell , S. , Gorodetskaya , I. V. , et al. ( 2018 ). Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017 . Atmospheric Chemistry and Physics , 18 , 17995 – 18022 .
- Koch , D. , Menon , S. , Genio , A. D. D. , Ruedy , R. , Alienov , I. , & Schmidt , G. A. ( 2009 ). Distinguishing aerosol impacts on climate over the past century . Journal of Climate , 22 ( 10 ), 2659 – 2677 .
- Koike , M. , Ukita , J. , Stro m , J. , Tunved , P. , Shiobara , M. , Vitale , V. , et al. ( 2019 ). Year-round in situ measurements of Arctic low-level clouds: Microphysical properties and their relationships with aerosols . Journal of Geophysical Research , 124 ( 3 ), 1798 – 1822 .
- Komurcu , M. , Storelvmo , T. , Tan , I. , Lohmann , J. , Yun , Y. , Penner , J. E. , et al. ( 2014 ). Intercomparison of the cloud water phase among global climate models . Journal of Geophysical Research , 119 ( 6 ), 3372 – 3400 .
- Korolev , A. V. ( 2007 ). Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds . Journal of the Atmospheric Sciences , 64 ( 9 ), 3372 – 3375 .
- Korolev , A. V. , Emery , E. F. , Strapp , J. W. , Cober , S. G. , & Isaac , G. A. ( 2013 ). Quantification of the effects of shattering on airborne ice particle measurements . Journal of Atmospheric and Oceanic Technology , 30 ( 11 ), 2527 – 2553 .
- Korolev , A. V. , Isaac , G. A. , Cober , S. G. , Strapp , J. W. , & Hallett , J. ( 2003 ). Microphysical characterization of mixed-phase clouds . Quarterly Journal of the Royal Meteorological Society , 129 ( 587 ), 39 – 65 .
- Korolev , A. V. , & Leisner , T. ( 2020 ). Review of experimental studies of secondary ice production . Atmospheric Chemistry and Physics , 20 ( 20 ), 11767 – 11797 .
- Korolev , A. V. , McFarquhar , G. , Field , P. R. , Franklin , C. , Lawson , P. , Wang , Z. , et al. ( 2017 ). Mixed-phase clouds: Progress and challenges . Meteorological Monographs , 58 ( 5–1 ).
- Kuma , P. , McDonald , A. J. , Morgenstern , O. , Querel , R. , Silber , I. , & Flynn , C. J. ( 2021 ). Ground- based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) . Geoscientific Model Development , 14 ( 1 ), 43 – 72 .
- Lance , S. , Shupe , M. D. , Feingold , G. , Brock , C. A. , Cozic , J. , Holloway , J. S. , et al. ( 2011 ). Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds . Atmospheric Chemistry and Physics , 11 ( 15 ), 8003 – 8015 .
- Lannefors , H. , Heintzenberg , J. , & Hansson , H.-C. ( 1983 ). A comprehensive study of physical and chemical parameters of the Arctic summer aerosol: Results from the Swedish expedition Ymer-80 . Tellus B: Chemical and Physical Meteorology , 35 ( 1 ), 40 – 54 .
- Law , K. S. , & Stohl , A. ( 2007 ). Arctic air pollution: Origins and impacts . Science , 315 ( 5818 ), 1537 – 1540 .
- Law , K. S. , Stohl , A. , Quinn , P. K. , Brock , C. A. , Burkhart , J. F. , Paris , J. D. , et al. ( 2014 ). Arctic air pollution: New insights from POLARCAT-IPY . Bulletin of the American Meteorological Society , 95 ( 12 ), 1873 – 1895 .
- Lawson , R. P. , Woods , S. , & Morrison , H. ( 2015 ). The microphysics of ice and precipitation development in tropical cumulus clouds , Journal of the Atmospheric Sciences , 72 ( 6 ), 2429 – 2445 .
- Leaitch , W. R. , Korolev , A. , Aliabadi , A. A. , Burkart , J. , Willis , M. D. , Abbatt , J. P. , et al. ( 2016 ). Effects of 20–100nm particles on liquid clouds in the clean summertime Arctic . Atmospheric Chemistry and Physics , 16 ( 17 ), 11107 – 11124 .
- Lebsock , M. , & Su , H. ( 2014 ). Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals . Journal of Geophysical Research , 119 ( 14 ), 8962 – 8979 .
- Leck , C. , Norman , M. , Bigg , E. K. , & Hillamo , R. ( 2002 ). Chemical composition and sources of the high Arctic aerosol relevant for cloud formation . Journal of Geophysical Research , 107 ( D12 ).
- Leck , C. , & Svensson , E. ( 2015 ). Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer . Atmospheric Chemistry and Physics , 15 ( 5 ), 2545 – 2568 .
- Lee , S. ( 2014 ). A theory for polar amplification from a general circulation perspective . Asia-Pacific Journal of Atmospheric Sciences , 50 , 31 – 43 .
- Li , X. , Krueger , S. K. , Strong , C. , Mace , G. G. , & Benson , S. ( 2020 ). Midwinter Arctic leads form and dissipate low clouds . Nature Communications , 11 ( 1 ), 1 – 8 .
- Liu , C. , & Barnes , E. A. ( 2015 ). Extreme moisture transport into the Arctic linked to Rossby wave breaking . Journal of Geophysical Research , 120 , 3774 – 3788 .
- Liu , X. , Boyle , S. , Klein , S. A. , Shi , X. , Wang , Z. , Lin , W. , et al. ( 2011 ). Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations . Journal of Geophysical Research , 116 ( D1 ).
- Liu , Y. , Key , J. R. , Ackerman , S. A. , Mace , G. G. , & Zhang , Q. ( 2012 ). Arctic cloud macrophysical characteristics from CloudSat and CALIPSO . Remote Sensing of Environment , 124 , 159 – 173 .
- Liu , Y. , Key , J. R. , Vavrus , S. , & Woods , C. ( 2018 ). Time evolution of the cloud response to moisture intrusions into the Arctic during winter . Journal of Climate , 31 ( 22 ), 9389 – 9405 .
- Liu , Y. , Shupe , M. D. , Wang , Z. , & Mace , G. ( 2017 ). Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories . Atmospheric Chemistry and Physics , 17 ( 9 ), 5973 – 5989 .
- Lloyd , G. , Choularton , T. W. , Bower , K. N. , Crosier , J. , Jones , H. , Dorsey , J. R. , et al. ( 2015 ). Observations and comparisons of cloud microphysical properties in spring and summertime Arctic stratocumulus clouds during the ACCACIA campaign . Atmospheric Chemistry and Physics , 15 , 3719 – 3737 .
- Loewe , K. , Ekman , A. M. , Paukert , M. , Sedlar , J. , Tjernström , M. , & Hoose , C. ( 2017 ). Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS) . Atmospheric Chemistry and Physics , 17 ( 11 ), 6693 – 6704 .
- Lohmann , U. ( 2002 ). A glaciation indirect aerosol effect caused by soot aerosols . Geophysical Research Letters , 29 ( 4 ).
- Lohmann , U. ( 2017 ). Anthropogenic aerosol influences on mixed-phase clouds . Current Climate Change Reports , 3 ( 1 ), 32 – 44 .
- Lohmann , U. , Zhang , J. , & Pi , J. ( 2003 ). Sensitivity studies of the effect of increased aerosol concentrations and snow crystal shape on the snowfall rate in the Arctic . Journal of Geophysical Research , 108 ( D11 ).
- Lubin , D. , & Vogelmann , A. M. ( 2006 ). A climatologically significant aerosol longwave indirect effect in the Arctic . Nature , 439 ( 7075 ), 453 – 456 .
- Luo , Y. , Xu , K.-M. , Morrison , H. , & McFarquhar , G. ( 2008 ). Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations . Journal of the Atmospheric Sciences , 65 ( 4 ), 1285 – 1303 .
- Mahmood , R. , von Salzen , K. , Norman , A.-L. , Gali , M. , & Levasseur , M. ( 2019 ). Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations . Atmospheric Chemistry and Physics , 19 , 6419 – 6435 .
- Manabe , S. , & Wetherald , R. T. ( 1975 ). The effects of doubling the CO2 concentration on the climate of a general circulation model . Journal of the Atmospheric Sciences , 32 ( 1 ), 3 – 15 .
- Marelle , L. , Raut , J.-C. , Thomas , J. L. , Law , K. S. , Quennehen , B. , Ancellet , G. , et al. ( 2015 ). Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008 . Atmospheric Chemistry and Physics , 15 ( 7 ), 3831 – 3850 .
- Mason , R. H. , Si , M. , Chou , C. , Irish , V. E. , Dickie , R. , Elizondo , P. , et al. ( 2016 ). Size-resolved measurements of ice- nucleating particles at six locations in North America and one in Europe . Atmospheric Chemistry and Physics , 16 ( 3 ), 1637 – 1651 .
- Mauritsen , T. , Sedlar , J. , Tjernstro m , M. , Leck , C. , Martin , M. , Shupe , M. , et al. ( 2011 ). An Arctic CCN-limited cloud- aerosol regime . Atmospheric Chemistry and Physics , 11 , 165 – 173 .
- McCluskey , C. S. , Hill , T. C. J. , Sultana , C. M. , Laskina , O. , Trueblood , J. , Santander , M. V. , et al. ( 2018 ). A mesocosm double feature: Insights into the chemical makeup of marine ice nucleating particles . Journal of the Atmospheric Sciences , 75 ( 7 ), 2405 – 2423 .
- McCoy , D. T. , Tan , I. , Hartmann , D. L. , Zelinka , M. D. , & Storelvmo , T. ( 2016 ). On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs . Journal of Advances in Modeling Earth Systems , 8 ( 2 ), 650 – 668 .
- McFarquhar , G. M. , Ghan , S. , Verlinde , J. , Korolev , A. , Strapp , J. W. , Schmid , B. , et al. ( 2011 ). Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds . Bulletin of the American Meteorological Society , 92 ( 2 ), 183 – 201 .
- McIlhattan , E. A. , L'Ecuyer , T. S. , & Miller , N. B. ( 2017 ). Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes . Journal of Climate , 30 ( 12 ), 4477 – 4495 .
- Medeiros , B. , Deser , C. , Tomas , R. A. , & Kay , J. E. ( 2011 ). Arctic inversion strength in climate models . Journal of Climate , 24 , 4733 – 4740 .
- Meredith , M. , Sommerkorn , M. , Cassotta , S. , Derksen , C. , Ekaykin , A. , Hollwed , A. , et al. ( 2019 ). Polar regions . In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate .
- Merikanto , J. , Spracklen , D. V. , Mann , G. W. , Pickering , S. J. , & Carslaw , K. S. ( 2009 ). Impact of nucleation on global CCN . Atmospheric Chemistry and Physics , 9 ( 21 ), 8601 – 8616 .
- Merlis , T. M. , & Henry , M. ( 2018 ). Simple estimates of polar amplification in moist diffusive energy balance models . Journal of Climate , 31 ( 15 ), 5811 – 5824 .
- Messori , G. , Woods , C. , & Caballero , R. ( 2018 ). On the drivers of wintertime temperature extremes in the high Arctic . Journal of Climate , 31 , 1597 – 1618 .
- Middlemas , E. A. , Kay , J. E. , Medeiros , B. M. , & Maroon , E. A. ( 2020 ). Quantifying the influence of cloud radiative feedbacks on Arctic surface warming using cloud locking in an Earth system model . Geophysical Research Letters , 47 ( e2020GL089207 ).
- Mioche , G. , Jourdan , O. , Ceccaldi , M. , & Delanoe , J. ( 2015 ). Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing . Atmospheric Chemistry and Physics , 15 , 2445 – 2461 .
- Mioche , G. , Jourdan , O. , Delanoë , J. , Gourbeyre , C. , Febvre , G. , Dupuy , R. , et al. ( 2017 ). Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas . Atmospheric Chemistry and Physics , 17 ( 20 ), 12845 – 12869 .
- Mitchell , J. F. B. , Senior , C. A. , & Ingram , W. J. ( 1989 ). CO 2 and climate: A missing feedback? Nature , 341 ( 6238 ), 132 – 134 .
- Moore , R. H. , Bahreini , R. , Brock , C. A. , Froyd , K. D. , Cozic , J. , Holloway , J. S. , et al. ( 2011 ). Hygroscopicity and composition of Alaskan Arctic CCN during April 2008 . Atmospheric Chemistry and Physics , 11 ( 22 ), 11807 – 11835 .
- Morrison , A. L. , Kay , J. E. , Chepfer , H. , Guzman , R. , & Yettella , V. ( 2018 ). Isolating the liquid cloud response to recent Arctic sea ice variability using spaceborne lidar observations . Journal of Geophysical Research , 123 ( 1 ), 473 – 490 .
- Morrison , H. , Boer , G. D. , Feingold , G. , Harrington , J. , Shupe , M. D. , & Sulia , K. ( 2012 ). Resilience of persistent Arctic mixed-phase clouds . Nature Geoscience , 5 ( 1 ), 11 – 17 .
- Morrison , H. , Shupe , M. D. , Pinto , J. O. , & Curry , J. A. ( 2005 ). Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds . Geophysical Research Letters , 32 ( 18 ).
-
Morrison , H.
,
Zuidema , P.
,
Ackerman , A. S.
,
Avramov , A.
,
de Boer , G.
,
Fan , J.
, et al. (
2011
).
Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE- ACE
.
Journal of Advances in Modeling Earth Systems
,
3
(
2
).
10.1029/2011MS000066 Google Scholar
- Morrison , M. , McCoy , R. B. , Klein , S. A. , Xie , S. , Luo , Y. , Avramov , A. , et al. ( 2009 ). Intercomparison of model simulations of mixed- phase clouds observed during the ARM mixed-phase Arctic cloud experiment. II: Multilayer cloud . Quarterly Journal of the Royal Meteorological Society , 135 , 1003 – 1019 .
- Mortin , J. , Svensson , G. , Graversen , R. G. , Kapsch , M. L. , Stroeve , J. C. , & Boisvert , L. N. ( 2016 ). Melt onset over Arctic sea ice controlled by atmospheric moisture transport . Geophysical Research Letters , 43 ( 12 ), 6636 – 6642 .
- Murray , B. J. , O'Sullivan , D. , Atkinson , J. D. , & Webb , M. E. ( 2012 ). Ice nucleation by particles immersed in supercooled cloud droplets . Chemical Society Reviews , 41 ( 19 ), 6519 – 6554 .
- Myers , T. A. , & Norris , J. R. ( 2013 ). Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness . Journal of Climate , 26 ( 19 ), 7507 – 7524 .
- Naakka , T. , Nygård , T. , & Vihma , T. ( 2018 ). Arctic humidity inversions: Climatology and processes . Journal of Climate , 31 ( 10 ), 3765 – 3787 .
- Nam , C. , Bony , S. , Dufresne , J. L. , & Chepfer , H. ( 2012 ). The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models . Geophysical Research Letters , 39 ( 21 ).
- National Academies of Sciences, E., & Medicine ( 2018 ). Thriving on our changing planet: A decadal strategy for Earth observation from space . National Academies Press .
- Neggers , R. A. J. , Chylik , J. , Egerer , U. , Griesche , H. , Schemann , V. , Seifert , P. , et al. ( 2019 ). Local and remote controls on Arctic mixed-layer evolution . Journal of Advances in Modeling Earth Systems , 11 , 2214 – 2237 .
- Nicholls , S. ( 1984 ). The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model . Quarterly Journal of the Royal Meteorological Society , 110 ( 466 ), 783 – 820 .
- Nomokonova , T. , Ebell , K. , Löhnert , U. , Maturilli , M. , Ritter , C. , & O'Connor , E. ( 2019 ). Statistics on clouds and their relation to thermodynamic conditions at Ny-Alesund using ground-based sensor synergy . Atmospheric Chemistry and Physics , 19 , 4105 – 4126 .
- Norgren , M. S. , de Boer , G. , & Shupe , M. D. ( 2018 ). Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds . Atmospheric Chemistry and Physics , 18 ( 18 ), 13345 – 13361 .
- Nygård , T. , Valkonen , T. , & Vihma , T. ( 2014 ). Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings . Atmospheric Chemistry and Physics , 14 , 1959 – 1971 .
- Ovchinnikov , M. , Ackerman , A. S. , Avramov , A. , Cheng , A. , Fan , J. , Fridlind , A. M. , et al. ( 2014 ). Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions . Journal of Advances in Modeling Earth Systems , 6 ( 1 ), 223 – 248 .
- Park , D.-S. R. , Lee , S. , & Feldstein , S. B. ( 2015a ). Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic ocean . Journal of Climate , 28 , 4027 – 4033 .
- Park , H.-S. , Lee , S. , Son , S.-W. , Feldstein , S. B. , & Kosaka , Y. ( 2015b ). The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability . Journal of Climate , 28 , 5030 – 5040 .
- Park , H.-S. , Lee , Y. , Kosaka , S.-S. , & Kim, S.-W. ( 2015c ). The impact of Arctic winter infrared radiation on early summer sea ice . Journal of Climate , 28 , 6281 – 6296 .
- Pavelsky , T. M. , Boé , J. , Hall , A. , & Fetzer , E. J. ( 2011 ). Atmospheric inversion strength over polar oceans in winter regulated by sea ice . Climate Dynamics , 36 ( 5–6 ), 945 – 955 .
- Persson , P. O. G. , Shupe , M. D. , & Perovich , D. ( 2017 ). Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions . Climate Dynamics , 49 , 1341 – 1364 .
- Petty , G. W. ( 2006 ). A first course in atmospheric radiation . Sundog Publication.
- Pinto , J. O. ( 1998 ). Autumnal mixed-phase cloudy boundary layers in the Arctic . Journal of the Atmospheric Sciences , 55 ( 11 ), 2016 – 2038 .
- Pinto , J. O. , & Curry , J. A. ( 1995 ). Atmospheric convective plumes emanating from leads: Microphysical and radiative processes . Journal of Geophysical Research , 100 ( C3 ), 4633 – 4642 .
- Pithan , F. , Ackerman , A. , Angevine , W. M. , Hartung , K. , Ickes , L. , Kelley , M. , et al. ( 2016 ). Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: The Larcform 1 single column model intercomparison . Journal of Advances in Modeling Earth Systems , 8 ( 3 ), 1345–1357.
- Pithan , F. , & Mauritsen , T. ( 2014 ). Arctic amplification dominated by temperature feedbacks in contemporary climate models . Nature Geoscience , 7 ( 3 ), 181 – 184 .
- Pithan , F. , Medeiros , B. M. , & Mauritsen , T. ( 2014 ). Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions . Climate Dynamics , 43 , 289 – 303 .
- Pithan , F. , Svensson , G. , Caballero , R. , Chechin , D. , Cronin , T. W. , Ekman , A. M. L. , et al. ( 2018 ). Role of air-mass transformations in exchange between the Arctic and mid-latitudes . Nature Geoscience , 11 ( 11 ), 805 – 812 .
- Possner , A. , Ekman , A. M. L. , & Lohmann , U. ( 2017 ). Cloud response and feedback processes in stratiform mixed-phase clouds perturbed by ship exhaust . Geophysical Research Letters , 44 ( 4 ), 1964 – 1972 .
- Prenni , A. J. , DeMott , P. J. , Rogers , D. C. , Kreidenweis , S. M. , McFarquhar , G. , Zhang , G. , & Poellot , M. R. ( 2009 ). Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds . Tellus B: Chemical and Physical Meteorology , 61 ( 2 ), 436 – 448 .
- Prenni , A. J. , Harrington , J. Y. , Tjernström , M. , DeMott , P. J. , Avramov , A. , Long , C. N. , et al. ( 2007 ). Can ice-nucleating aerosols affect Arctic seasonal climate? Bulletin of the American Meteorological Society , 88 ( 4 ), 541 – 550 .
- Quinn , P. K. , Bates , T. S. , Baum , E. , Doubleday , N. , Fiore , A. M. , Flanner , M. , et al. ( 2008 ). Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies . Atmospheric Chemistry and Physics , 8 ( 6 ), 1723 – 1735 .
- Quinn , P. K. , Coffamn , D. J. , Johnson , J. E. , Upchurch , L. M. , & Bates , T. S. ( 2017 ). Small fraction of marine cloud condensation nuclei made up of sea spray aerosol . Nature , 10 ( 9 ), 674 – 679 .
- Quinn , P. K. , Shaw , G. , Andrews , E. , Dutton , E. G. , Ruoho-Airoloa , T. , & Gong , S. L. ( 2007 ). Arctic Haze: Current trends and knowledge gap . Chemical and Physical Meteorology , 59 ( 1 ), 99 – 114 .
- Regayre , L. A. , Pringle , K. J. , Lee , L. A. , Rap , A. , Browse , J. , Mann , G. W. , et al. ( 2015 ). The climatic importance of uncertainties in regional aerosol–cloud radiative forcings over recent decades . Journal of Climate , 28 ( 17 ), 6589 – 6607 .
- Rösel , A. , & Kaleschke , L. ( 2012 ). Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network . The Cryosphere , 6 ( 2 ), 431 – 446 .
- Rosenfeld , D. ( 2000 ). Suppression of rain and snow by urban and industrial air pollution . Science , 287 ( 5459 ), 1793 – 1796 .
- Ruiz-Donoso , E. , Ehrlich , A. , Schäfer , M. , Jäkel , E. , Schemann , V. , Crewell , S. , et al. ( 2020 ). Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event . Atmospheric Chemistry and Physics , 20 , 5487 – 5511 .
- Russell , L. M. , Hawkins , L. N. , Frossard , A. A. , Quinn , P. K. , & Bates , T. S. ( 2010 ). Carbohydrate- like composition of submicron atmospheric particles and their production from ocean bubble bursting . Proceedings of the National Academy of Sciences , 107 ( 15 ), 6652 – 6657 .
- Schmale , J. , Zieger , P. , & Ekman , A. M. L. ( 2021 ). Aerosols in current and future Arctic climate . Nature Climate Change , 11 , 95 – 105 .
- Schmale , J. S. R. , Arnold , K. S. , Law , T. , Thorp , T. , Anenberg , S. , Simpson , W. R. , et al. ( 2018 ). Local Arctic air pollution: A neglected but serious problem . Earth's Future , 6 , 1385 – 1412 .
- Screen , J. A. , & Simmonds , I. ( 2010 ). The central role of diminishing sea ice in recent Arctic temperature amplification . Nature , 464 ( 7293 ), 1334 – 1337 .
- Sedlar , J. , & Shupe , M. D. ( 2014 ). Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus . Atmospheric Chemistry and Physics , 14 ( 6 ), 3461 – 3478 .
- Sedlar , J. , Shupe , M. D. , & Tjernström , M. ( 2012 ). On the relationship between thermodynamic structure, cloud top, and climate significance in the Arctic . Journal of Climate , 25 ( 7 ).
- Sedlar , J. , Tjernström , M. , Mauritsen , T. , Shupe , M. D. , Brooks , I. M. , Persson , P. O. G. , et al. ( 2011 ). A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing . Climate Dynamics , 37 ( 7–8 ), 1643 – 1660 .
-
Sellers , W. D.
(
1969
).
A global climatic model based on the energy balance of the Earth- atmosphere system
.
Journal of Applied Meteorology and Climatology
,
8
(
3
),
392
–
400
.
10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2 Google Scholar
- Serreze , M. , Barrett , A. P. , Stroeve , J. C. , Kindig , D. N. , & Holland , M. M. ( 2009 ). The emergence of surface-based Arctic amplification . The Cryosphere , 3 ( 11–19 ).
- Serreze , M. C. , & Barry , R. G. ( 2011 ). Processes and impacts of Arctic amplification: A research synthesis . Global and Planetary Change , 77 , 85 – 96 .
- Shaw , G. E. ( 1995 ). The Arctic haze phenomenon . Bulletin of the American Meteorological Society , 76 ( 12 ), 2403 – 2414 .
- Shen , Z. , Ming , Y. , Horowitz , L. W. , Ramaswamy , V. , & Lin , M. ( 2017 ). On the seasonality of Arctic black carbon . Journal of Climate , 30 ( 12 ), 4429 – 4441 .
- Shindell , D. , & Faluvegi , G. ( 2009 ). Climate response to regional radiative forcing during the twentieth century . Nature Geoscience , 2 ( 4 ), 294 – 300 .
- Shupe , M. D. , & Intrieri , J. M. ( 2004 ). Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle . Journal of Climate , 17 ( 3 ), 616 – 628 .
- Shupe , M. D. , Matrosov , S. Y. , & Uttal , T. ( 2006 ). Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA . Journal of the Atmospheric Sciences , 63 ( 2 ), 697 – 711 .
- Shupe , M. D. , Persson , P. O. G. , Brooks , I. M. , Tjernström , M. , Sedlar , J. , Mauritsen , T. , et al. ( 2013 ). Cloud and boundary layer interactions over the Arctic sea-ice in late summer . Atmospheric Chemistry and Physics , 13 , 9379 – 9399 .
- Shupe , M. D. , Walden , V. P. , Eloranta , E. , Uttal , T. , Campbell , J. R. , Starkweather , S. M. , & Shiobara , M. ( 2011 ). Clouds at Arctic atmospheric observatories. part I: Occurrence and macrophysical properties . Journal of Applied Meteorology and Climatology , 50 , 626 – 644 .
- Si , M. , Irish , V. E. , Mason , R. H. , Vergara-Temprado , J. , Hanna , S. J. , Ladino , L. A. , et al. ( 2018 ). Ice- nucleating ability of aerosol particles and possible sources at three coastal marine sites . Atmospheric Chemistry and Physics , 18 ( 21 ), 15669 – 15685 .
- Silber , I. , Fridlind , A. M. , Verlinde , J. , Ackerman , A. S. , Cesana , G. V. , & Knopf , D. A. ( 2020a ). The prevalence of precipitation from polar supercooled clouds . Atmospheric Chemistry and Physics , 21 , 3949 – 3971 .
- Silber , I. , Fridlind , A. M. , Verlinde , J. , Russell , L. M. , & Ackerman , A. S. ( 2020b ). Nonturbulent liquid-bearing polar clouds: Observed frequency of occurrence and simulated sensitivity to gravity waves . Geophysical Research Letters , 47 ( 10 ), e2020GL087099 .
- Smith , W. L. , Hansen , C. , Bucholtz , A. , Anderson , B. E. , Beckley , M. , Corbett , J. G. , et al. ( 2017 ). Arctic radiation-icebridge sea and ice experiment: The Arctic radiant energy system during the critical seasonal ice transition . Bulletin of the American Meteorological Society , 98 ( 7 ), 1399 – 1426 .
- Soja , A. J. , Stocks , B. , Maczek , P. , Fromm , M. , Servrancks , R. , & Turetsky , M. ( 2008 ). ARCTAS: The perfect smoke . The Canadian Smoke Newsletter , 2 – 7 .
- Solomon , A. , de Boer , G. , Creamean , J. M. , McComiskey , A. , Shupe , M. D. , Maahn , M. , & Cox , C. ( 2018 ). The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds . Atmospheric Chemistry and Physics , 18 , 17047 – 17059 .
- Solomon , A. , Feingold , G. , & Shupe , M. D. ( 2015 ). The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus . Atmospheric Chemistry and Physics , 15 ( 18 ), 10631 – 10643 .
- Solomon , A. , Shupe , M. D. , Persson , O. , Morrison , H. , Yamaguchi , T. , Caldwell , P. M. , & de Boer , G. ( 2014 ). The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources . Journal of the Atmospheric Sciences , 71 ( 2 ), 574 – 595 .
- Solomon , A. , Shupe , M. D. , Persson , P. O. G. , & Morrison , H. ( 2011 ). Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion . Atmospheric Chemistry and Physics , 11 , 10127 – 10148 .
- Sotiropoulou , G. , Sedlar , J. , Tjernström , M. , Shupe , M. D. , Brooks , I. M. , & Persson , P. O. G. ( 2014 ). The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface . Atmospheric Chemistry and Physics , 14 ( 22 ), 12573 – 12592 .
- Sotiropoulou , G. , Tjernström , M. , Savre , J. , Ekman , A. M. , Hartung , K. , & Sedlar , J, ( 2018 ). Large-eddy simulation of a warm-air advection episode in the summer Arctic . Journal of the Royal Meteorological Society , 144 ( 717 ), 2449 – 2462 .
- Sotiropoulou , G. , Tjernström , M. , Sedlar , J. , Achtert , P. , Brooks , B. J. , Brooks , I. M. , et al. ( 2016 ). Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open water and sea ice surfaces during melt and freeze-up seasons . Journal of Climate , 29 ( 24 ), 8721 – 8744 .
- Stapf , J. , Ehrlich , A. , & Wendisch , M. ( 2021 ). Influence of thermodynamic state changes on surface cloud radiative forcing in the Arctic: A comparison of two approaches using data from AFLUX and SHEBA . Journal of Geophysical Research , 126 ( 5 ), e2020JD033589 .
- Stevens , R. G. , Loewe , K. , Dearden , C. , Dimitrelos , A. , Possner , A. , Eirund , G. K. , et al. ( 2018 ). A model intercomparison of CCN-limited tenuous clouds in the high Arctic . Atmospheric Chemistry and Physics , 18 ( 15 ), 11041 – 11071 .
- Stevens , B. e. a. ( 2021 ). EUREC 4 A . Journal of Earth System Science Data Discuss .
- Stofferahn , E. , & Boybeyi , Z. ( 2017 ). Investigation of aerosol effects on the Arctic surface temperature during the diurnal cycle: Part 2–separating aerosol effects . International Journal of Climatology , 37 , 775 – 787 .
- Stohl , A. ( 2006 ). Characteristics of atmospheric transport into the Arctic troposphere . Journal of Geophysical Research , 111 ( D11 ).
- Stramler , S. , Genio , A. D. D. , & Rossow , W. B. ( 2011 ). Synoptically driven Arctic winter states . Journal of Climate , 24 ( 6 ), 1747 – 1762 .
- Stuecker , M. F. , Bitz , C. , Armour , K. M. , Proistosescu , C. , Kang , S. M. , Xie , S.-P. , et al. ( 2018 ). Polar amplification dominated by local forcing and feedbacks . Nature Climate Change , 8 ( 12 ), 1076 – 1081 .
- Sun , Z. , & Shine , K. P. ( 1994 ). Studies of the radiative properties of ice and mixed-phase clouds . Quarterly Journal of the Royal Meteorological Society , 120 ( 515 ), 111 – 137 .
- Suski , K. J. , Hill , T. C. J. , Levin , E. J. T. , Miller , A. , DeMott , P. J. , & Kreidenweis , S. M. ( 2018 ). Agricultural harvesting emissions of ice-nucleating particles . Atmospheric Chemistry and Physics , 18 , 13755 – 13771 .
- Tan , I. , & Storelvmo , T. ( 2016 ). Sensitivity study on the influence of cloud microphysical parameters on mixed-phase cloud thermodynamic phase partitioning in CAM5 . Journal of the Atmospheric Sciences , 73 , 709 – 728 .
-
Tan , I.
, &
Storelvmo , T.
(
2019
).
Evidence of strong contributions from mixed-phase clouds to Arctic climate change
.
Geophysical Research Letters
,
46
(
6
),
2894
–
2902
.
10.1029/2018GL081871 Google Scholar
- Tan , I. , Storelvmo , T. , & Choi , Y.-S. ( 2014 ). Spaceborne lidar observations of the ice- nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds . Journal of Geophysical Research , 119 ( 11 ), 6653 – 6665 .
- Tan , I. , Storelvmo , T. , & Zelinka , M. D. ( 2016 ). Observational constraints on mixed-phase clouds imply higher climate sensitivity . Science , 352 , 224 – 227 .
- Taylor , P. C. , Boeke , R. C. , Li , Y. , & Thompson , D. W. J. ( 2019 ). Arctic cloud annual cycle biases in climate models . Atmospheric Chemistry and Physics , 19 , 8759 – 8782 .
- Taylor , P. C. , Cai , M. , Hu , A. , Meehl , J. , Washington , W. , & Zhang , G. J. ( 2013 ). A decomposition of feedback contributions to polar warming amplification . Journal of Climate , 26 , 7023 – 7043 .
- Taylor , P. C. , Kato , S. , Xu , K.-M. , & Cai , M. ( 2015 ). Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level . Journal of Geophysical Research , 120 ( 24 ), 12656 – 12678 .
- Thomas , M. A. , Devasthale , A. , Tjermström , M. , & Ekman , A. M. ( 2019 ). The relation between aerosol vertical distribution and temperature inversions in the Arctic in winter and spring . Geophysical Research Letters , 46 ( 5 ), 2836 – 2845 .
- Tjernström M. , & Graversen , R. G. ( 2009 ). The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis . Quarterly Journal of the Royal Meteorological Society , 135 ( 639 ), 431 – 443 .
- Tjernström , M. , Leck , C. , Birch , C. E. , Bottenheim , J. W. , Brooks , B. J. , Brooks , I. M. , et al. ( 2014 ). The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design . Atmospheric Chemistry and Physics , 14 ( 6 ), 2823 – 2869 .
- Tjernström , M. , Shupe , M. D. , Brooks , I. M. , Achtert , P. , Prytherch , J. , & Sedlar , J. ( 2019 ). Arctic summer airmass transformation, surface inversions, and the surface energy budget . Journal of Climate , 32 ( 3 ), 769 – 789 .
- Tjernström , M. , Shupe , M. D. , Brooks , I. M. , Persson , P. O. G. , Prytherch , J. , Salisbury , D. , et al. ( 2015 ). Warm-air advection, air mass transformation and fog causes rapid ice melt . Geophysical Research Letters , 42 , 5594 – 5602 .
- Tobo , Y. , Adachi , K. , Hill , P. J. D. , Hamilton , D. S. , Mahowald , N. M. , Nagatsuka , N. , et al. ( 2019 ). Glacially sourced dust as a potentially significant source of ice nucleating particles . Nature Geoscience , 12 ( 4 ), 253 – 258 .
- Tsushima , Y. , Emori , S. , Ogura , T. , Kimoto , K. , Webb , M. J. , Williams , K. D. , et al. ( 2006 ). Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi- model study . Climate Dynamics , 27 , 113 – 126 .
- Twomey , S. ( 1977 ). The influence of pollution on the shortwave albedo of clouds . Journal of the Atmospheric Sciences , 34 ( 7 ), 1149 – 1152 .
- Uttal , T. , Curry , J. A. , McPhee , M. G. , Perovich , D. K. , Moritz , R. E. , Maslanik , J. A. , et al. ( 2002 ). Surface heat budget of the Arctic Ocean . Bulletin of the American Meteorological Society , 83 ( 2 ), 255 – 276 .
- Vassel , M. , Ickes , L. , Maturilli , M. , & Hoose , C. ( 2019 ). Classification of Arctic multilayer clouds using radiosonde and radar data in Svalbard . Atmospheric Chemistry and Physics , 19 ( 7 ), 5111 – 5126 .
- Vavrus , S. ( 2004 ). The impact of cloud feedbacks on Arctic climate under greenhouse forcing . Journal of Climate , 17 ( 3 ), 603 – 615 .
- Vergara-Temprado , J. , Murray , B. J. , Wilson , T. W. , O'Sullivan , D. , Pringle , K. J. , Ardon- Dryer , K. , & Bertram , A. K. ( 2017 ). Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations . Atmospheric Chemistry and Physics , 17 ( 5 ), 3637 – 3658 .
- Verlinde , J. , Harrington , J. Y. , McFarquhar , G. M. , Yunnuzzi , V. T. , Avramov , A. , Greenbert , S. , et al. ( 2007 ). The mixed- phase Arctic cloud experiment . Bulletin of the American Meteorological Society , 88 ( 2 ), 205 – 222 .
- Verlinde , J. , Rambukkange , M. P. , Clothiaux , E. E. , McFarquhar , G. M. , & Eloranta , E. W. ( 2013 ). Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar doppler spectra . Journal of Geophysical Research , 118 ( 23 ), 13199 – 13213 .
- Vihma , T. , Kilpeläinen , T. , Manninen , M. , Sjöblom , A. , Jakobson , E. , Palo , T. , et al. ( 2011 ). Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring . Advances in Meteorology.
- Villanueva , D. , Heinold , G. , Seifert , P. , Deneke , H. , Radenz , M. , & Tegen , I. ( 2020 ). The day- to-day co-variability between mineral dust and cloud glaciation: A proxy for heterogeneous freezing . Atmospheric Chemistry and Physics , 20 , 2177 – 2199 .
-
Wang , Z.
,
Sassen , K.
,
Whiteman , D. N.
, &
Demoz , B. B.
(
2005
).
Studying altocumulus with ice virga using ground-based active and passive remote sensors
.
Journal of Applied Meteorology and Climatology
,
43
(
3
),
449
–
460
.
10.1175/1520-0450(2004)043<0449:SAWIVU>2.0.CO;2 Google Scholar
- Wendisch , M. , M. Brückner , J. P. Burrows , S. Crewell , K. Dethloff , K. Ebell , et al. ( 2017 ). Understanding causes and effects of rapid warming in the Arctic . Eos , 98 ( 8 ), 22 – 26 , doi:https://eos.org/project-updates/understanding-causes-and-effects-of-rapid-warming-in-the-arctic
-
Wendisch , M.
,
D. Handorf
,
I. Tegen
,
R. A. J. Neggers
, and
G. Spreen
(
2021
),
Glimpsing the ins and outs of the Arctic atmospheric cauldron
,
Eos
,
102
,
https://doi.org/10.1029/2021EO155959
. Published on 16 March
2021
.
10.1029/2021EO155959 Google Scholar
- Wendisch , M. , A. Macke , A. Ehrlich , C. Lüpkes , M. Mech , D. Chechin , et al. ( 2019 ): The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification . Bull. Amer. Meteor. Soc. , 100 ( 5 ), 841 – 871 , doi: 10.1175/BAMS-D-18-0072.1
- Wex , H. , Huang , L. , Zhang , W. , Hung , H. , Traversi , R. , Becagli , S. , et al. ( 2019 ). Annual variability of ice-nucleating particle concentrations at different Arctic locations . Atmospheric Chemistry and Physics , 19 ( 7 ), 5293 – 5311 .
- Willis , M. D. , Leaitch , W. R. , & Abbatt , J. P. ( 2018 ). Processes controlling the composition and abundance of Arctic aerosol . Reviews of Geophysics , 56 ( 4 ), 621 – 671 .
- Wilson , T. W. , Ladino , L. A. , Alpert , P. A. , Breckels , M. N. , Brooks , I. M. , Browse , J. , et al. ( 2015 ). A marine biogenic source of atmospheric ice-nucleating particles . Nature , 525 ( 7568 ), 234 – 238 .
- Winker , D. , Chepfer , H. , Noel , V. , & Cai , X. ( 2017 ). Observational constraints on cloud feedbacks: The role of active satellite sensors . Surveys in Geophysics , 38 ( 6 ), 1483 – 1508 .
- Winker , D. , Vaughan , M. A. , Omar , A. , Hu , Y. , Powell , K. A. , Liu , Z. , et al. ( 2009 ). Overview of the CALIPSO mission and CALIOP data processing algorithms . Journal of Atmospheric and Oceanic Technology , 26 ( 11 ), 2310 – 2323 .
- Winker , D. M. , Tackett , J. L. , Getzewich , B. J. , Liu , Z. , Vaughan , M. A. , & Rogers , R. R. ( 2013 ). The global 3-D distribution of tropospheric aerosols as characterized by CALIOP . Atmospheric Chemistry and Physics , 13 ( 6 ), 3345 – 3361 .
- Winton , M. ( 2006 ). Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophysical Research Letters , 33 ( 3 ).
- Wood , R. ( 2012 ). Stratocumulus clouds . Monthly Weather Review , 140 ( 8 ), 2373 – 2423 .
- Woods , C. , & Caballero , R. ( 2016 ). The role of moist intrusions in winter Arctic warming and sea ice decline . Journal of Climate , 29 , 4473 – 4485 .
- Woods , C. , Caballero , R. , & Svensson , G. ( 2013 ). Large-scale circulation associated with moisture intrusions into the Arctic during winter . Geophysical Research Letters , 40 ( 4717–4721 ).
- Woods , C. , Caballero , R. , & Svensson , G. ( 2017 ). Representation of Arctic moist intrusions in CMIP5 models and implications for winter climate biases . Journal of Climate , 30 ( 11 ), 4083 – 4102 .
- Xie , S. , Liu , X. , Zhao , C. , & Zhang , Y. ( 2013 ). Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization . Journal of Climate , 26 ( 16 ), 5981 – 5999 .
- Xu , L. , Russell , L. M. , & Burrows , S. M. ( 2016 ). Potential sea salt aerosol sources from frost flowers in the pan-Arctic region . Journal of Geophysical Research , 121 ( 18 ).
- Yamagata , S. , Kobayashi , D. , Ohta , S. , Murao , N. , Shiobara , M. , Wada , M. , et al. ( 2009 ). Properties of aerosols and their wet deposition in the Arctic spring during ASTAR2004 at Ny-Alesund, Svalbard . Atmospheric Chemistry and Physics , 9 , 261 – 270 .
- Yoo , C. , Lee , S. , & Feldstein , S. B. ( 2012 ). Mechanisms of Arctic surface air temperature change in response to the Madden–Julian Oscillation . Journal of Climate , 25 ( 17 ), 5777 – 5790 .
-
Yoshimori , M.
,
Watanabe , M.
,
Shiogama , H.
,
Oka , A.
,
Abe-Ouchi , A.
,
Ohgaito , R.
, &
Kamae , Y.
(
2016
).
A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation
.
Progress in Earth and Planetary Science
,
3
(
1
),
1
–
14
.
10.1186/s40645-016-0096-3 Google Scholar
- Young , G. , Connolly , P. J. , Dearden , C. , & Choularton , T. W. ( 2018 ). Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus . Atmospheric Chemistry and Physics , 18 ( 3 ), 1475 – 1494 .
- Yu , F. , & Luo , G. ( 2009 ). Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations . Atmospheric Chemistry and Physics , 9 ( 20 ), 7691 – 7710 .
- Yu , Y. , Taylor , P. C. , & Cai , M. ( 2019 ). Seasonal variations of Arctic low-level clouds and its linkage to sea ice seasonal variations . Journal of Geophysical Research , 124 ( 22 ), 12206 – 12226 .
- Zamora , L. M. , Kahn , R. A. , Eckhardt , S. , McComiskey , A. , Sawamura , P. , Moore , R. , & Stohl , A. ( 2017 ). Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds . Atmospheric Chemistry and Physics , 17 , 7311 – 7332 .
- Zamora , L. M. , Kahn , R. A. , Huebert , K. B. , Stohl , A. , & Eckhardt , S. ( 2018 ). A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean . Atmospheric Chemistry and Physics , 18 ( 20 ), 14949 – 14964 .
- Zelinka , M. D. , Myers , T. A. , McCoy , D. T. , Po-Chedley , S. , Caldwell , P. M. , Ceppi , P. , et al. ( 2020 ). Causes of higher climate sensitivity in CMIP6 models . Geophysical Research Letters , 47 ( 1 ), e2019GL085782 .
- Zelinka , M. D. , Randall , D. A. , Webb , M. J. , & Klein , S. A. ( 2017 ). Clearing clouds of uncertainty . Nature Climate Change , 7 ( 10 ), 674 – 678 .
- Zhang , D. , Wang , Z. , Heymsfield , A. , Fan , J. , & Luo , T. ( 2014 ). Ice concentration retrieval in stratiform mixed-phase clouds using cloud radar reflectivity measurements and 1D ice growth model simulations . Journal of the Atmospheric Sciences , 71 ( 10 ), 3613 – 3635 .
- Zhang , D. , Wang , Z. , Kollias , P. , Vogelmann , A. M. , Yang , K. , & Luo , T. ( 2018 ). Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements . Atmospheric Chemistry and Physics , 18 , 4317 – 4327 .
- Zhang , D. , Wang , Z. , & Liu , D. ( 2010 ). A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements . Journal of Geophysical Research , 115 ( D00H13 ).
- Zhang , M. , Liu , X. , Diao , M. , D'Alessandro , J. J. , Wong , Y. , Wu , C. , et al. ( 2019 ). Impacts of representing heterogeneous distribution of cloud liquid and ice on phase partitioning of Arctic mixed-phase clouds with NCAR CAM5 . Journal of Geophysical Research , 124 ( 23 ), 13071 – 13090 .
- Zhao , C. , & Garrett , T. J. ( 2015 ). Effects of Arctic haze on surface cloud radiative forcing . Geophysical Research Letters , 42 ( 2 ), 557 – 564 .
- Zhao , M. , & Wang , Z. ( 2010 ). Comparison of Arctic clouds between European Center for Medium-range Weather Forecasts simulations and atmospheric radiation measurement climate research facility long-term observations at the north slope of Alaska barrow site . Journal of Geophysical Research , 115 ( D23202 ).
- Zhu , T. , Huang , Y. , & Wei , H. ( 2019 ). Estimating climate feedbacks using a neural network . Journal of Geophysical Research , 124 ( 6 ), 3246 – 3258 .
- Zuidema , P. , Baker , B. , Han , Y. , Intrieri , J. , Key , J. , Lawson , P. , et al. ( 2005 ). An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA . Journal of the Atmospheric Sciences , 62 ( 1 ), 160 – 176 .
- Zwaaftink , G. , Grythe , C. D. H. , Skov , H. , & Stohl , A. ( 2016 ). Substantial contribution of northern high-latitude sources to mineral dust in the Arctic . Journal of Geophysical Research , 121 ( 22 ), 13678 – 13697 .
- Zygmuntowska , M. , Mauritsen , T. , Quaas , J. , & Kaleschke , L. ( 2012 ). Arctic clouds and surface radiation–A critical comparison of satellite retrievals and the ERA-interim reanalysis . Atmospheric Chemistry and Physics , 12 ( 14 ), 6667 – 6677 .