Microbial Weathering of Minerals and Rocks in Natural Environments
Toby Samuels
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCasey Bryce
Geomicrobiology Group, Centre for Applied Geoscience, University of Tübingen, Tübingen, Germany
Search for more papers by this authorHanna Landenmark
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorClaire Marie-Loudon
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorNatasha Nicholson
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorAdam H. Stevens
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCharles Cockell
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorToby Samuels
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCasey Bryce
Geomicrobiology Group, Centre for Applied Geoscience, University of Tübingen, Tübingen, Germany
Search for more papers by this authorHanna Landenmark
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorClaire Marie-Loudon
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorNatasha Nicholson
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorAdam H. Stevens
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCharles Cockell
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorKaterina Dontsova
Search for more papers by this authorZsuzsanna Balogh-Brunstad
Search for more papers by this authorGaël Le Roux
Search for more papers by this authorSummary
Microbes are active agents of environmental change. From the depths of the Earth's crust to the heights of the upper atmosphere, microorganisms alter the physicochemical conditions surrounding them. Their activity provides important ecosystem services to the wider biosphere, making essential elements such as carbon, sulfur, phosphorus, and iron available for higher organisms. One such environmental interaction is the weathering of minerals and rocks by microbial communities, a key process that underpins soil formation and global biogeochemical cycles. By facilitating mineral dissolution and rock degradation, microbes enhance the release of elements from their geological reservoirs and perform significant elemental transformations. Under what conditions microbes perform these activities and to what extent they impact their surrounding environment, are key topics in geobiology. In this chapter, various aspects of microbial mineral and rock weathering will be explored. Key concepts and terminology will be introduced, followed by an overview of the mechanisms used by microorganisms to perform weathering activity. Sections covering the methodological approaches used by researchers to study microbial rock weathering processes, including detecting the traces or “biosignatures” such microbial activity leaves behind on geological materials, will be provided. The effect of microbial rock weathering on the wider microbial ecosystem, including the endurance and functional capacity of microbial communities, is also explored. Finally, this chapter will discuss the emerging field of microbial biogeomorphology, the study of how biological activity at the micron scale can impact the environment at meter to kilometer scales, contributing to the processes that shape Earth's landscapes.
REFERENCES
- Ahmed, E., & Holmström, S.J. (2014). Siderophores in environmental research: roles and applications. Microbial Biotechnology, 7(3), 196–208.
- Akafia, M.M., Harrington, J.M., Bargar, J.R., & Duckworth, O.W. (2014). Metal oxyhydroxide dissolution as promoted by structurally diverse siderophores and oxalate. Geochimica et Cosmochimica Acta, 141, 258–269.
- Akers, H.A., & Magee, K.P. (1985). The siderophore mediated release of iron and magnesium from Mt St. Helens' ash and silicate rock standards. Cellular and Molecular Life Sciences, 41(4), 522–523.
- Anderson, W.H. (2008). Foundation problems and pyrite oxidation in the Chattanooga Shale, Estill County, Kentucky . Kentucky Geological Survey, University of Kentucky.
- Andrews, M.Y., Santelli, C.M., & Duckworth, O.W. (2016). Layer plate CAS assay for the quantitation of siderophore production and determination of exudation patterns for fungi. Journal of microbiological methods, 121, 41–43.
- Archer, S.D., de los Ríos, A., Lee, K.C., Niederberger, T.S., Cary, S.C., Coyne, K.J., et al. (2017) Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biology, 40(5), 997–1006.
- Baker, B.J., & Banfield, J.F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2), 139–152.
- Barker, W. W., Welch, S. A., Chu, S., & Banfield, J. F. (1998). Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist, 83(11), 1551–1563.
- Barton, H.A., & Northup, D.E. (2007). Geomicrobiology in cave environments: past, current and future perspectives. Journal of Cave and Karst Studies, 69(1), 163–178.
- Bennett, P.C. (1991). Quartz dissolution in organic-rich aqueous systems. Geochimica et Cosmochimica Acta, 55(7), 1781–1797.
- Bennett, P.C., Rogers, J.R., Choi, W.J., & Hiebert, F.K. (2001). Silicates, silicate weathering, and microbial ecology. Geomicrobiology Journal, 18(1), 3–19.
- Berlendis, S., Beyssac, O., Derenne, S., Benzerara, K., Anquetil, C., Guillaumet, M., Esteve, I. & Capelle, B. (2014). Comparative mineralogy, organic geochemistry and microbial diversity of the Autun black shale and Graissessac coal (France). International Journal of Coal Geology, 132, 147–157.
- Boon, M., & Heijnen, J.J. (1993). Mechanisms and rate limiting steps in bioleaching of sphalerite, chalcopyrite and pyrite with Thiobacillus ferrooxidans . International Biohydrometallurgy Symposium at Jackson Hole, Wyoming, USA, 22–25 August.
- Boston, P.J., Hose, L.D., Northup, D.E., & Spilde, M.N. (2006). The microbial communities of sulfur caves: a newly appreciated geologically driven system on Earth and potential model for Mars. Geological Society of America Special Papers, 404, 331–344.
- Boston, P.J., Spilde, M.N., Northup, D.E., Melim, L.A., Soroka, D.S., Kleina, L.G., et al. (2001). Cave biosignature suites: microbes, minerals, and Mars. Astrobiology, 1(1), 25–55.
-
Brantley, S.L., Lebedeva, M., & Hausrath, E.M. (2012). A geobiological view of weathering and erosion. In A.H. Knoll, D.E. Canfield, K.O. Konhauser (Eds), Fundamentals of Geobiology (pp. 205–227). Chichester, UK: Wiley-Blackwell.
10.1002/9781118280874.ch12 Google Scholar
- Bray, A.W., Oelkers, E.H., Bonneville, S., Wolff-Boenisch, D., Potts, N.J., Fones, G., & Benning, L.G. (2015). The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta, 164, 127–145.
- Bryce, C., Franz-Wachtel, M., Nalpas, N., Miot, J., Benzerara, K., Byrne, J.M., et al. (2018). Proteome response of a metabolically flexible anoxygenic phototroph to Fe (II) oxidation. Applied and Environmental Microbiology, 01166.
- Bryce, C.C., Le Bihan, T., Martin, S.F., Harrison, J.P., Bush, T., Spears, B., et al. (2016). Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environmental Microbiology, 18(4), 1110–1121.
- Buss, H.L., Bruns, M.A., Schultz, M.J., Moore, J., Mathur, C.F., & Brantley, S.L. (2005). The coupling of biological iron cycling and mineral weathering during saprolite formation, Luquillo Mountains, Puerto Rico. Geobiology, 3(4), 247–260.
- Buss, H.L., Lüttge, A., & Brantley, S.L. (2007). Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chemical Geology, 240(3), 326–342.
- Byloos, B., Coninx, I., Van Hoey, O., Cockell, C., Nicholson, N., Ilyin, V., et al. (2017). The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with basalt, a volcanic moon analog rock. Frontiers in Microbiology, 8. doi: 10.3389/fmicb.2017.00671
- Carmichael, M.J., Carmichael, S.K., Santelli, C.M., Strom, A., & Bräuer, S.L. (2013). Mn (II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the upper Tennessee River Basin. Geomicrobiology Journal, 30(9), 779–800.
- Coby, A.J., Picardal, F., Shelobolina, E., Xu, H., & Roden, E.E. (2011). Repeated anaerobic microbial redox cycling of iron. Applied and Environmental Microbiology, 77(17), 6036–6042.
- Cockell, C.S., Bush, T., Bryce, C., Direito, S., Fox-Powell, M., Harrison, J.P., et al. (2016). Habitability: a review. Astrobiology, 16(1), 89–117.
- Cockell, C.S., Kelly, L.C., & Marteinsson, V. (2013). Actinobacteria—an ancient phylum active in volcanic rock weathering. Geomicrobiology Journal, 30(8), 706–720.
- Cockell, C.S., & Herrera, A. (2008). Why are some microorganisms boring? Trends in Microbiology, 16(3), 101–106.
- Cockell, C.S., Pybus, D., Olsson-Francis, K., Kelly, L., Petley, D., Rosser, N., Howard, K., & Mosselmans, F. (2011). Molecular characterization and geological microenvironment of a microbial community inhabiting weathered receding shale cliffs. Microbial Ecology, 61(1) 166–181.
-
Coombes, M. A. (2014). The rock coast of the British Isles: weathering and biogenic processes. Geological Society, London, Memoirs, 40(1), 57–76.
10.1144/M40.5 Google Scholar
- Coombes, M.A. (2016). Biogeomorphology: diverse, integrative and useful. Earth Surface Processes and Landforms, 41(15), 2296–2300.
- Coombes, M. A., La Marca, E. C., Naylor, L. A., Piccini, L., De Waele, J., & Sauro, F. (2015). The influence of light attenuation on the biogeomorphology of a marine karst cave: a case study of Puerto Princesa Underground River, Palawan, the Philippines. Geomorphology, 229, 125–133.
- Daly, M.J., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Venkateswaran, A., et al. (2004). Accumulation of Mn (II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science, 306(5698), 1025–1028.
- Drever, J.I., & Stillings, L.L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120(1–3), 167–181.
- Dumont, M.G., & Murrell, J.C. (2005). Innovation: Stable isotope probing—linking microbial identity to function. Nature Reviews: Microbiology, 3(6), 499.
- Dworkin, M., & Gutnick, D. (2012). Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiology Reviews, 36(2), 364–379.
- Edwards, K.J., Hu, B., Hamers, R.J., & Banfield, J.F. (2001). A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiology Ecology, 34(3), 197–206.
- Ehrlich, H.L. (1996) How microbes influence mineral growth and dissolution. Chemical Geology, 132 (1–4), 5–9.
- Ehrlich, H.L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews, 45(1), 45–60.
-
H.L. Ehrlich, D.K. Newman, & A. Kappler (Eds.). (2015). Ehrlich's Geomicrobiology. CRC Press.
10.1201/b19121 Google Scholar
- Emerson, D., & Floyd, M.M. (2005). Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Methods in Enzymology, 397, 112–123.
- Engel, A.S., Stern, L.A., & Bennett, P.C. (2004). Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology, 32(5), 369–372.
- Falkowski, P.G., Fenchel, T., & Delong, E.F. (2008). The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879), 1034–1039.
- Fomina, M., Alexander, I.J., Hillier, S., & Gadd, G.M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal, 21(5), 351–366.
- Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., & Gadd, G. M. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Applied and Environmental Microbiology, 71(1), 371–381.
- Francis, C.A., Casciotti, K.L., & Tebo, B.M. (2002). Localization of Mn (II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Archives of Microbiology, 178(6), 450–456.
- Frazier, W.C., & Rupp, P. (1928). Studies on the proteolytic bacteria of milk I. A medium for the direct isolation of caseolytic milk bacteria. Journal of Bacteriology, 16(1), 57.
- Fullerton, H., Hager, K.W., McAllister, S.M., & Moyer, C.L. (2017). Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō'ihi Seamount, Hawai'i. The ISME Journal, 11(8), 1900.
- Gadd, G.M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2), 109–119.
- Gadd, G.M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49.
- Gadd, G.M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.
- Gadd, G.M., Bahri-Esfahani, J., Li, Q., Rhee, Y.J., Wei, Z., Fomina, M., & Liang, X. (2014). Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28(2), 36–55.
- Gault, A.G., Ibrahim, A., Langley, S., Renaud, R., Takahashi, Y., Boothman, C., et al. (2011). Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments. Chemical Geology, 281(1), 41–51.
- Geszvain, K., Butterfield, C., Davis, R. E., Madison, A. S., Lee, S. W., Parker, D. L., et al. (2012). The molecular biogeochemistry of manganese (II) oxidation. Biochemical Society Transactions, 40(6), 1244–1248. doi: 10.1042/BST20120229
- Gorbushina, A.A. (2007). Life on the rocks. Environmental microbiology, 9(7), 1613–1631.
- Gorbushina, A.A., Krumbein, W.E., & Volkmann, M. (2002). Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology, 2(2), 203–213.
- Grube, M., Cardinale, M., de Castro Jr, J.V., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME Journal, 3(9), 1105.
- Gutarowska, B., Celikkol-Aydin, S., Bonifay, V., Otlewska, A., Aydin, E., Oldham, A.L., et al. (2015). Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings. Frontiers in Microbiology, 6. doi.org/10.3389/fmicb.2015.00979
- Hall-Stoodley, L., Costerton, J.W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews: Microbiology, 2(2), 95.
-
Hawkins, A.B. (2014). Implications of pyrite oxidation for engineering works (pp. 1–98). Springer International Publishing.
10.1007/978-3-319-00221-7_1 Google Scholar
- Hedrich, S., Schlömann, M., & Johnson, D.B. (2011). The iron-oxidizing proteobacteria. Microbiology, 157(6), 1551–1564.l
- Hiebert, F.K., & Bennett, P.C. (1992). Microbial control of silicate weathering in organic-rich ground water. Science, 258(5080), 278.
- Hirsch, P., Eckhardt, F.E.W., & Palmer, R.J. (1995). Methods for the study of rock-inhabiting microorganisms—a mini review. Journal of Microbiological Methods, 23(2), 143–167.
- Hoover, S.E., & Lehmann, D. (2009). The expansive effects of concentrated pyritic zones within the Devonian Marcellus Shale Formation of North America. Quarterly Journal of Engineering Geology and Hydrogeology, 42(2), 157–164.
- Huang, J., Sheng, X.F., Xi, J., He, L.Y., Huang, Z., Wang, Q., & Zhang, Z.D. (2014). Depth-related changes in community structure of culturable mineral weathering bacteria and in weathering patterns caused by them along two contrasting soil profiles. Applied and Environmental Microbiology, 80(1), 29–42.
- Hugenholtz, P., Goebel, B.M., & Pace, N.R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180(18), 4765–4774.
-
Hutchens, E. (2009). Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biology Reviews, 23(4), 115–121.
10.1016/j.fbr.2009.10.002 Google Scholar
- Joeckel, R.M., Clement, B.A., & Bates, L.V. (2005). Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska. Chemical Geology, 215(1), 433–452.
- Johnson, D.B. (1995). Selective solid media for isolating and enumerating acidophilic bacteria. Journal of microbiological methods, 23(2), 205–218.
- Johnson, D.B., & Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1), 3–14.
- Jones, A.A., & Bennett, P.C. (2014). Mineral microniches control the diversity of subsurface microbial populations. Geomicrobiology Journal, 31(3), 246–261.
- Jones, D.L., Dennis, P.G., Owen, A.G., & Van Hees, P.A.W. (2003). Organic acid behavior in soils—misconceptions and knowledge gaps. Plant and Soil, 248(1–2), 31–41.
- Kalinowski, B.E., Johnsson, A., Arlinger, J., Pedersen, K., Ödegaard-Jensen, A., & Edberg, F. (2006). Microbial mobilization of uranium from shale mine waste. Geomicrobiology Journal, 23(3–4), 157–164.
- Kelly, L.C., Cockell, C.S., Piceno, Y.M., Andersen, G.L., Thorsteinsson, T., & Marteinsson, V. (2010). Bacterial diversity of weathered terrestrial Icelandic volcanic glasses. Microbial Ecology, 60(4), 740–752
- Kelly, L.C., Cockell, C.S., Thorsteinsson, T., Marteinsson, V., & Stevenson, J. (2014). Pioneer microbial communities of the Fimmvörðuháls lava flow, Eyjafjallajökull, Iceland. Microbial Ecology, 68(3), 504–518.
- Kelly, L.C., Colin, Y., Turpault, M.P., & Uroz, S. (2016). Mineral type and solution chemistry affect the structure and composition of actively growing bacterial communities as revealed by bromodeoxyuridine immunocapture and 16S rRNA pyrosequencing. Microbial Ecology, 72(2), 428–442.
- Konhauser, K.O. (2006). Introduction to Geomicrobiology. John Wiley & Sons.
- Konhauser, K.O., Lalonde, S.V., Planavsky, N.J., Pecoits, E., Lyons, T.W., Mojzsis, S.J., et al. (2011). Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 478(7369), 369.
- Krumbein, W.E., & Altmann, H.J. (1973). A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgoländer Wissenschaftliche Meeresuntersuchungen, 25(2), 347.
- Kuhlman, K.R., Fusco, W.G., La Duc, M.T., Allenbach, L.B., Ball, C.L., Kuhlman, G.M., & Strap, J.L. (2006). Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Applied and Environmental Microbiology, 72(2), 1708–1715.
- Kwong, Y.J., Whitley, G., & Roach, P. (2009). Natural acid rock drainage associated with black shale in the Yukon Territory, Canada. Applied Geochemistry, 24(2), 221–231.
- Lepleux, C., Turpault, M.P., Oger, P., Frey-Klett, P., & Uroz, S. (2012). Correlation of the abundance of betaproteobacteria on mineral surfaces with mineral weathering in forest soils. Applied and Environmental Microbiology, 78(19), 7114–7119.
- Li, J., Sun, W., Wang, S., Sun, Z., Lin, S., & Peng, X. (2014). Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering. Environmental Microbiology, 16(11), 3533–3547.
- Li, Z., Liu, L., Chen, J., & Teng, H.H. (2016). Cellular dissolution at hypha- and spore–mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology, 44(4), 319–322.
- Liermann, L.J., Albert, I., Buss, H.L., Minyard, M., & Brantley, S.L. (2015). Relating microbial community structure and geochemistry in deep regolith developed on volcaniclastic rock in the Luquillo Mountains, Puerto Rico. Geomicrobiology Journal, 32(6), 494–510.
- Liermann, L.J., Kalinowski, B.E., Brantley, S.L., & Ferry, J.G. (1999). Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta, 64(4), 587–602.
- Liermann, L.J., Mathur, R., Wasylenki, L.E., Nuester, J., Anbar, A.D., & Brantley, S.L. (2011). Extent and isotopic composition of Fe and Mo release from two Pennsylvania shales in the presence of organic ligands and bacteria. Chemical Geology, 281(3–4), 167–180.
- Liu, X., Yang, G.M., Guan, D.X., Ghosh, P., & Ma, L.Q. (2015). Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth. Environmental Pollution, 206, 376–381.
- Mahmoudi, N., Beaupré, S. R., Steen, A. D., & Pearson, A. (2017). Sequential bioavailability of sedimentary organic matter to heterotrophic bacteria. Environmental Microbiology, 19(7), 2629–2644.
- Marnocha, C.L., & Dixon, J.C. (2014). Endolithic bacterial communities in rock coatings from Kärkevagge, Swedish Lapland. FEMS Microbiology Ecology, 90(2), 533–542.
- Marshall, K. C. (1979). Biogeochemistry of manganese minerals. Studies in Environmental Science, 3, 253–292.
- Matlakowska, R., & Sklodowska, A. (2009). The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures. Journal of Applied Microbiology, 107(3), 858–866.
- Matlakowska, R., Skłodowska, A., & Nejbert, K. (2012). Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine. FEMS Microbiology Ecology, 81(1), 99–110.
- McLoughlin, N., Staudigel, H., Furnes, H., Eickmann, B., & Ivarsson, M. (2010). Mechanisms of microtunneling in rock substrates: distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology, 8(4), 245–255.
- Mejia, J., Roden, E.E., & Ginder-Vogel, M. (2016). Influence of oxygen and nitrate on Fe (hydr) oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science and Technology, 50(7), 3580–3588.
- Méndez-García, C., Peláez, A.I., Mesa, V., Sánchez, J., Golyshina, O.V., & Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6, 475.
- Meslé, M., Dromart, G., & Oger, P. (2013). Microbial methanogenesis in subsurface oil and coal. Research in Microbiology, 164(9), 959–972.
- Mielke, R.E., Pace, D.L., Porter, T., & Southam, G. (2003). A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology, 1(1), 81–90.
- Montross, S.N., Skidmore, M., Tranter, M., Kivimäki, A.L., & Parkes, R.J. (2013). A microbial driver of chemical weathering in glaciated systems. Geology, 41(2), 215–218.
- Naylor, L.A., Coombes, M.A., & Viles, H.A. (2012). Reconceptualising the role of organisms in the erosion of rock coasts: a new model. Geomorphology, 157, 17–30.
- Nichols, G. (2009). Sedimentology and Stratigraphy, 2nd edn. Chichester, UK: John Wiley & Sons.
- Nordstrom, D.K., & Southam, G. (1997). Geomicrobiology of sulfide mineral oxidation. Reviews in Mineralogy, 35, 361–390.
- Northup, D.E., Dahm, C.N., Melim, L.A., Spilde, M.N., Crossey, L.J., Lavoie, K.H., et al. (2000). Evidence for geomicrobiological interactions in Guadalupe caves. Journal of Cave and Karst Studies, 62(2), 80–90.
- Olsson-Francis, K., Pearson, V.K., Schofield, P.F., Oliver, A., & Summers, S. (2016). A study of the microbial community at the interface between granite bedrock and soil using a culture-independent and culture-dependent approach. Advances in Microbiology, 6(3), 233–245.
- Olsson-Francis, K., Simpson, A.E., Wolff-Boenisch, D., & Cockell, C.S. (2012). The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology, 10(5), 434–444.
- Olsson-Francis, K., Van Houdt, R., Mergeay, M., Leys, N., & Cockell, C.S. (2010). Microarray analysis of a microbe–mineral interaction. Geobiology, 8(5), 446–456.
- Petsch, S.T., Edwards, K.J., & Eglinton, T.I. (2003). Abundance, distribution and δ13C analysis of microbial phospholipid-derived fatty acids in a black shale weathering profile. Organic Geochemistry, 34(6), 731–743.
- Petsch, S.T., Edwards, K.J., & Eglinton, T.I. (2005). Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1), 157–170.
- Petsch, S.T., Eglinton, T.I., & Edwards, K.J. (2001). 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science, 292(5519), 1127–1131.
- Phillips, J.D. (2016). Biogeomorphology and contingent ecosystem engineering in karst landscapes. Progress in Physical Geography, 40(4), 503–526.
- Pokrovsky, O. S., Shirokova, L. S., Bénézeth, P., Schott, J., & Golubev, S. V. (2009). Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics. American Journal of Science, 309(8), 731–772.
- Puente, M.E., Bashan, Y., Li, C.Y., & Lebsky, V.K. (2004). Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biology, 6(05), 629–642.
- Rogers, J.R., & Bennett, P.C. (2004). Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chemical Geology, 203(1), 91–108.
- Saad, E.M., Sun, J., Chen, S., Borkiewicz, O.J., Zhu, M., Duckworth, O.W., & Tang, Y. (2017). Siderophore and organic acid promoted dissolution and transformation of Cr (III)–Fe (III)–(oxy) hydroxides. Environmental Science and Technology, 51(6), 3223–3232.
- Schippers, A., Jozsa, P., & Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology, 62(9), 3424–3431.
- Schmalenberger, A., Duran, A.L., Bray, A.W., Bridge, J., Bonneville, S., Benning, L.G., et al. (2015). Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Nature: Scientific Reports, 5, 12187.
- Schneider, J., & Le Campion-Alsumard, T. (1999). Construction and destruction of carbonates by marine and freshwater cyanobacteria. European Journal of Phycology, 34(4), 417–426.
- Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47–56.
- Shelobolina, E., Xu, H., Konishi, H., Kukkadapu, R., Wu, T., Blöthe, M., & Roden, E. (2012). Microbial lithotrophic oxidation of structural Fe (II) in biotite. Applied and Environmental Microbiology, 78(16), 5746–5752.
- Sonnleitner, R., Redl, B., Pipal, A., & Schinner, F. (2011). Chemolithotrophic metal mobilization from dolomite. Geomicrobiology Journal, 28(8), 651–659.
- Stein, L.Y., La Duc, M.T., Grundl, T.J., & Nealson, K.H. (2001). Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environmental Microbiology, 3(1), 10–18.
- Sterflinger, K., Little, B., Pinar, G., Pinzari, F., de los Rios, A., & Gu, J.D. (2018). Future directions and challenges in biodeterioration research on historic materials and cultural properties. International Biodeterioration and Biodegradation, 129, 10–12.
- Straub, K.L., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62(4), 1458–1460.
- Summers, S., Thomson, B.C., Whiteley, A.S., & Cockell, C.S. (2016). Mesophilic mineral-weathering bacteria inhabit the critical-zone of a perennially cold basaltic environment. Geomicrobiology Journal, 33(1), 52–62.
- Sunda, W.G., & Kieber, D.J. (1994). Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature, 367(6458), 62.
- Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R. & Webb, S.M. (2004). Biogenic manganese oxides: properties and mechanisms of formation. Annual Review in Earth and Planetary Sciences, 32, 287–328.
- Tebo, B.M., Davis, R.E., Anitori, R.P., Connell, L.B., Schiffman, P., & Staudigel, H. (2015). Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Frontiers in Microbiology, 6, 179.
- Tebo, B.M., Johnson, H.A., McCarthy, J.K., & Templeton, A.S. (2005). Geomicrobiology of manganese (II) oxidation. Trends in Microbiology, 13(9), 421428.
- Thorley, R., Taylor, L.L., Banwart, S.A., Leake, J.R., & Beerling, D.J. (2015). The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant, Cell and Environment, 38(9), 1947–1961.
- Uroz, S., Calvaruso, C., Turpault, M.P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387.
-
Uroz, S., & Frey-Klett, P. (2011). Linking diversity to function: highlight on the mineral weathering bacteria. Open Life Sciences, 6(5), 817–820.
10.2478/s11535-011-0053-5 Google Scholar
- Uroz, S., Kelly, L.C., Turpault, M.P., Lepleux, C., & Frey-Klett, P. (2015). The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends in Microbiology, 23(12), 751–762.
- Vera, M., Schippers, A., & Sand, W. (2013). Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Applied Microbiology and Biotechnology, 97(17), 7529–7541.
- Viles, H.A. (2012). Microbial geomorphology: a neglected link between life and landscape. Geomorphology, 157, 6–16.
- Viles, H. (2016). Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology, 270, 121–133.
- Wacey, D., Saunders, M., Brasier, M.D., & Kilburn, M.R. (2011). Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments. Earth and Planetary Science Letters, 301(1), 393–402.
- Wang, Y., Chen, W., He, L., Wang, Q., & Sheng, X.F. (2016). Draft genome sequence of Ensifer adhaerens M78, a mineral-weathering bacterium isolated from soil. Genome Announcements, 4(5), e00969–16.
- Wang, W., Lian, B., & Pan, L. (2015). An RNA-sequencing study of the genes and metabolic pathways involved in Aspergillus niger weathering of potassium feldspar. Geomicrobiology Journal, 32(8), 689–700.
- Watling, H. (2016). Microbiological advances in biohydrometallurgy. Minerals, 6(2), 49.
- Welch, S.A., Barker, W.W., & Banfield, J.F. (1999). Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica Acta, 63(9), 1405–1419.
- Welch, S.A., & Ullman, W.J. (1993). The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochimica et Cosmochimica Acta, 57(12), 2725–2736.
- Wengel, M., Kothe, E., Schmidt, C. M., Heide, K., & Gleixner, G. (2006). Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Science of the Total Environment, 367(1), 383–393.
- Włodarczyk, A., Stasiuk, R., Skłodowska, A., & Matlakowska, R. (2015). Extracellular compounds produced by bacterial consortium promoting elements mobilization from polymetallic Kupferschiefer black shale (Fore-Sudetic Monocline, Poland). Chemosphere, 122, 273–279.
- Włodarczyk, A., Lirski, M., Fogtman, A., Koblowska, M., Bidziński, G., & Matlakowska, R. (2018). The oxidative metabolism of fossil hydrocarbons and sulfide minerals by the lithobiontic microbial community inhabiting deep subterrestrial Kupferschiefer black shale. Frontiers in Microbiology, 9, doi.org/10.3389/fmicb.2018.00972.
- Xiao, L., Hao, J., Wang, W., Lian, B., Shang, G., Yang, Y., & Wang, S. (2014). The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution. Geomicrobiology Journal, 31(7), 632–641.
- Yesavage, T., Fantle, M. S., Vervoort, J., Mathur, R., Jin, L., Liermann, L. J., & Brantley, S. L. (2012). Fe cycling in the Shale Hills Critical Zone Observatory, Pennsylvania: an analysis of biogeochemical weathering and Fe isotope fractionation. Geochimica et Cosmochimica Acta, 99, 18–38.
- Yoon, S., Kraemer, S.M., DiSpirito, A.A., & Semrau, J.D. (2010). An assay for screening microbial cultures for chalkophore production. Environmental Microbiology Reports, 2(2), 295–303.
- Zavarzin, G.A. (1989). Sergei N. Winogradsky and the discovery of chemosynthesis. In G.H. Schlegel, B. Bowien (Eds.), Autotrophic bacteria (pp. 17–32). Madison, WI: Science Tech Publishers.
- Zhao, F., Qiu, G., Huang, Z., He, L., & Sheng, X. (2013). Characterization of Rhizobium sp. Q32 isolated from weathered rocks and its role in silicate mineral weathering. Geomicrobiology Journal, 30(7), 616–622.
- Zhu, W., & Reinfelder, J.R. (2012). The microbial community of a black shale pyrite biofilm and its implications for pyrite weathering. Geomicrobiology Journal, 29(2), 186–193.