Chemistry of a polluted cloudy boundary layer
Daniel J. Jacob
Search for more papers by this authorElaine W. Gottlieb
Search for more papers by this authorMichael J. Prather
Search for more papers by this authorDaniel J. Jacob
Search for more papers by this authorElaine W. Gottlieb
Search for more papers by this authorMichael J. Prather
Search for more papers by this authorAbstract
A one-dimensional photochemical model for cloud-topped boundary layers is developed which includes detailed descriptions of gas-phase and aqueous-phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, California, during a wintertime stagnation episode with low stratus. The main features of the observations are well simulated; in particular, sulfate accumulates progressively over the course of the episode due to sustained aqueous-phase oxidation of SO2 in the stratus cloud. The major source of sulfate is the reaction S(IV) + Fe(III), provided that this reaction proceeds by a non radical mechanism in which Fe(III) is not reduced. A radical mechanism with SO3− and Fe(II) as immediate products would quench sulfate production because of depletion of Fe(III). The model results suggest that the non radical mechanism is more consistent with observations, although this result follows from the absence of a rapid Fe(II) oxidation pathway in the model. Even with the non-radical mechanism, most of the soluble iron is present as Fe(II) because Fe(III) is rapidly reduced by O2−. The S(IV) + Fe(III) reaction provides the principal source of H2O2 in the model; photochemical production of H2O2 from HO2 or O2(−I) is slow because HO2 is depleted by high levels of NOx. The aqueous-phase reaction S(IV) + OH initiates a radical-assisted S(IV) oxidation chain but we find that the chain is not propagated due to efficient termination by SO4− + Cl− followed by Cl + H2O. A major uncertainty attached to that result is that the reactivities of S(IV)-carbonyl adducts with radical oxidants are unknown. The chain could be efficiently propagated, with high sulfate yields, if the S(IV)-carbonyl adducts were involved in chain propagation. A remarkable feature of the observations, which is well reproduced by the model, is the close balance between total atmospheric concentrations of acids and bases. We argue that this balance reflects the control of sulfate production by NH3, which follows from the pH dependence of the S(IV) + Fe(III) reaction. Such a balance should be a general characteristic of polluted environments where aqueous-phase oxidation of SO2 is the main source of acidity. At night, the acidity of the cloud approaches a steady state between NH3 emissions and H2SO4 production by the S(IV) + Fe(III) reaction. A steady state analysis suggests that [H+] at night should be proportional to (ESO2/ENH3)1/2 where ESO2 and ENH3 are emission rates of SO2 and NH3, respectively. From this analysis it appears that cloud water pH values below 3 are unlikely to occur in the Bakersfield atmosphere during the nighttime hours. Very high acidities could, however, be achieved in the daytime because of photochemical acid production by the gas-phase reactions NO2 + OH and SO2 + OH.
References
- , Aerovironment, Inc., AVKERN application reportRep. AV-FR-83/501R2, Pasadena, Calif., 1984.
- Atkinson, R., A. L. Lloyd, Evaluation of kinetic and mechanistic data for modeling of photochemical smog, J. Phys. Chem. Ref. Data, 13, 315–444, 1984.
- Auer, L., Improved boundary conditions for the Feautrier method, Astrophys. J., 150, 153–155, 1967.
- Betterton, E. A., M. R. Hoffmann, Kinetics, mechanism and thermodynamics of the reversible reaction of methylglyoxal (CH3COCHO) with S(IV), J. Phys. Chem., 91, 3011–3020, 1987.
- Betterton, E. A., M. R. Hoffmann, Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, 1988a.
- Betterton, E. A., M. R. Hoffmann, Oxidation of aqueous SO2 by peroxymonosulfate, J. Phys. Chem., 92, 5962–5965, 1988b.
- Bielski, B. H. J., D. E. Cabelli, R. L. Arudi, A. B. Ross, Reactivity of HO2/O2- radicals in aqueous solution, J. Phys. Chem. Ref. Data, 14, 1041–1100, 1985.
- Cabelli, D. E., B. H. J. Bielski, Pulse radiolysis study of the kinetics and mechanisms of the reactions between manganese(II) complexes and HO2/O2- radicals, 2, The phosphate complex and an overview, J. Phys. Chem., 88, 6291–6294, 1984.
- Caughey, S. J., B. A. Crease, W. T. Roach, A field study of nocturnal stratocumulus. II. Turbulence structure and entrainment, Q. J. R. Meteorol. Soc., 108, 125–144, 1982.
- Chameides, W. L., The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89, 4739–4755, 1984.
- Chameides, W. L., D. D. Davis, The free radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res., 87, 4863–4877, 1982.
- Chandrasekhar, S., Radiative Transfer, 393, Dover, New York, 1960.
- Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, C. J. Walcek, A three-dimensional Eulerian acid deposition model. Physical concepts and formulation, J. Geophys. Res., 92, 14681–14700, 1987.
- Cochran, W. D., L. M. Trafton, Raman scattering in the atmospheres of the major planets, Astrophys. J., 219, 756–762, 1978.
- Conklin, M. H., M. R. Hoffmann, Metal ion — S(IV) chemistry III. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes, Environ. Sci. Technol., 22, 899–907, 1988a.
- Conklin, M. H., M. R. Hoffmann, Metal ion — S(IV) chemistry II. Kinetic studies of the redox chemistry of copper(II)-sulfur(IV) complexes, Environ. Sci. Technol., 22, 891–898, 1988b.
- Conocchioli, T. J., E. J. Hamilton Jr., N. Sutin, The formation of iron (IV) in the oxidation of iron (II), J. Am. Chem. Soc., 87, 926–927, 1965.
- Daum, P. H., S. E. Schwartz, L. Newman, Acidic and related constituents in liquid water stratiform clouds, J. Geophys. Res., 89, 1447–1458, 1984.
- Dave, J. V., B. H. Armstrong, Computation of high-order associated Legendre polynomials, J. Quart. Spectros. Radiat. Transfer, 10, 557–562, 1970.
- Davies, G., Some aspects of the chemistry of manganese(III) in aqueous solution, Coord. Chem. Rev., 4, 199–224, 1969.
- Deirmendjian, D., Electromagnetic Scattering on Spherical Polydispersions, 287, American Elsevier, New York, 1969.
- Duckworth, S., D. Crowe, Sulfur dioxide and sulfate trends, Bakersfield, 1977–1978 reportTech. Serv. Div., Calif. Air Resour. Board, Sacramento, 1979.
- , Environmental Protection Agency, Development of the 1980 NAPAP emissions inventoryRep. EPA/600/7-86/057a, Research Triangle Park, N.C., 1986.
- Farhataziz, A. B. Ross, Selected specific rates of transients from water in aqueous solution, III.,Hydroxyl radical and perhydroxyl radical and their radical ionsRep. NSRDBS-NBS 59U.S. Dep. of Commerce, Washington, D.C., 1977.
- Faust, B. C., Photo-induced reductive dissolution of hematite (α-Fe2O3) by S(IV) oxyanions, Ph.D. thesis,Calif. Inst. of Technol.,Pasadena,1985.
- Feautrier, P., Sur la resolution numerique de l'equation de transfert, C. R. Acad. Sci. Paris, 258, 3189–3191, 1964.
- Flynn Jr., C. M., Hydrolysis of inorganic iron(III) salts, Chem. Rev., 84, 31–41, 1984.
- Gershenzon, Y. M., A. V. Ivanov, S. I. Kucheryavyi, V. B. Rozenshtein, Annihilation of OH radicals on the surfaces of substances chemically similar to atmospheric aerosol particles of the Earth's atmosphere, Kinet. Katal., 27, 1069–1074, 1986.
- Gervat, G. P., P. A. Clark, A. R. W. Marsh, I. Teasdale, A. S. Chandler, T. W. Choularton, M. J. Gay, M. K. Hill, T. A. Hill, Field evidence for the oxidation of SO2 by H2O2 in cap clouds, Nature, 333, 241–243, 1988.
- Graedel, T. E., K. I. Goldberg, Kinetic studies of raindrop chemistry, 1, Inorganic and organic processes, J. Geophys. Res., 88, 10865–10882, 1983.
- Graedel, T. E., M. L. Mandlich, C. J. Wechsler, Kinetic model studies of atmospheric droplet chemistry. 2. Homogeneous transition metal chemistry in raindrops, J. Geophys. Res., 91, 5205–5221, 1986.
- Hansen, J. E., L. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, 1974.
- Heckel, E., A. Henglein, G. Beck, Pulsradiolytische Untersuchung des Radikalanions SO4-, Ber. Bunsenges. Phys. Chem., 70, 149–154, 1966.
- Heikes, B. G., G. L. Kok, J. G. Walega, A. L. Lazrus, H2O2, O3 and SO2 measurements in the lower troposphere over the eastern United States during the fall, J. Geophys. Res., 92, 915–931, 1987.
- Hoffmann, M. R., J. G. Calvert, Chemical transformation modules for Eulerian acid deposition models, II, The aqueous-phase chemistryRep. EPA/600/3-85/017Environ. Prot. Agency, Research Triangle Park, N.C., 1985.
- Hoffmann, M. R., D. J. Jacob, Kinetics and mechanisms of the catalytic autoxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fogwater chemistry, Acid Precipitation: SO2, NO, and NOx Oxidation Mechanisms: Atmospheric Considerations J. G. Calvert, 101–172, Butterworth, Boston, 1984.
- Holets, S., R. N. Swanson, High-inversion fog episodes in central California, J. Appl. Meteorol., 20, 890–899, 1981.
- Huie, R. E., P. Neta, Chemical behavior of SO3- and SO5- radicals in aqueous solutions, J. Phys. Chem., 88, 5665–5669, 1984.
- Huie, R. E., P. Neta, Rate constants for some oxidations of S(IV) by radicals in aqueous solutions, Atmos. Environ., 21, 1743–1747, 1987.
- Jacob, D. J., The origins of inorganic acidity in fogs, Ph.D. thesis,Calif. Inst. of Technol.,Pasadena,1985.
- Jacob, D. J., The chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 9807–9826, 1986.
- Jacob, D. J., M. R. Hoffmann, A dynamic model for the production of H+, NO3-,and SO42- inurban fog, J. Geophys. Res., 88, 6611–6621, 1983.
- Jacob, D. J., J. M. Waldman, J. W. Munger, M. R. Hoffmann, A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets, Tellus, 36, 272–285, 1984.
- Jacob, D. J., J. M. Waldman, J. W. Munger, M. R. Hoffmann, Chemical composition of fogwater collected along the California coast, Environ. Sci. Technol., 19, 730–736, 1985.
- Jacob, D. J., J. W. Munger, J. M. Waldman, M. R. Hoffmann, The H2SO4 — HNO3 — NH3 system at high humidities and in fogs, 1, Spatial and temporal patterns in the San Joaquin Valley of California, J. Geophys. Res., 91, 1073–1088, 1986.
- Jain, M. K., R. Singh, J. S. Kalsy, Isolation and characterization of cellulolytic bacteria from fermenting cattle waste, Environ. Ecol., 4, 30–35, 1986.
- Johnson, C. A., L. Sigg, J. Zobrist, Case studies on the chemical composition of fogwater: The influence of local gaseous emissions, Atmos. Environ., 21, 2365–2374, 1987.
- Joseph, J. H., W. J. Wiscombe, J. A. Weinman, The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452–2459, 1976.
- Koutrakis, P., J. M. Wolfson, J. D. Spengler, An improved method for measuring aerosol strong acidity: Results from a nine-month study in St. Louis, Missouri and Kingston, Tennessee, Atmos. Environ., 22, 157–162, 1988.
- Latimer, W. M., The Oxidation States of the Elements and their Potentials in Aqueous Solutions 2nd ed., Prentice-Hall, Englewood Clifts, N. J., 1952.
- Laurence, G. S., A. T. Thornton, Kinetics of oxidation of transition-metal ions by halogen radical anions, Part III, The oxidation of manganese(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton, Trans., 1637–1644, 1973.
- Lee, Y. J., G. T. Rochelle, Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: Products, kinetics, and mechanism, Environ. Sci. Technol., 21, 266–272, 1987.
- Liljestrand, H. M., Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems, Atmos. Environ., 19, 487–499, 1985.
- Lind, J. A., G. L. Kok, Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 91, 7889–7895, 1986.
- Lind, J. A., G. L. Kok, A. L. Lazrus, Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 92, 4171–4177, 1987.
- Logan, J. A., M. J. Prather, S. C. Wofsy, M. B. McElroy, Tropospheric chemistry: A global perspective, J. Geophys. Res., 86, 7210–7254, 1981.
- Lurmann, F. W., A. C. Lloyd, R. Atkinson, A chemical mechanism for use in long-range transport/acid deposition computer modeling, J. Geophys. Res., 91, 1905–1936, 1986.
- Madronich, S., Photodissociation in the atmosphere, 1, Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 92, 9740–9752, 1987.
- Martell, A. E., R. M. Smith, Critical Stability Constants, 3, Other Organic Ligands, Plenum, New York, 1977.
- Martin, L. R., Kinetic studies of catalyzed sulfur oxidation in atmospheric liquid waterfinal report contract RP2023-07Electr. Power Res. Inst., Palo Alto, CA, 1988.
- Martin, L. R., M. W. Hill, The iron-catalyzed oxidation of sulfur: Reconciliation of the literature rates, Atmos. Environ., 21, 1487–1490, 1987a.
- Martin, L. R., M. W. Hill, The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV), Atmos. Environ., 21, 2267–2270, 1987b.
- Martin, L. R., M. P. Easton, J. W. Foster, M. W. Hill, Oxidation of hydroxymethanesulfonic acid by Fenton's reagent, Atmos. Environ., 1989.
- Matthews, R. W., The radiation chemistry of aqueous ferrous sulfate solutions at natural pH, Aust. J. Chem., 36, 1305–1317, 1983.
- McElroy, W. J., Sources of hydrogen peroxide in cloud water, Atmos. Environ., 20, 427–438, 1986a.
- McElroy, W. J., The aqueous oxidation of SO2 by OH radicals, Atmos. Environ., 20, 323–330, 1986b.
- McElroy, W. J., An experimental study of the reactions of some salts of oxy-sulphur acids and reduced sulphur compounds with strong oxidants (O3, H2O2, and HSO5-)Rep. TPRD/L/3141/R87Central Electr. Generating Board, Leatherhead, United Kingdom, 1987.
- McElroy, W. J., A laser photolysis study of the reaction of SO4- with Cl- and the subsequent decay of Cl2- in aqueous solutionRep. TPRD/L/3274/R88Central Electr. Generating Board, Leatherhead, United Kingdom, 1988.
- Moffett, J. W., R. G. Zika, Reaction kinetics of hydrogen peroxide with copper and iron in seawater, Environ. Sci. Technol., 21, 804–810, 1987.
- Mozurkewich, M., Comment on “Possible role of NO3 in the nighttime chemistry of a cloud”, J. Geophys. Res., 91, 14569–14570, 1986.
- Mozurkewich, M., P. H. McMurry, A. Gupta, J. G. Calvert, Mass accommodation coefficient for HO2 radicals on aqueous particles, J. Geophys. Res., 92, 4163–4170, 1987.
- Munger, J. W., Chemical composition of fogs and clouds in Southern California, Ph.D. thesis,Calif. Inst. of Technol.,Pasadena,1989.
- Munger, J. W., D. J. Jacob, J. M. Waldman, M. R. Hoffmann, Fogwater chemistry in an urban atmosphere, J. Geophys. Res., 88, 5109–5121, 1983.
- Munger, J. W., D. J. Jacob, M. R. Hoffmann, The occurrence of bisulfite-aldehyde addition products in fog- and cloud water, J. Atmos. Chem., 1, 335–350, 1984.
- Munger, J. W., C. Tiller, M. R. Hoffmann, Identification of hydroxymethanesulfonate in cloud water, Science, 231, 247–249, 1986.
- Munger, J. W., J. Collett Jr., B. C. Daube Jr., M. R. Hoffmann, Carboxylic acids and carbonyl compounds in southern California clouds and fogs, Tellus, 1989.
10.3402/tellusb.v41i3.15074 Google Scholar
- , National Climatic Data Center, Local climatological data, monthly summary, Bakersfield, California, January 1984U.S. Dep. of Commerce, Asheville, N. C., 1984.
- Olson, T. M., M. R. Hoffmann, Kinetics, mechanism, and thermodynamics of glyoxal-S(IV) adduct formation, J. Phys. Chem., 92, 533–540, 1988.
- Olson, T. M., M. R. Hoffmann, Hydroxyalkylsulfonate formation: its role as a S(IV) reservoir in atmospheric water droplets, Atmos. Environ., 1989.
- Park, J.-Y., Y.-N. Lee, Aqueous solubility and hydrolysis kinetics of peroxynitric acid193rd MeetingAm. Chem. Soc.Denver, Colo.April 5–10, 1987.
- Pick-Kaplan, M., J. Rabani, Pulse radiolysis studies of aqueous Mn(ClO4)2 solutions, J. Phys. Chem., 80, 1840–1843, 1976.
- Prather, M. J., Solution of the inhomogeneous Rayleigh scattering atmosphere, Astrophys. J., 192, 787–792, 1974.
- Rabani, J., D. Klug-Roth, J. Lilie, Pulse radiolyric investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions, J. Phys. Chem., 77, 1169–1175, 1973.
- Reible, D. D., Investigation of transport in complex atmospheric systems, Ph.D. thesis,Calif. Inst. of Technol.,Pasadena,1982.
- Richards, L. W., J. A. Anderson, D. L. Blumenthal, J. A. McDonald, G. L. Kok, A. L. Lazrus, Hydrogen peroxide and sulfur(IV) in Los Angeles cloud water, Atmos. Environ., 17, 911–914, 1983.
- Richtmeyer, R. D., Difference Methods for Initial Value Problems, 101, Wiley-Interscience, New York, 1957.
- Roach, W. T., R. Brown, S. J. Caughey, B. A. Crease, A. Slingo, A field study of nocturnal stratocumulus, I, Mean structure and budgets, Q. J. R. Meteorol. Soc., 108, 103–123, 1982.
- Roberts, J. D., R. Stewart, M. C. Caserio, Organic Chemistry, 527, W. A. Benjamin, Inc., Menlo Park, Calif., 1971.
- Rush, J. D., B. H. J. Bielski, Pulse radiolytic studies of HO2/O2- with Fe(II)/Fe(III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem., 89, 5062–5066, 1985.
- Russell, A. G., G. J. McRae, G. R. Cass, Mathematical modeling of the formation and transport of ammonium nitrate aerosol, Atmos. Environ., 17, 949–964, 1983.
- Russell, A. G., G. R. Cass, J. H. Seinfeld, On some aspects of nighttime atmospheric chemistry, Environ. Sci. Technol., 20, 1167–1172, 1986.
- Sadat-Shafai, T., J. Pucheault, C. Ferradini, A radiolysis study of the role of superoxide ion in the oxidation of sulfite by oxygen, Radiat. Phys. Chem., 17, 283–288, 1981.
- Schuurkes, J. A. A. R., M. M. J. Maenen, J. G. M. Roelofs, Chemical characteristics of precipitation in NH3-affected areas, Atmos. Environ., 22, 1689–1698, 1988.
- Schwartz, S. E., Gas- and aqueous-phase chemistry of HO2 in liquid water clouds, J. Geophys. Res., 89, 11589–11598, 1984.
- Schwartz, S. E., Mass-transport limitation to the rate of in-cloud oxidation of SO2: Re-examination in the light of new data, Atmos. Environ., 22, 2491–2499, 1988.
- Schwartz, S. E., J. E. Freiberg, Mass-transport limitation to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions, Atmos. Environ., 15, 1129–1144, 1981.
- Seigneur, C., P. Saxena, A study of atmospheric acid formation in different environments, Atmos. Environ., 18, 2109–2124, 1984.
- Sillen, G. L., A. E. Martell, Stability constants of metal-ion complexes, Spec. Publ. Chem. Soc., 17, 1964.
- Smith, R. M., A. E. Martell, Critical Stability Constants, Inorganic Complexes, 4, Plenum, New York, 1976.
- Stumm, W., J. J. Morgan, Aquatic Chemistry 2nd ed., Wiley-Interscience, New York, 1981.
- Sung, W., J. J. Morgan, Kinetics and product of ferrous iron oxygenation in aqueous systems, Environ. Sci. Technol., 14, 561–568, 1980.
- Talbot, R. W., K. M. Beecher, R. C. Harriss, W. R. Cofer III, Atmospheric geochemistry of formic and acetic acids at a mid-latitudes temperate site, J. Geophys. Res., 93, 1638–1652, 1988.
- Tang, I. N., J. H. Lee, Accommodation coefficients for ozone and SO2: implications on SO2 oxidation in cloud water, The Chemistry of Acid Rain: Sources and Atmospheric Processes R. W. Johnson, G. E. Gordon, ACS Symp. Ser., 349, 109–117, American Chemical Society, Washington D. C., 1987.
- Tang, Y., R. P. Thorn, R. L. Mauldin III, P. H. Wine, Kinetics and spectroscopy of the SO4- radical in aqueous solution, J. Photochem. Photobiol. A: Chemistry, 44, 243–258, 1988.
- ten Brink, H. M., S. E. Schwartz, P. H. Daum, Efficient scavenging of aerosol sulfate by liquid-water clouds, Atmos. Environ., 21, 2035–2052, 1987.
- Thornton, A. T., G. S. Laurence, Kinetics of oxidation of transition-metal ions by halogen radical anions, Part I, The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton Trans., 804–813, 1973.
- Tuazon, E. C., R. Atkinson, A. M. Winer, J. N. Pitts Jr., A study of the atmospheric reactions of 1,3-dichloropropene and other selected organochlorine compounds, Arch. Environ. Contam. Toxicol., 13, 691–700, 1984.
- Turner, D. R., M. Whitfield, A. G. Dickson, The equilibrium speciation of dissolved components in freshwater and seawater at 25 °C and 1 atm pressure, Geochim. Cosmochim. Acta, 45, 855–881, 1981.
- van deHulst, H. C., Light Scattering by Small Particles, 471, Dover, New York, 1981.
- Walcek, C. J., R. A. Brost, J. S. Chang, M. L. Wesely, SO2, sulfate and HNO3 deposition velocities computed using regional land use and meteorological data, Atmos. Environ., 20, 9949–9964, 1987.
- Waldman, J. M., D. J. Jacob, J. W. Munger, M. R. Hoffmann, Pollutant deposition in radiation fog, The Chemistry of Acid Rain R. W. Johnson, ACS Symp. Ser., 349, 250–257, American Chemical Society, Washington, D.C., 1987.
- Wasa, T., S. Musha, Polarographic behavior of glyoxal and its related compounds, Univ. Osaka Prefect. Ser., 19, 169–180, 1970.
- , Handbook of Chemistry and Physics 66th ed. R. C. Weast, Chemical Rubber Co., Cleveland, Ohio, 1986.
- Wechsler, C. J., M. L. Mandlich, T. E. Graedel, Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets, J. Geophys. Res., 91, 5189–5204, 1986.
- Wine, P. H., R. P. Thorn, Y. Tang, Laboratory investigations of free radical chemistry in cloud waterSymposium on Physico-Chemical Problems in Earth's Atmosphere, 196th MeetingAm. Chem. Soc.Los Angeles, Calif.Sept. 25–30, 1988.
- Wine, P. H., Y. Tang, R. P. Thorn, J. R. Wells, D. D. Davis, Kinetics of aqueous-phase reactions of the SO4- radical with potential importance in cloud chemistry, J. Geophys. Res., 94, 1085–1094, 1989.
- Worsnop, D. R., M. S. Zahniser, C. E. Kolb, J. A. Gardner, L. R. Watson, J. M. Van Doren, J. T. Jayne, P. Davidovits, The temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces, J. Phys. Chem., 93, 1159–1172, 1989.