Solar atmospheric coupling by electrons (SOLACE): 1. Effects of the May 12, 1997 solar event on the middle atmosphere
Linwood B. Callis
Search for more papers by this authorMurali Natarajan
Search for more papers by this authorDavid S. Evans
Search for more papers by this authorJames D. Lambeth
Search for more papers by this authorLinwood B. Callis
Search for more papers by this authorMurali Natarajan
Search for more papers by this authorDavid S. Evans
Search for more papers by this authorJames D. Lambeth
Search for more papers by this authorAbstract
An analysis is carried out of the effects on middle atmospheric NOy and O3 of a coronal mass ejection (CME) event which occurred on May 12, 1997, and which is coupled with observed solar wind fluctuations. Observations of electron fluxes by instruments aboard the SAMPEX and NOAA 12 satellites indicate large enhancements of magnetospheric electron fluxes occurring with the arrival of the high-speed solar wind. Calculations suggest that significant formation rates of NOy should occur in the mesosphere and the lower thermosphere at mid to high latitudes. Halogen Occultation Experiment (HALOE) NO observations reveal increases of more than an order of magnitude between 85 and 120 km in both hemispheres within 1–2 days after the electron flux increases. Two dimensional chemical transport simulations were carried out to assess the fate of the NOy increases. Northern hemispheric increases were lost to photochemical destruction shortly after the event ended. Southern hemispheric increases were transported in part into the stratosphere by advective descent. By October 1997, high-latitude NOy increases of 20–40% were calculated near 25 km leading to O3 reductions of up to ≈ 20% when compared to a simulation with no electron precipitation. A solar atmospheric coupling by electrons precipitating from the outer trapping and auroral regions of the magnetosphere, and which affects middle atmospheric NO, is clearly demonstrated by the observations alone.
References
- Baker, D. N., J. B. Blake, D. J. Gorney, P. R. Higbie, R. W. Klebesadel, J. H. King, Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere, Geophys. Res. Lett., 14, 1027, 1987.
- Baker, D. N., G. M. Mason, O. Figueroa, G. Colon, J. G. Watzin, R. M. Aleman, An overview of the solar, anomalous, and magnetospheric particle explorer (SAM-PEX) mission, IEEE Trans. Geosci. Remote Sens., 31, 531, 1993.
- Barth, C. A., C. B. Farmer, D. E. Siskind, J. P. Perich, ATMOS observations of nitric oxide in the mesosphere and lower thermosphere, J. Geophys. Res., 101, 12489, 1996.
- Boughner, R. E., L. B. Callis, Sensitivity of calculated odd nitrogen distributions to the diabatic wind fields, J. Geophys. Res., 96, 17315, 1991.
- Callis, L. B., Odd nitrogen formed by energetic electron precipitation as calculated form TIROS data, Geophys. Res. Lett., 24, 3237, 1997.
- Callis, L. B., J. D. Lambeth, NOy formed by precipitating electron events in 1991 and 1992' Descent into the stratosphere as observed by ISAMS, Geophys. Res. Lett., 25, 1875, 1998.
- Callis, L. B., R. E. Boughner, J. D. Lambeth, The stratosphere: Climatologies of the radiative heating and cooling rates and the diabatically diagnosed net circulation fields, J. Geophys. Res., 92, 5585, 1987.
- Callis, L. B., D. N. Baker, J. B. Blake, J. D. Lambeth, R. E. Boughner, M. Natarajan, R. W. Klebesadel, D. J. Gorney, Precipitating relativistic electrons: Their long-term effect on stratospheric odd nitrogen levels, Geophys. Res., 96, 2939, 1991a.
- Callis, L. B., R. E. Boughner, M. Natarajan, J. D. Lambeth, D. N. Baker, J. B. Blake, Ozone depletion in the high-latitude lower stratosphere: 1979–1990, J. Geophys. Res., 96, 2921, 1991b.
- Callis, L. B., D. N. Baker, M. Natarajan, J. B. Blake, R. A. Mewaldt, R. S. Selesnick, J. R. Cummings, A 2-D model simulation of downward transport of NOy into the stratosphere: Effects on the 1994 austral spring O3 and NOy, Geophys. Res. Lett., 23, 1905, 1996a.
- Callis, L. B., et al., Precipitating electrons: Evidence for effects on mesospheric odd nitrogen, Geophys. Res. Lett., 23, 1901, 1996b.
- Callis, L. B., M. Natarajan, J. D. Lambeth, R. E. Boughner, On the origin of midlatitude ozone changes: Data analysis and simulations for 1979–1993, J. Geophys. Res., 102, 1215, 1997.
- Callis, L. B., M. Natarajan, J. D. Lambeth, andD. N. Baker, Solar atmospheric coupling by electrons (SOLACE) 2. Calculated stratospheric effects of precipitating electrons 1979–1988,J. Geophys. Res., 103(D21), 1998.
- Cebula, R. P., M. T. DeLand, B. M. Schlesinger, Estimates of solar variability using the Solar Backscatter Ultraviolet (SBUV) 2 Mg II index from the NOAA 9 satellite, J. Geophys. Res., 97, 11613, 1992.
- Cook, W. R., et al., PET: A proton/electron telescope for studies of magnetospheric, solar, and galactic particles, IEEE Trans. Geosci. and Remote Sens., 31, 565, 1993.
- Crutzen, P. J., I. S. A. Isaksen, G. C. Reid, Solar proton events, stratospheric sources of nitric oxide, Science, 189, 457, 1975.
- DeMore, W. B., et al., Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 11, JPL Publ., 94-26, 1994.
- Frahm, R. A., et al., The diffuse aurora: A significant source of ionization in the middle atmosphere, J. Geophys. Res., 102, 28203, 1997.
- Gaines, E. E., D. L. Chenette, W. L. Imhof, C. H. Jackman, J. D. Winninghamn, Itelativistic electron fluxes in May 1992 and their effect on the middle atmosphere, J. Geophys. Res., 100, 1027, 1995.
- Garcia, R., S. Solomon, R. G. Roble, D. W. Itusch, A numerical study of the response of the middle atmosphere to the 11-year solar cycle, Planet. Space Sci., 32, 411, 1984.
- Gordley, L. L., et al., Validation of nitric oxide and nitrogen dioxide measurements made by HALOE for the UARS platform, J. Geophys. Res., 101, 10241, 1996.
- Gosling, J. T., P. Riley, The acceleration of slow coronal mass ejections in the high-speed solar wind, Geophys. Res. Lett., 23, 2867, 1996.
- Gosling, J. T., S. J. Bame, D. J. McComas, J. L. Phillips, B. E. Goldstein, M. Neugebauer, The speeds of coronal mass ejections in the solar wind at mid hellographic latitudes: Ulysses, Geophys. Res. Lett., 21, 1109, 1994.
- Gosling, J. T., D. J. McComas, J. L. Phillips, V. J. Pizzo, B. E. Goldstein, R. J. Forsyth, R. P. Lepping, A CME-driven solar wind disturbance observed at both low and high heliographic latitudes, Geophys. Res. Lett., 22, 1753, 1995.
- Herman, J. R., R. A. Goldberg, Sun, Weather, and Climate, NASA Spec. Publ., SP-426, 1978.
- Holmann, D. J., S. J. Oltmans, J. M. Harris, S. Solomon, T. Deshler, B. J. Johnson, Observation and possible causes of new ozone depletion in Antarctica in—1991, Nature, 359, 283, 1992.
- Jackman, C. H., A. R. Douglass, R. B. Rood, R. D. McPeters, Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model, J. Geophys. Res., 95, 7417, 1990.
- Lean, J., Solar ultraviolet irradiance variations: A review, J. Geophys. Res., 92, 839, 1987.
- Mlynczak, M. G., S. Solomon, A detailed evaluation of the heating efficiency in the middle atmosphere, J. Geophys. Res., 98, 10517, 1993.
- Natarajan, M., L. B. Callis, Examination of stratospheric ozone photochemistry in light of recent data, Geophys. Res. Lett., 16, 473, 1989.
- Natarajan, M., L. B. Callis, Stratospheric photochemical studies with atmospheric trace molecule spectroscopy (ATMOS) measurements, J. Geophys. Res., 96, 9361, 1991.
- Natarajan, M., L. B. CMlis, Ozone variability in the high latitude summer stratosphere, Geophys. Res. Lett., 24, 1191, 1997.
- , National Itesearch Council, Commission on Geosciences, Environment, and Itesources, Board on Global Change, Solar Influences on Global Change, Nat. Acad. Press, Washington, D.C., 1994.
- Ogilvie, K. W., et al., SWE, a comprehensive plasma instrument for the Wind spacecraft, Space Sci. Rev., 71, 55, 1995.
- Paullkas, G. A., J. B. Blake, Effects of solar wind on magnetospheric dynamics: Energetic electrons at synchronous orbit, Quantitative Modeling of Magnetospheric Processes, Geophys. Monogr. Ser., 21 W. P. Olson, 180, AGU, Washington, D.C., 1979.
10.1029/GM021p0180 Google Scholar
- Porter, H. S., C. H. Jackman, A. E. S. Green, Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 65, 154, 1976.
- Raben, V. J., D. S. Evans, H. H. Sauer, S. R. Sahm, M. Huynh, TIROS/NOAA satellite space environment monitor data archive documentation: 1995 updateNOAA Tech. Memo. ERL SEL-86Environ. Ites. Labs., Natl. Oceanic and Atmos. Admin., Boulder, Colorado, 1995.
- Rinsland, C. P., et al., ATMOS measurements of H20 + 2CH4 and total reactive nitrogen in the November 1994 Antarctic stratosphere: Dehydration and denitrification in the vortex, Geophys. Res. Lett., 23, 2397, 1996a.
- Rinsland, C. P., et al., ATMOS/ATLAS-3 measurements of stratospheric chlorine and reactive nitrogen partitioning inside and outside the November 1994 Antarctic vortex, Geophys. Res. Lett., 23, 2365, 1996b.
- Russell III, J. M., S. Solomon, L. L. Gordley, E. E. Remsberg, L. B. Callis, The variability of stratospheric and mesospheric NO2 in the polar winter night, J. Geophys. Res., 89, 7267, 1984.
- Russell III, J. M., L. L. Gordley, J. H. Park, S. Roland Drayson, W. D. Hesketh, R. J. Cicerone, A. F. Tuck, J. E. Frederick, J. E. Harries, P. J. Crutzen, The halogen occultation experiment, J. Geophys. Res., 98, 10777, 1993.
- Scale, R. A., R. H. Bushnell, The TIROS-N/NOAA A-J space environment monitor subsystemNOAA Tech. Memo. ERL SEL-75Environ. Res. Labs., Natl. Oceanic and Atmos. Admin., Boulder, Colo., 1987.
- Siskind, D. E., C. A. Barth, D. S. Evans, R. G. Robie, The response of thermospheric nitric oxide to an auroral storm, 2, Auroral latitudes, J. Geophys. Res., 94, 16899, 1989.
- Siskind, D. E., C. A. Barth, D. D. Cleary, The possible effect of solar soft X rays on thermospheric nitric oxide, J. Geophys. Res., 95, 4311, 1990.
- Solomon, S., P. J. Crutzen, R. G. Roble, Photochemical coupling between the thermosphere and lower atmosphere, 1, Odd nitrogen from 50 to 120 km, J. Geophys. Res., 87, 7206, 1982.
- Swider Jr., W., Ionization rates due to the attenuation of 1–100 Angstrom nonflare solar X-rays in the terrestrial atmosphere, Rev. Geophys., 7, 573, 1969.
- Thorne, R. M., Energetic radiation belt precipitation: A natural depletion mechanism for stratospheric ozone, Science, 21, 287, 1977.
- , U.S. Department of Commerce, Preliminary report and Forecast of Solar Geophysical DataSpace Environ. Cent., Natl. Oceanic and Atmos. Admins., Boulder, Colo. 20 May, 1997.
- Walt, M., W. M. McDonald, W. E. Francis, Penetration of auroral electrons into the atmosphere, Physics of the Magnetosphere R. L. Caravillano, J. F. McClay, H. R. Radoski, 534, D. Reidel, Norwell, Mass., 1968.
10.1007/978-94-010-3467-8_17 Google Scholar
- Zhu, X., M. E. Summers, D. F. Strobel, Calculation of CO2 15 micron band atmospheric cooling rates by curtis matrix interpolation of correlated-k coefficients, J. Geophys. Res., 97, 12787, 1992.