Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle
M. L. Delaney
Search for more papers by this authorM. L. Delaney
Search for more papers by this authorAbstract
Ideas about key factors in the oceanic mass balance of dissolved, reactive phosphate have changed substantially. I present an integrated overview of these here, with an emphasis on evaluating the burial sinks for P and defining areas needing further research. The major source of reactive P to the ocean is river input. Reactive P is delivered to the oceanic sediment-water interface primarily in particulate organic matter. P scavenged by hydrothermal iron-rich oxyhydroxide particles, with uptake in proportion to deep water phosphate concentrations, represents a substantially smaller flux to the sediment-water interface. Diagenetic transformations are important influences on the form of reactive P burial in marine sediments. P burial occurs with organic carbon burial and as P associated with iron-rich oxyhydroxide particles and coatings. Formation of authigenic P-rich phases, presumably apatite, at the expense of organic P and oxide-associated P, is significant in open ocean marine sediments. The authigenic P sink may represent a substantially larger portion of the sedimentary burial than indicated by previous estimates focused on P burial in organic-rich continental margin sediments.
References
- Anderson, L. A., J. L. Sarmiento, Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8, 65–80, 1994.
- Antoine, D., J.-M. André, A. Morel, Oceanic primary production, 2, Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10, 57–69, 1996.
- Bacastow, R., E. Maier-Reimer, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles, 5, 71–85, 1991.
- Berger, W. H., G. Wefer, Productivity of the glacial ocean: Discussion of the iron hypothesis, Limnol. Oceanogr., 36, 1899–1918, 1991.
- Berger, W. H., K. Fischer, C. Lai, G. Wu, Ocean carbon flux: Global maps of primary production and export production, Biogeochemical Cycling and Fluxes Between the Deep Euphotic Zone and Other Oceanic Realms C. R. Agegian, Res. Rep. 88-1, 131–176Natl. Undersea Res. Program, Natl. Ocean. and Atmos. Admin., Rockville, Md., 1988.
- Berner, E. K., R. A. Berner, Global Environment: Water, Air, and Geochemical Cycles, Prentice-Hall, Englewood Cliffs, N.J., 1996.
- Berner, R. A., Phosphate removal from sea water by adsorption on volcanogenic ferric oxides, Earth Planet. Sci. Lett., 18, 77–86, 1973.
- Berner, R. A., Geocarb II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 294, 56–91, 1994.
- Berner, R. A., J.-L. Rao, Phosphorus in sediments of the Amazon River and estuary: Implications for the global flux of phosphorus to the sea, Geochim. Cosmochim. Acta, 58, 2333–2339, 1994.
- Broecker, W. S., Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46, 1689–1705, 1982.
- Broecker, W. S., T.-H. Peng, Tracers in the Sea, Lamont-Doherty Geological Observatory, Columbia University, Palisades, N.Y., 1982.
- Bruland, K. W., Trace elements in sea-water, Chemical Oceanography J. P. Riley, R. Chester, 8, 157–220, Academic Press, New York, 1983.
10.1016/B978-0-12-588608-6.50009-2 Google Scholar
- Burdige, D. J., The kinetics of organic matter mineralization in anoxic marine sediments, J. Mar. Res., 49, 727–761, 1991.
- Catubig, N. R., D. E. Archer, R. Francois, P. deMenocal, W. Howard, E.-F. Yu, Global deep-sea burial rate of calcium carbonate during the last glacial maximum, Paleoceanography, 13, 298–310, 1998.
- Codispoti, L. A., Phosphorus versus nitrogen limitation of new and export production, Productivity of the Ocean: Present and Past W. H. Berger, V. S. Smetacek, G. Wefer, 377–394, Wiley-Interscience, New York, 1989.
- Curry, W. B., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 154, Ocean Drill. Program, College Station, Tex., 1995.
- Delaney, M. L., L. D. Anderson, Phosphorus geochemistry in Ceara Rise sediments, Proc. Ocean Drill. Program Sci. Results, 154, 475–482, 1997.
- Delaney, M. L., E. A. Boyle, Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models, Paleoceanography, 3, 137–156, 1988.
- Delaney, M. L., A. W. H. Bé, E. A. Boyle, Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores, Geochim. Cosmochim. Acta, 49, 1327–1341, 1985.
- Donat, J. R., andK. W. Bruland, Trace elements in the oceans, in Trace Elements in Natural Waters, edited by B. Salbu, and E. Steinnes, chap. 11, pp. 247–281,CRC Press,Boca Raton, Fla.,1994.
- Duce, R. A., The input of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity, The Role of Air-Sea Exchange in Geochemical Cycling P. Buat-Ménard, 497–529, D. Reidel Publishing Company, Dordrecht, The Netherlands, 1986.
10.1007/978-94-009-4738-2_19 Google Scholar
- Duce, R. A., et al., The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193–259, 1991.
- Dugdale, R. C., F. P. Wilkerson, Silicate regulation of new production in the equatorial Pacific upwelling, Nature, 391, 270–273, 1998.
- Falkowski, P. G., Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean, Nature, 387, 272–275, 1997.
- Feely, R. A., G. J. Massoth, E. T. Baker, J. P. Cowen, M. F. Lamb, K. A. Krogslund, The effect of hydrothermal processes on mid-water phosphorus distributions in the northeast Pacific, Earth Planet. Sci. Lett, 96, 305–318, 1990a.
- Feely, R. A., T. L. Geiselman, E. T. Kater, G. J. Massoth, S. R. Hammond, Distribution and composition of buoyant and non-buoyant hydrothermal plume particles from the ASHES vent at Axial Volcano, Juan de Fuca Ridge, J. Geophys. Res., 95, 12855–12874, 1990b.
- Feely, R. A., J. H. Trefry, G. J. Massoth, S. Metz, A comparison of the scavenging of phosphorus and arsenic from seawater by hydrothermal iron oxyhydroxides in the Atlantic and Pacific oceans, Deep Sea Res., Part A, 38, 617–623, 1991.
- Feely, R. A., G. J. Massoth, J. H. Trefry, E. T. Baker, A. J. Paulson, G. T. Lebon, Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge, J. Geophys. Res., 99, 4985–5006, 1994a.
- Feely, R. A., J. F. Gendron, E. T. Baker, G. T. Lebon, Hydrothermal plumes along the East Pacific Rise, 8°40' to 11°50'N: Particle distribution and composition, Earth Planet. Sci. Lett., 128, 19–36, 1994b.
- Filippelli, G. M., M. L. Delaney, The oceanic phosphorus cycle and continental weathering during the Neogene, Paleoceanography, 9, 643–652, 1994.
- Filippelli, G. M., M. L. Delaney, Phosphorus geochemistry and accumulation rates in the eastern equatorial Pacific Ocean: Results from Leg 138, Proc. Ocean Drill. Program Sci. Results., 138, 757–767, 1995.
- Filippelli, G. M., M. L. Delaney, Phosphorus geochemistry of equatorial Pacific sediments, Geochim. Cosmochim. Acta, 60, 1479–1495, 1996.
- Follmi, K. B., The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth Sci. Rev., 40, 55–124, 1996.
- Fox, L. E., A model for the inorganic control of phosphate concentrations in river waters, Geochim. Cosmochim. Acta, 53, 417–428, 1989.
- Fox, L. E., Phosphorus chemistry in the tidal Hudson River, Geochem. Cosmochim. Acta, 55, 1529–1538, 1991.
- Fox, L. E., S. L. Sager, S. C. Wofsy, The chemical control of soluble phosphorus in the Amazon estuary, Geochim. Cosmochim. Acta, 50, 783–794, 1986.
- Froelich, P. N., Interactions of the marine phosphorus and carbon cycles, The Interaction of Global Biogeochemical Cycles, JPL Publ., 84-21, 141–176, 1984.
- Froelich, P. N., Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism, Limnol. Oceanogr., 33, 649–668, 1988.
- Froelich, P. N., M. L. Bender, G. R. Heath, Phosphorus accumulation rates in metalliferous sediments on the East Pacific Rise, Earth Planet. Sci. Lett., 34, 351–359, 1977.
- Froelich, P. N., M. L. Bender, N. A. Luedtke, G. R. Heath, T. DeVries, The marine phosphorus cycle, A. J. Sci., 282, 474–511, 1982.
- Froelich, P. N., K. H. Kim, R. Jahnke, W. C. Burnett, A. Soutar, M. Deakin, Pore water fluoride in Peru continental margin sediments: Uptake from seawater, Geochim. Cosmochim. Acta, 47, 1605–1612, 1983.
- Froelich, P. N., et al., Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation, Mar. Geol., 80, 309–343, 1988.
- Glenn, C. R., et al., Phosphorus and phosphorites: Sedimentology and environments of formation, Ecolgae Geol. Helv., 873, 747–788, 1994.
- Graham, D. W., M. L. Bender, D. F. Williams, L. D. Keigwin, Strontium-calcium ratios in Cenozoic planktonic foraminifera, Geochim. Cosmochim. Acta, 46, 1281–1292, 1982.
- Hallock, P. A., Fluctuations in the trophic resource continuum: A factor in global diversity cycles?, Paleoceanography, 2, 457–471, 1987.
- Hartnett, H. E., R. G. Keil, J. I. Hedges, A. H. Devol, Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572–574, 1998.
- Henson, C., H. Landenberger, M. Zabel, H. D. Schulz, Quantification of diffusive benthic fluxes of nitrate, phosphate, and silicate in the Southern Ocean, Global Biogeochem. Cycles, 12, 193–210, 1998.
- Ingall, E. D., P. Van Cappellen, Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments, Geochim. Cosmochim. Acta, 54, 373–386, 1990.
- Jackson, G. A., Implications of high dissolved organic matter concentrations for oceanic properties and processes, Oceanography, 1, 28–33, 1988.
10.5670/oceanog.1988.05 Google Scholar
- Jahnke, R., The global ocean flux of particulate organic carbon: Areal distribution and magnitude, Global Biogeochem. Cycles, 10, 71–88, 1996.
- Jahnke, R. A., S. R. Emerson, K. K. Roe, W. C. Burnett, The present day formation of apatite in Mexican continental margin sediments, Geochim. Cosmochim. Acta, 47, 259–266, 1983.
- Kadko, D., R. Feely, G. Massoth, Scavenging of 234Th and phosphorus removal from the hydrothermal effluent plume over the North Cleft segment of the Juan de Fuca Ridge, J. Geophys. Res., 99, 5017–5024, 1994.
- Keil, R. G., D. B. Montlucon, F. G. Prahl, J. I. Hedges, Sorptive preservation of labile organic matter in marine sediments, Nature, 370, 549–552, 1994.
- Kroenke, L. W., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 130, Ocean Drill. Program, College Station, Tex., 1991.
- Krom, M. D., R. A. Berner, The diagenesis of phosphorus in a nearshore marine sediment, Geochim. Cosmochim. Acta, 45, 201–216, 1981.
- Levitus, S., M. W. Conkright, J. L. Reid, R. G. Najjar, A. Mantyla, Distribution of nitrate, phosphate, and silicate in the world oceans, Prog. Oceanog., 31, 245–273, 1993.
- Mach, D. L., A. Ramirez, H. D. Holland, Organic phosphorus and carbon in marine sediments, A. J. Sci., 278, 429–441, 1987.
- Martin, J. H., R. M. Gordon, S. E. Fitzwater, The case for iron, Limnol. Oceanogr., 36, 1793–1802, 1991.
- Martin, R. E., Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere, Palaios, 11, 209–219, 1996.
- Matear, R. J., G. Holloway, Modeling the inorganic phosphorus cycle of the North Pacific using an adjoint data assimilation model to assess the role of dissolved organic phosphorus, Global Biogeochem. Cycles, 9, 101–119, 1995.
- Mayer, L., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 138, Ocean Drill. Program, College Station, Tex., 1992.
- Meybeck, M., Carbon, nitrogen, and phosphorus transport by world rivers, A. J. Sci., 282, 401–450, 1982.
- Meybeck, M., Natural sources of C, N, P and S, Interactions of C, N, P and S Biogeochemical Cycles and Global Change, NATO ASI Ser., Ser. I, 4, 163–193, 1993.
10.1007/978-3-642-76064-8_6 Google Scholar
- Morse, J. W., N. Cook, The distribution and form of phosphorus in North Atlantic Ocean deep-sea and continental slope sediments, Limnol. Oceanogr., 23, 825–830, 1978.
- Murray, R. W., M. Leinen, Chemical transport to the seafloor of the equatorial Pacific across a latitudinal transect at 135°W: Tracking sedimentary major, trace, and rare earth elements fluxes at the equator and the Intertropical Convergence Zone, Geochim. Cosmochim. Acta, 57, 4141–4163, 1993.
- Najjar, R. G., J. L. Sarmiento, J. R. Toggweiler, Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 6, 45–76, 1992.
- Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert, B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data, and relationship to biogenic sedimentation, Global Biogeochem. Cycles, 9, 359–372, 1995.
- Palmer, M. R., Rare earth elements in foraminifera tests, Earth Planet. Sci. Lett, 73, 285–298, 1985.
- Ramirez, A. J., A. W. Rose, Analytical geochemistry of organic phosphorus and its correlation with organic carbon in marine and fluvial sediments and soils, A. J. Sci., 292, 421–454, 1992.
- Raymo, M. E., The Himalayas, organic carbon burial, and climate in the Miocene, Paleoceanography, 9, 399–404, 1994.
- Redfield, A. C., B. H. Ketchum, F. A. Richards, The influence of organisms on the composition of sea-water, The Sea, 2 M. N. Hill, 26–77, Wiley-Interscience, New York, 1963.
- Reimers, C. E., Organic matter in anoxic sediments off central Peru: Relations of porosity, microbial decomposition and deformation properties, Mar. Geol., 46, 175–197, 1982.
- Reimers, C. E., K. C. Ruttenberg, D. E. Canfield, M. B. Christiansen, J. B. Martin, Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin, Geochim. Cosmochim. Acta, 60, 4037–4057, 1996.
- Rudnicki, M. D., H. Elderfield, A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 57, 2939–2957, 1993.
- Ruttenberg, K. C., Development of a sequential extraction method for different forms of phosphorus in marine sediments, Limnol. Oceanogr., 37, 1460–1482, 1992.
- Ruttenberg, K. C., Reassessment of the oceanic residence time of phosphorus, Chem. Geol., 107, 405–409, 1993.
- Ruttenberg, K. C., R. A. Berner, Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments, Limnol. Oceanogr., 37, 1460–1482, 1993.
- Schuffert, J. D., R. A. Jahnke, M. Kastner, J. Leather, A. Sturz, M. R. Wing, Rates of formation of modern phosphorite off western Mexico, Geochim. Cosmochim. Acta, 58, 5001–5010, 1994.
- Schuffert, J. D., M. Kastner, R. A. Jahnke, Carbon and phosphorus burial associated with modern phosphorite formation, Mar. Geol., 146, 21–31, 1998.
- Sclater, J. G., E. Boyle, J. M. Edmond, A quantitative analysis of some factors affecting carbonate sedimentation in the oceans, Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, 235–248, American Geophysical Union, Washington, D.C., 1979.
10.1029/ME003p0235 Google Scholar
- Sharp, J. H., The dissolved organic carbon controversy: An update, Oceanography, 6, 45–50, 1993.
10.5670/oceanog.1993.13 Google Scholar
- Sherwood, B. A., S. L. Sager, H. D. Holland, Phosphorus in foraminiferal sediments from North Atlantic Ridge cores and in pure limestones, Geochim. Cosmochim. Acta, 51, 1861–1866, 1987.
- Slomp, C. P., E. H. G. Epping, W. Helder, W. Van Raaphorst, A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments, J. Mar. Res., 54, 1179–1205, 1996.
- Sugimura, Y., Y. Suzuki, A high temperature catalytic oxidation method of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample, Mar. Chem., 24, 105–131, 1988.
- Suzuki, Y., On the measurement of DOC and DON in seawater, Mar. Chem., 41, 287–288, 1993.
- Suzuki, Y., Y. Sugimura, T. Itoh, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Mar. Chem., 16, 83–97, 1985.
- Tribble, J. S., R. S. Arvidson, M. Lane III, F. T. Mackenzie, Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: Applications to petrologic problems, Sediment. Geol., 95, 11–37, 1995.
- Tromp, T. K., P. Van Cappellen, R. M. Key, A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments, Geochim. Cosmochim. Acta, 59, 1259–1284, 1995.
- Tyrell, T., C. S. Law, Low nitrate:phosphate ratios in the global ocean, Nature, 387, 793–796, 1997.
- Van Cappellen, P., E. D. Ingall, Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9, 677–692, 1994.
- Wheat, C. G., R. A. Feely, M. J. Mottl, Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans, Geochim. Cosmochim. Acta, 60, 3593–3608, 1996.
- Yamanaka, Y., E. Tajika, The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model, Global Biogeochem. Cycles, 10, 361–382, 1996.
- Yamanaka, Y., E. Tajika, Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model, Global Biogeochem. Cycles, 11, 599–612, 1997.