Quantification of diffusive benthic fluxes of nitrate, phosphate, and silicate in the southern Atlantic Ocean
Christian Hensen
Search for more papers by this authorHolger Landenberger
Search for more papers by this authorMatthias Zabel
Search for more papers by this authorHorst D. Schulz
Search for more papers by this authorChristian Hensen
Search for more papers by this authorHolger Landenberger
Search for more papers by this authorMatthias Zabel
Search for more papers by this authorHorst D. Schulz
Search for more papers by this authorAbstract
Pore water data from surface sediments and bottom water data at 180 locations were used to create distribution maps of diffusive benthic release rates of nitrate, phosphate, and silicate in the southern Atlantic Ocean for water depths ≥1000 m. Geostatistical methods of variogram analysis and kriging were used for data interpolation. Since benthic fluxes are controlled by organic matter degradation and dissolution processes and therefore by the supply of organic matter to the sediment surface, the distribution pattern of all investigated constituents should reflect a general coupling to surface water productivity. This seems to be true for the most part of the oligotrophic central South Atlantic and the upwelling area off southwest Africa. Striking regional differences in this regard, however, exist for the eastern equatorial region where unexpectedly low fluxes were calculated and the Argentine Basin where benthic fluxes are very high. The Argentine Basin obviously receives a higher input of degradable/dissolvable material, whereas in the eastern equatorial region the low benthic fluxes are possibly due to intense nutrient recycling within the water column. Estimated fluxes vary considerably over the entire region: NO3, 10–180 mmol m−2 yr−1 PO4, (−2)−11 mmol m−2 yr−1 and Si, 0–0.65 mol m−2 yr−1. Areas of highest release rates are the continental margins off southwest Africa and off Argentina. The investigated area comprises a total of approximately 32×106 km2 between 8°N and 40°–50°S. Our estimations reveal benthic release rates of 1.55×l012 mol NO3 yr−1, 3.5×l010 mol PO4 yr−1 and 2.1×1012 mol Si yr−1. Open ocean areas with middle to low fluxes contribute about 70–80% of the total estimated fluxes. The release of phosphate is probably underestimated because of core recovery artifacts and is therefore based on the assumption that fluxes are not lower than 0.25 mmol m−2 yr−1 at any location of the studied area. The investigated area represents about one tenth of the world deep ocean (without the Arctic Ocean). Assuming the South Atlantic to be representative, we calculate annual global release rates of 15×l012 mol NO3, 32×l010 mol PO4 and 20×1012 mol Si. If our estimates are correct, about 4–6% of silicate, 3–4% of nitrate, and 1% of phosphate annually produced in the surface waters are remineralized in surface sediments from water depths ≥ 1000 m.
References
- Akin, H., H. Siemes, Praktische Geostatistik, Springer-Verlag, Berlin-Heidelberg, 1988.
10.1007/978-3-642-73542-4 Google Scholar
- Aller, R. C., Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures, Nitrogen Cycling in Coastal Marine Environments T. H. Blackburn, J. Sorensen, 301–338, John Wiley, New York, 1988.
- Antoine, D., J.-M. André, A. Morel, Oceanic primary production, 2., Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10, 57–69, 1996.
- Archer, D., A. Devol, Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements, Limnol. Oceanogr., 37, 614–629, 1992.
- Archer, D., M. Lyle, K. Rodgers, P. Froelich, What controls opal preservation in tropical deep-sea sediments?, Paleoceanography, 81, 7–21, 1993.
- Bainbridge, A. E., GEOSECS — Atlantic Expedition, 2, Sections and profiles, National Science Foundation, Washington D.C., 1976.
- Balsam, W. L., R. J. Wolhart, Sediment dispersal in the Argentine Basin: Evidence from visible light spectra, Deep Sea Res., Part II, 40, 1001–1031, 1993.
- Berelson, W. M., D. E. Hammond, D. O'Neill, X.-M. Xu, C. Chin, J. Zukin, Benthic fluxes and pore water studies from sediments of the central equatorial north Pacific: Nutrient diagenesis, Geochim. Cosmochim. Acta, 54, 3001–3012, 1990.
- Berger, W. H., Appendix global maps of ocean productivity, Productivity of the Ocean: Present and Past W. H. Berger, et al., 429–455, John Wiley, New York, 1989.
- Berger, W. H., G. Wefer, Productivity of the glacial ocean: Discussion of the iron hypothesis, Limnol. Oceanogr., 36, 1899–1918, 1991.
- Berger, W. H., K. Fischer, C. Lai, C. Wu, Ocean productivity and organic carbon flux. I. Overview and maps of primary production and export production, SIO Ref, 87-30, Univ. of Calif., San Diego, 1987.
- Berger, W. H., V. Smetacek, G. Wefer, Ocean productivity and paleoproductivity — An overview, Productivity of the Ocean: Present and Past W. H. Berger, et al., 1–34, John Wiley, New York, 1989.
- Betzer, P. R., W. J. Showers, E. A. Laws, C. D. Winn, G. R. Di Tullio, P. M. Kroopnick, Primary productivity and particle fluxes on a transect of the equator at 153 W in the Pacific, Deep Sea Res., Part. A, 31, 1–11, 1984.
- Calvert, S. E., Sedimentary geochemistry of silicon, Silicon Geochemistry and Biogeochemistry S. R. Aston, 143–186, Academic, San Diego, Calif., 1983.
- Canfield, D. E., Organic matter oxidation in marine sediments, Interactions of C, N, P, and S in Biogeochemical Cycles R. Wollast, et al., NATO ASI Set., Ser. I, 4, 333–363, 1993.
10.1007/978-3-642-76064-8_14 Google Scholar
- Davis, J. C., Statistics and data analysis in geology, John Wiley, New York, 1986.
- deBaar, J. W., E. Suess, Ocean carbon cycle and climate change — An introduction to the Interdisciplinary Union Symposium, Global Planet. Change, 8, VII–XI, 1993.
- DeMaster, D. J., The marine budgets of Silica and 32Si, Ph.D. dissertation,New Haven, Conn.,Yale Univ.,1979.
- DeMaster, D. J., W. O. Smith Jr., D. M. Nelson, J. Y. Aller, Biogeochemical processes in Amazon shelf waters: Chemical distributions and uptake rates of silicon, carbon and nitrogen, Cont. Shelf Res., 16, 617–643, 1996.
- Emerson, S., J. I. Hedges, Processes controlling the organic carbon content of open ocean sediments, Paleoceanography, 35, 621–634, 1988.
- Emery, W. J., E. Uchupi, The Geology of the Atlantic Ocean, Springer Verlag, New York, 1984.
10.1007/978-1-4612-5278-8 Google Scholar
- Englund, E., A. Sparks, GEO-EAS (Geostatistical Environmental Assesment Software) User's GuideRep. 600/4-88/033aU.S. Environmental Protection Agency, Las Vegas, Nev., 1988.
- Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman, V. Maynard, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta, 43, 1075–1090, 1979.
- Geyer, W. R., R. C. Beardsley, J. Candela, B. M. Castro, R. V. Legeckis, S. J. Lentz, R. Limeburner, L. B. Miranda, J. H. Trowbridge, The physical oceanography of the Amazon outflow, Oceanography, 4, 8–14, 1991.
10.5670/oceanog.1991.15 Google Scholar
- Glud, R. N., J. K. Gundersen, B. B. Jørgensen, N. P. Revsbech, H. D. Schulz, Diffusive and total uptake of deep-sea sediments in the eastern South Atlantic Ocean: In situ and laboratory measurements, Deep Sea Res., 41Part I, 1767–1788, 1994.
- Grasshoff, K., M. Ehrhardt, K. Kremling, Methods of Seawater Analysis, Verlag Chemie, Weinheim, Germany, 1983.
- Hammond, D. E., J. McManus, W. M. Berelson, T . E. Kilgore, R. H. Pope, Early diagenesis of organic material in equatorial Pacific sediments: Stoichiometry and kinetics.-, Deep Sea Research, Part II, 43, 1365–1412, 1996.
- Heath, G. R., Dissolved silica and deep-sea sediments, Studies in Paleoceanography W. W. Hay, Spec. Publ. Soc. Econ. Paleontol. Mineral., 20, 77–93, 1974.
10.2110/pec.74.20.0077 Google Scholar
- Henrichs, S. M., W. S. Reeburgh, Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy, J. Geomicrobiol., 5, 191–237, 1987.
- Hensen, C., H. Landenberger, M. Zabel, J. Gundersen, R. N. Glud, H. D. Schulz, Simulation of early diagenetic processes in continental slope sediments off southwest Africa: The Computer model CoTAM tested, Mar. Geol., 1997.
- Jahnke, R. A., The global ocean flux of particulate organic carbon: Areal distribution and magnitude, Global Biogeochem. Cycles, 10, 71–88, 1996.
- Jahnke, R. A., G. A. Jackson, Role of sea floor organisms in oxygen consumption in the deep North Pacific Ocean, Nature, 329, 621–623, 1987.
- Jahnke, R. A., D. Heggie, S. Emerson, V. Grundmanis, Pore waters of the central Pacific Ocean: Nutrient results, Earth Planet. Sci. Lett., 61, 233–256, 1982a.
- Jahnke, R. A., S. R. Emerson, J. W. Murray, A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments, Limnol. Oceanogr., 27, 610–623, 1982b.
- Jahnke, R. A., S. R. Emerson, C. E. Reimers, J. Schuffert, K. Ruttenberg, D. Archer, Benthic recycling of biogenic debris in the eastern tropical Atlantic ocean, Geochim. Cosmochim. Acta, 53, 2947–2960, 1989.
- Jahnke, R. A., C. E. Reimers, D. B. Craven, Intensification of recycling of organic matter at the sea floor near ocaen margins, Nature, 348, 50–54, 1990.
- Jones, G. A., D. A. Johnson, Displaced antarctic diatoms in Vema Channel sediments: Late Pleistocene/Holocene fluctuations in AABW flow, Mar. Geol., 58, 165–186, 1984.
- Kennett, J. P., Marine Geology, Prentice-Hall Inc., Englewood Cliffs, N. J., 1982.
- Ledbetter, M. T., A. Klaus, Influence of bottom currents on sediment texture and sea-floor morphology in the Argentine Basin, Geology and Geochemistry of Abyssal Plains P. P. E. Weaver, J. Thomson, Geol. Soc. Spec. Publ., 31, 23–31, 1987.
10.1144/GSL.SP.1987.031.01.04 Google Scholar
- Lerman, A., Geochemical Processes in Water and Sediment Environments, John Wiley, New York, 1979.
- Li, Y.-H., S. Gregory, Diffusion of ions in sea water in deep-sea sediments, Geochim. Cosmochim. Acta, 38, 703–714, 1974.
- Mackenzie, F. T., L. M. Ver, C. Sabine, M. Lane, A. Lerman, C, N, P, S global biogeochemical cycles and modeling of global change, Interactions of C, N, P and S Biogeochemical Cycles and Global Change R. Wollast, et al., NATO ASI Ser., Ser. I, 4, 1–61, 1993.
10.1007/978-3-642-76064-8_1 Google Scholar
- Meybeck, M., C, N, P and S in rivers: From sources to inputs, Interactions of C, N, P and S Biogeochemical Cycles and Global Change R. Wollast, et al., NATO ASI Ser., Ser. I, 4, 163–193, 1993.
10.1007/978-3-642-76064-8_6 Google Scholar
- Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert, B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship in biogenic sedimentation, Global Biogeochem. Cycles, 9, 359–372, 1995.
- Rowe, G. T., G. S. Boland, W. C. Phoel, R. F. Anderson, P. E. Biscaye, Deep-sea floor respiration as an indication of lateral input of biogenic detritus from continental margins, Deep Sea Res., Part II, 41, 657–668, 1994.
- Rutgers van der Loeff, M. M., A. J. vanBennekom, Weddell Sea contributes little to silicate enrichment in Antarctic Bottom Water, Deep Sea Res., Part A, 36, 1341–1357, 1989.
- Sayles, F. L., W. R. Martin, In situ tracer studies of solute transport across the sediment-water interface at the Bermuda Time Series site, Deep Sea Res., Part I, 42, 31–52, 1995.
- Sayles, F. L., W. R. Martin, W. G. Deuser, Response of benthic oxygen demand to particulate organic carbon supply in the sea near Bermuda, Nature, 371, 686–689, 1994.
- Sayles, F. L., W. G. Deuser, J. E. Goudreau, W. H. Dickinson, T. D. Jickells, P. King, The benthic cycle of biogenic opal at the Bermuda Atlantic Time Series site, Deep Sea Res., Part I, 43, 383–409, 1996.
- Schulz, H. D., A. Dahmke, U. Schinzel, K. Wallmann, M. Zabel, Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic, Geochim. Cosmochim. Acta, 58, 2041–2060, 1994.
- Smith Jr., K. L., R. J. Baldwin, Seasonal fluctuations in deep-sea sediment community oxygen consumption: Central and eastern North Pacific, Nature, 307, 624–626, 1984.
- Suess, E., Particulate organic carbon flux in the ocean-surface productivity and oxygen utilization, Nature, 288, 260–263, 1980.
- Swan, A. R. H., M. Sandilands, Introduction to Geological Data Analysis, Blackwell Sci., Cambridge, Mass., 1995.
- Ullman, W. J., R. C. Aller, Diffusion coefficients in nearshore marine sediments, Limnol. and Oceanogr., 27, 552–556, 1982.
- vanBennekom, A. J., G. W. Berger, S. J. van derGaast, R. T. P. deVries, Primary productivity and the silica cycle in the Southern Ocean (Atlantic Sector), Palaeogeogr. Palaeoclimatol. Palaeoecol., 67, 19–30, 1988.
- Wollast, R., Interactions between major biogeochemical cycles in marine environments, Some perspectives of the Major Biogeochemical Cycles G. E. Likens, SCOPE, 17, 125–142, 1981.
- Wollast, R., Interactions of carbon and nitrogen cycles in the coastal zone, Interactions of C, N, P and S Biogeochemical Cycles and Global Change R. Wollast, et al., NATO ASI Ser., Ser. I, 4, 195–210, 1993.
10.1007/978-3-642-76064-8_7 Google Scholar
- Wollast, R., F. T. Mackenzie, The global cycle of silica, Silicon Geochemistry and Biogeochemistry S. R. Aston, 39–76, Academic, San Diego, Calif., 1983.
- Zabel, M., A. Dahmke, H. D. Schulz, Regional distribution of diffusive phosphate and silicate fluxes through the sediment water interface — The eastern South Atlantic, Deep Sea. Res., Part 1, 1997.