Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration
A. David McGuire
Search for more papers by this authorJerry M. Melillo
Search for more papers by this authorDavid W. Kicklighter
Search for more papers by this authorXiangming Xiao
Search for more papers by this authorJohn Helfrich
Search for more papers by this authorBerrien Moore III
Search for more papers by this authorCharles J. Vorosmarty
Search for more papers by this authorAnnette L. Schloss
Search for more papers by this authorA. David McGuire
Search for more papers by this authorJerry M. Melillo
Search for more papers by this authorDavid W. Kicklighter
Search for more papers by this authorXiangming Xiao
Search for more papers by this authorJohn Helfrich
Search for more papers by this authorBerrien Moore III
Search for more papers by this authorCharles J. Vorosmarty
Search for more papers by this authorAnnette L. Schloss
Search for more papers by this authorAbstract
We ran the terrestrial ecosystem model (TEM) for the globe at 0.5° resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr−1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr−1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics (“lower N” simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics (“lower N+D” simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7.5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr−1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperate-boreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases.
References
- Aber, J. D., J. M. Melillo, C. A. Federer, Predicting the effects of rotation length, harvest intensity, and fertilization on fiber yield from northern hardwood forests in New England, For. Sci., 28, 31–48, 1982.
- Agren, G. I., The interaction between CO2 and plant nutrition: Comments on a paper by Coleman, McConnaughay and Bazzaz, Oecologia, 98, 239–240, 1994.
- Auchmoody, L. R., H. C. Smith, Responses of yellow-poplar and red oak to fertilization in West Virginia, Soil Sci. Am. J., 41, 803–807, 1977.
- Bartholomew, M. V., A. G. Norman, The threshold moisture content for active decomposition of some mature plant materials, Soil Sci. Am. J., 11, 270–279, 1946.
- Bhaumik, H. D., F. E. Clark, Soil moisture tension and microbiological activity, Soil Sci. Am. J., 12, 234–238, 1947.
- Binkley, D., Forest Nutrition Management, John Wiley, New York, 1986.
- Ceulemans, R., M. Mousseau, Effects of elevated atmospheric CO2 on woody plants, New Phytol., 127, 425–446, 1994.
- Chapin III, F. S., Effects of multiple environmental stresses on nutrient availability and use, Response of Plants to Multiple Stresses H. A. Mooney, et al., 67–88, Academic, San Diego, Calif., 1991.
- Chapin III, F. S., P. M. Vitousek, K. Van Cleve, The nature of nutrient limitation in plant communities, Am. Nat., 127, 48–58, 1986.
- Chapin III, F. S., C. S. H. Walter, D. T. Clarkson, Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations, and photosynthesis, Planta, 173, 352–366, 1988.
- Daubenmire, R., D. Prusso, Studies of decomposition rates of tree litter, Ecology, 44, 589–592, 1963.
- Davidson, R. L., Micro-organisms, Grassland Ecosystems of the World: Analysis of Grasslands and Their Uses R. T. Coupland, 267–276, Cambridge Univ. Press, New York, 1979.
- Dodd, J. L., W. K. Lauenroth, Analysis of the response of a grassland ecosystem to stress, Perspectives in Grassland Ecology N. French, 43–58, Springer-Verlag, New York, 1979.
- Eamus, D., P. G. Jarvis, The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests, Adv. Ecol. Res., 19, 1–55, 1989.
- Ellis, R. C., Response of crop trees of sugar maple, white ash, and black cherry to release and fertilization, Can. J. For. Res., 9, 179–188, 1979.
- Evans, J. R., Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.), Plant Physiol., 72, 297–302, 1983.
- Evans, J. R., Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia, 78, 9–19, 1989.
- ,
Food and Agriculture Organization/Complex Systems Research Center (FAO/CSRC), 0.5° digitization of FAO-UNESCO [1971] by Complex Systems Research Center,Univ. of N. H.,Durham, undated.
- ,
Food and Agriculture Organization-United Nations Educational, Scientific Organization (FAO-UNESCO), Soil map of the world, 1:5,000,000,Paris,1971.
- Farquhar, G. D., S. vonCaemmerer, Modelling of photosynthetic response to environmental conditions, Encyclopedia of Plant Physiology, New Ser., 12 B O. L. Lange, et al., 549–587, Springer-Verlag, New York, 1982.
- Farquhar, G. D., S. vonCaemmerer, J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 79–90, 1980.
- Field, C. B., Ecological scaling of carbon gain to stress and resource availability, Response of Plants to Multiple Stresses H. A. Mooney, W. E. Winner, 35–65, Academic, San Diego, Calif., 1991.
- Gates, D. M., Global biospheric response to increasing atmospheric carbon dioxide concentrations, Direct Effects of Increasing Atmospheric Carbon Dioxide on Vegetation B. R. Strain, J. D. Cure, Rep. DOE/ER-0238, 171–184U. S. Department of Energy, Washington, D. C., 1985.
- Gulmon, S. L., C. C. Chu, The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus aurantiacus, Oecologia, 49, 207–212, 1981.
- Gunderson, C. A., S. D. Wullschleger, Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective, Photosynth. Res., 39, 369–388, 1994.
- Harrison, K., W. Broecker, G. Bonani, A strategy for estimating the impact of CO2 fertilization on soil carbon storage, Global Biogeochem. Cycles, 7, 69–80, 1993.
- Houghton, R. A., D. L. Skole, Carbon, The Earth as Transformed by Human Action B. L. Turner, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews, W. B. Meyer, 393–408, Cambridge Univ. Press, New York, 1990.
- Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, G. M. Woodwell, Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere, Ecol. Monogr., 53, 235–262, 1983.
- Houghton, R. A., D. L. Skole, D. S. Lefkowitz, Changes in the landscape of Latin America between 1850 and 1985, I, Progressive loss of forests, For. Ecol. Manage., 38, 143–172, 1991.
- Hunt, H. W., A simulation model for decomposition in grasslands, Ecology, 58, 469–484, 1977.
- Idso, K. E., S. B. Idso, Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: A review of the past 10 years research, Agric. For. Meteorol., 69, 153–203, 1994.
- Ino, Y., M. Monsi, An experimental approach to the calculation of CO2 amount evolved from several soils, Jpn. J. Bot., 20, 153–188, 1969.
- ,
Intergovernmental Panel on Climate Change Working Group I (IPCC WGI), Climate Change 1995 — The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, Cambridge Univ. Press, New York, 1996.
- Jenny, H., S. P. Gessell, T. Bingham, Comparative study on decomposition rates of organic matter in temperate and tropical regions, Soil Sci., 68, 419–432, 1949.
- Kicklighter, D. W., J. M. Melillo, W. T. Peterjohn, E. B. Rastetter, A. D. McGuire, P. A. Steudler, Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils, J. Geophys. Res., 99, 1303–1315, 1994.
- Kimball, B. A., Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations, Agron. J., 75, 779–788, 1975.
- Kimball, B. A., S. B. Idso, Increasing atmospheric CO2: Effects on crop yield, water use and climate, Agric. Water Manage., 7, 55–72, 1983.
- Lajtha, K., W. G. Whitford, The effect of water and nitrogen amendments on photosynthesis, leaf demography, and resource-use efficiency in Larrea tridentata, a desert evergreen shrub, Oecologia, 80, 341–348, 1989.
- Leemans, R., W. P. Cramer, The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial gridRes. Rep. RR-91-18Int. Inst. of Appl. Syst. Anal., (IIASA), Laxenburg, Austria, 1991.
- Luo, Y., C. B. Field, H. A. Mooney, Predicting responses of photosynthesis and root fraction to elevated [CO2]a: Interactions among carbon, nitrogen, and growth, Plant Cell Environ., 17, 1195–1204, 1994.
- McGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. Moore III, C. J. Vorosmarty, Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles, 6, 101–124, 1992.
- McGuire, A. D., L. A. Joyce, D. W. Kicklighter, J. M. Melillo, G. Esser, C. J. Vorosmarty, Productivity response of climax temperate forests to elevated temperature and carbon dioxide: A North American comparison between two global models, Clim. Change, 24, 287–310, 1993.
- McGuire, A. D., J. M. Melillo, L. A. Joyce, The role of nitrogen in the response of forest net primary production to elevated atmospheric CO2, Annu. Rev. Ecol. Syst., 26, 473–503, 1995a.
- McGuire, A. D., J. M. Melillo, D. W. Kicklighter, L. A. Joyce, Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates, J. Biogeogr., 22, 785–796, 1995b.
- McGuire, A. D., D. W. Kicklighter, J. M. Melillo, Global climate change and carbon cycling in grasslands and conifer forests, Global Change: Effects on Coniferous Forests and Grasslands, SCOPE, 56 A. I. Breymeyer, D. O. Hall, J. M. Melillo, G. I. Agren, 388–411, John Wiley, New York, 1996.
- Melillo, J. M., J. D. Aber, J. F. Muratore, Nitrogen and lignin control of hardwood leaf litter decomposition dynamics, Ecology, 63, 621–626, 1982.
- Melillo, J. M., J. R. Fruci, R. A. Houghton, B. Moore, D. L. Skole, Land-use change in the Soviet Union between 1850 and 1980: Causes of a net release of CO2 to the atmosphere, Tellus, Ser. B, 40, 116–128, 1988.
- Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, K. J. Nadelhoffer, Carbon dynamics along the decay continuum: Plant litter to soil organic matter, Ecology of Arable Land M. Clarholm, L. Bergstrom, 53–62, Kluwer Acad., Norwell, Mass., 1989a.
- Melillo, J. M., P. A. Steudler, J. D. Aber, R. D. Bowden, Atmospheric deposition and nutrient cycling, Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere M. O. Andreae, D. S. Schimel, 263–280, John Wiley, New York, 1989b.
- Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vorosmarty, A. L. Schloss, Global climate change and terrestrial net primary production, Nature, 363, 234–240, 1993.
- Melillo, J. M., D. W. Kicklighter, A. D. McGuire, W. T. Peterjohn, K. M. Newkirk, Global change and its effects on soil organic carbon stocks, Role of Nonliving Organic Matter in the Earth's Carbon Cycle R. G. Zepp, C. Sonntag, 175–189, John Wiley, New York, 1995.
- Melillo, J. M., I. C. Prentice, G. D. Farquhar, E.-D. Schulze, O. E. Sala, Terrestrial biotic responses to environmental change and feedbacks to climate, Climate Change 1995 — The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, 447–481, Cambridge Univ. Press, New York, 1996a.
- Melillo, J. M., R. A. Houghton, D. W. Kicklighter, A. D. McGuire, Tropical deforestation and the global carbon budget, Annu. Rev. Energy Environ., 21, 293–310, 1996b.
- Miller, H. G., Forest fertilization: Some guiding concepts, Forestry, 54, 157–167, 1981.
- Miller, R. D., D. D. Johnson, The effect of soil moisture tension on carbon dioxide evolution, nitrification, and nitrogen mineralization, Soil Sci. Soc. Am. J., 28, 644–647, 1964.
- Mitchell, H. L., R. F. Chandler Jr., The nitrogen nutrition and growth of certain deciduous trees of northeastern United States, Black Rock For. Bull., 11, 1–94, 1939.
- Mitchell, J. F. B., S. Manabe, V. Meleshko, T. Tokioka, Equilibrium climate change —And its implications for the future, Climate Change: The IPCC Scientific Assessment J. T. Houghton, et al., 131–172, Cambridge Univ. Press, New York, 1990.
- Mooney, H. A., B. G. Drake, R. J. Luxmoore, W. C. Oechel, L. F. Pitelka, Predicting ecosystem responses to elevated CO2 concentrations, BioScience, 2, 96–104, 1991.
- Myers, N., Tropical forests: Present status and future outlook, Clim. Change, 19, 3–32, 1991.
- ,
National Center for Atmospheric Research (NCAR)/Navy0, Global 10-minute elevation data, digital tape available throughNat. Oceanic and Atmos. Admin., Nat. Geophys. Data Cent.,Boulder, Colo.,1984.
- Pan, Y., Sensitivity of terrestrial ecosystems to elevated atmospheric CO2: Comparison of model simulation studies to CO2 effects, Bull. Ecol. Soc. Am., 76, 205, 1995.
- Pan, Y., A. D. McGuire, D. W. Kicklighter, J. M. Melillo, The importance of climate and soils for estimates of net primary production: A sensitivity analysis with the Terrestrial Ecosystem Model, Global Change Biol., 2, 5–23, 1996.
- Pastor, J., J. D. Aber, C. A. McClaugherty, J. M. Melillo, Above-ground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin, Ecology, 65, 256–268, 1984.
- Peterson, C., Regional growth and response analysis for unthinned Douglas-fir, Regional Forest Nutrition Research Project Biennial Report, 1980–82, 3–25Univ. of Wash. Coll. of For. Resour., Seattle, 1982.
- Pettersson, R., A. J. S. McDonald, Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2, Photosynth. Res., 39, 389–400, 1994.
- Poorter, H., Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration, Vegetatio., 104/105, 77–97, 1993.
- Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, B. J. Peterson, A. L. Grace, B. Moore III, C. J. Vorosmarty, Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399–429, 1991.
- Risser, P. G., E. C. Birney, H. D. Blocker, S. W. May, W. J. Parton, J. A. Wiens, The True Prairie Ecosystem, Van Nostrand Reinhold, New York, 1981.
- Safford, L. O., S. M. Filip, Biomass and nutrient content of 4-year-old fertilized and unfertilized hardwood stands, Can. J. For. Res., 4, 549–554, 1974.
- Sage, R. F., Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective, Photosynth. Res., 39, 351–368, 1994.
- Sage, R. F., R. W. Pearcy, The nitrogen use efficiency of C3 and C4 plants, I, Leaf nitrogen, growth, and biomass partitioning in Chenopodium albion (L.) and Amaranthus retroflexus (L), Plant Physiol., 84, 954–958, 1987a.
- Sage, R. F., R. W. Pearcy, The nitrogen use efficiency of C3 and C4 plants, II, Leaf nitrogen effects on the gas exchange characteristics of Chenopodium albion (L.) and Amaranthus retroflexus (L), Plant Physiol., 84, 959–963, 1987b.
- Sarmiento, J. L., C. Le Quere, S. W. Pacala, Limiting future atmospheric carbon dioxide, Global Biogeochem. Cycles, 9, 121–137, 1995.
- Schimel, D. S., B. H. Braswell, E. A. Holland, R. McKeown, D. S. Ojima, T. H. Painter, W. J. Parton, A. R. Townsend, Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils, Global Biogeochem. Cycles, 8, 279–293, 1994.
- Schlesinger, W. H., Biogeochemistry: An Analysis of Global Change, Academic, San Diego, Calif., 1991.
- Shaver, G. R., F. S. Chapin III, Response of fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth, Ecology, 61, 662–675, 1980.
- Shaver, G. R., F. S. Chapin III, Effect of fertilization on production and biomass of tussock tundra, Alaska, U.S.A, Arct. Alp. Res., 18, 261–268, 1986.
- Shaver, G. R., F. S. Chapin III, Production: Biomass relationships and element cycling in contrasting arctic vegetation types, Ecol. Monogr., 61, 1–31, 1991.
- Sollins, P., C. C. Grier, F. M. McCorison, K. Cromack Jr., R. Fogel, R. L. Fredriksen, The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon, Ecol. Monogr., 50, 261–285, 1980.
- Sommers, L. E., C. M. Gilmour, R. E. Wildung, S. M. Beck, The effect of water potential on decomposition processes in soils, Water Potential Relations in Soil Microbiology, Spec. Pub., 9 J. F. Parr, W. R. Gardner, L. F. Elliott, Soil Sci. Soc. Am., 9, 97–117, 1981.
- Stott, D. E., L. F. Elliott, R. I. Papendick, G. S. Campbell, Low temperature or low water potential effects on the microbial decomposition of wheat residue, Soil Biol. Biochem., 18, 577–582, 1986.
- Trumbore, S. E., O. A. Chadwick, R. Amundson, Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change, Science, 272, 393–396, 1996.
- Van Cleve, K., J. Zasada, Response of 70-year-old white spruce to thinning and fertilization in interior Alaska, Can. J. For. Res., 6, 145–152, 1976.
- Van Veen, J. A., E. A. Paul, Organic carbon dynamics in grassland soils, 1, Background information and computer simulation, Can. J. Soil Sci., 61, 185–201, 1981.
- ,
VEMAP Members, Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling, Global Biogeochem. Cycles, 9, 407–437, 1995.
- Vitousek, P. M., R. W. Howarth, Nitrogen limitation on land and in the sea: How can it occur?, Biogeochemistry, 13, 87–115, 1991.
- Vitousek, P. M., P. R. Ehrlich, A. H. Ehrlich, P. A. Matson, Human appropriation of the products of photosynthesis, BioScience, 36, 368–373, 1986.
- Vitousek, P. M., L. R. Walker, L. D. Whiteaker, P. A. Matson, Nutrient limitation to plant growth during primary succession, Biogeochemistry, 23, 197–215, 1993.
- Vorosmarty, C. J., B. Moore III, A. L. Grace, M. P. Gildea, J. M. Melillo, B. J. Peterson, E. B. Rastetter, P. A. Steudler, Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cycles, 3, 241–265, 1989.
- Watson, R. H., H. Rodhe, H. Oeschger, U. Siegenthaler, Greenhouse gases and aerosols, Climate Change: The IPCC Scientific Assessment J. T. Houghton, et al., 5–40, Cambridge Univ. Press, New York, 1990.
- Watson, R. T., L. G. M. Filho, E. Sanhueza, A. Janetos, Greenhouse gases: Sources and Sinks, Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment J. T. Houghton, et al., 25–46, Cambridge Univ. Press, New York, 1992.
- Wong, S. C., Elevated atmospheric partial pressure of CO2 and plant growth, I, Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants, Oecologia, 44, 68–74, 1979.
- Wullschleger, S. D., Biochemical limitations to carbon assimilation in C3 plants —A retrospective analysis of the A/Ci curves from 109 species, J. Exp. Bot., 44, 907–920, 1993.
- Wullschleger, S. D., W. M. Post, A. W. King, On the potential for a CO2 fertilization effect in forests: Estimates of the biotic growth factor based on 58 controlled-exposure studies, Biotic Feedbacks in the Global Climatic System G. M. Woodwell, F. T. Mackenzie, 85–107, Oxford Univ. Press, New York, 1995.
- Xiao, X., D. W. Kicklighter, J. M. Melillo, A. D. McGuire, P. H. Stone, A. P. Sokolov, Responses of primary production and total carbon storage to changes in climate and atmospheric CO2 concentration, Tellus, 1997.