Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions
G. N. Robinson
Search for more papers by this authorD. R. Worsnop
Search for more papers by this authorJ. T. Jayne
Search for more papers by this authorC. E. Kolb
Search for more papers by this authorP. Davidovits
Search for more papers by this authorG. N. Robinson
Search for more papers by this authorD. R. Worsnop
Search for more papers by this authorJ. T. Jayne
Search for more papers by this authorC. E. Kolb
Search for more papers by this authorP. Davidovits
Search for more papers by this authorAbstract
A droplet train apparatus has been used to measure the heterogeneous reactive uptake of gaseous N2O5 and ClONO2 by concentrated sulfuric acid solutions. H2SO4 concentrations in the range of 39 to 69 wt% were investigated between 229 and 260 K. Uptake rates normalized to the gas-liquid collision frequency, γ0, for N2O5 ranged from 0.086 to 0.16, decreasing moderately with increasing temperature and decreasing H2SO4 concentration. Uptake rates for ClONO2, measured over a slightly narrower concentration range of 39–59 wt% H2SO4, ranged between 0.0037 and 0.056, decreasing moderately with H2SO4 temperature but significantly with increasing concentration. Results are compared with measurements from other laboratories using different experimental techniques. In general, the data from the different groups agree well. A phenomenological model is presented which addresses the solubility, diffusion, and chemical reactivity of XNO3 (X=Cl, NO2) in sulfuric acid solutions and accounts for the dependence of the observed uptake rates on H2SO4 concentration and temperature. Two XNO3 hydrolysis pathways are proposed, one involving direct reaction with H2O and the other involving participation of H+ ions to promote bond dissociation. Differences between the concentration dependencies of γ0 for ClONO2 and N2O5 can be ascribed largely to different rates of acid-catalyzed hydrolysis. The implications of these results for the effects of lower stratospheric sulfuric acid aerosols on ozone depletion chemistry are discussed.
References
- Abbatt, J. P. D., M. J. Molina, Status of stratospheric ozone depletion, Annu. Rev. Energy Environ., 18, 1–29, 1993.
- Arnold, F., T. Bührke, S. Qiu, Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichon, Nature, 348, 49–50, 1990.
- Baldwin, A. C., D. M. Golden, Heterogeneous atmospheric reactions: Sulfuric acid aerosols as tropospheric sinks, Science, 206, 562–563, 1979.
- Bekki, S., J. A. Pyle, A two-dimensional modeling study of the volcanic eruption of Mount Pinatubo, J. Geophys. Res., 99, 18,861–18,869, 1994.
- Böhringer, H., D. W. Fahey, F. C. Fehsenfeld, E. E. Ferguson, The role of ion-molecule reactions in the conversion of N2O5 to HNO3 in the stratosphere, Planet. Space Sci., 31, 185–191, 1983.
- Brasseur, G., C. Granier, Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion, Science, 257, 1239–1242, 1992.
- Brasseur, G. P., C. Granier, S. Walters, Future changes in stratospheric ozone and the role of heterogeneous chemistry, Nature, 348, 626–628, 1990.
- Burley, J. D., H. S. Johnston, Ionic mechanisms for heterogeneous stratosphcric reactions and ultraviolet photoabsorption cross sections for NO2+, HNO3, and NO3− in sulfuric acid, Geophys. Res. Lett., 19, 1359–1362, 1992.
- Cacace, F., M. Attinà, G. dePetris, M. Speranza, Is the proton affinity of nitric acid larger than the proton affinity of methyl nitrate? A direct experimental answer, J. Am. Chem. Soc., 116, 6413–6417, 1994.
- Carslaw, K. S., S. L. Clegg, P. Brimblecombe, A thermodynamic model of the system HCl-HNO3-H2SO4-H2O, including solubilities of HBr, from <200 to 328K, J. Phys. Chem., 99, 11,557–11,574, 1995.
- Coffey, M. T., Observations of the impact of volcanic activity on stratospheric chemistry, J. Geophys. Res., 101, 6767–6780, 1996.
- David, S. J., F. J. Murcray, A. Goldman, C. P. Rinsland, D. G. Murcray, The effect of the Mt. Pinatubo aerosol on the HNO3 column over Mauna Lea, Hawaii, Geophys. Res. Lett., 21, 1003–1006, 1994.
- Davidovits, P., J. T. Jayne, S. X. Duan, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, Uptake of gas molecules by liquids: A model, J. Phys. Chem., 95, 6337–6340, 1991.
- Davidovits, P., J. H. Hu, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, Entry of gas molecules into liquids, Faraday Discuss., 100, 65–82, 1995.
- Dessler, A. E., et al., Balloon-borne measurements of ClO, NO, and O3 in a volcanic cloud: An analysis of heterogeneous chemistry between 20 and 30 km, Geophys. Res. Lett., 20, 2527–2530, 1993.
- Eicher, L. D., B. J. Zwolinski, High-precision viscosity of super-cooled water and analysis of the extended range temperature coefficient, J. Phys. Chem., 75, 2016–2024, 1971.
- Fahey, D. W., et al., In situ measurements constraining the role of sulfate aerosols in mid-latitude ozone depletion, Nature, 363, 509–514, 1993.
- Fehsenfeld, F. C., C. J. Howard, A. L. Schmeltekopf, Gas phase ion chemistry of HNO3, J. Chem. Phys., 63, 2835–2841, 1975.
- Francisco, J. S., S. P. Sander, Protonated hydrochlorous acid (HOClH4): Molecular structure, vibrational frequencies, and proton affinity, J. Chem. Phys., 102, 9615–9618, 1995.
- Fried, A., B. E. Henry, J. G. Calvert, M. Mozurkewich, The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res., 99, 3517–3532, 1994.
- Gardner, J. A., L. R. Watson, Y. G. Adewuyi, P. Davidovits, M. S. Zahniser, D. R. Worsnop, C. E. Kolb, Measurement of the mass accommodation coefficient of SO2 (g) on water droplets, J. Geophys. Res., 92, 10,887–10,895, 1987.
- George, C., J. L. Ponche, P. Mirabel, W. Behnke, V. Scheer, C. Zetzsch, Study of the uptake of N2O5 by water and NaCl solutions, J. Phys. Chem., 98, 8780–8784, 1994.
- Gmitro, J. I., T. Vermeulen, Vapor-liquid equilibria for aqueous sulfuric acid, AIChE. J., 10, 740–746, 1964.
- Granier, C., G. Brasseur, Impact of heterogeneous chemistry on model predictions of ozone changes, J. Geophys. Res., 97, 18,015–18,033, 1992.
- Hanson, D. R., Reactivity of ClONO2 H218O ice and organic liquids, J. Phys. Chem., 99, 13,059–13,061, 1995.
- Hanson, D. R., E. R. Lovejoy, The uptake of N2O5 onto small sulfuric acid particles, Geophys. Res. Lett., 21, 2401–2404, 1994.
- Hanson, D. R., E. R. Lovejoy, The reaction of ClONO2 with submicron sulfuric acid aerosol, Science, 267, 1326–1328, 1995.
- Hanson, D. R., E. R. Lovejoy, Heterogeneous reactions in liquid sulfuric acid: HOCl + HCl as a model system, J. Phys. Chem., 100, 6397–6405, 1996.
- Hanson, D. R., A. R. Ravishankara, The reaction probabilities of ClONO2 and N2O5 on 40 to 75% sulfuric acid solutions, J. Geophys. Res., 96, 17,307–17,314, 1991.
- Hanson, D. R., A. R. Ravishankara, Reaction of ClONO2 with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric acid, J. Geophys. Res., 98, 22,931–22,936, 1993a.
- Hanson, D. R., A. R. Ravishankara, The uptake of HCl and HOCl onto sulfuric acid: Solubilities, diffusivities, and reaction, J. Phys. Chem., 97, 12,309–12,319, 1993b.
- Hanson, D. R., A. R. Ravishankara, Reactive uptake of ClONO2 onto sulfuric acid due to reaction of HCl and H2O, J. Phys. Chem., 98, 5728–5735, 1994.
- Hanson, D. R., A. R. Ravishankara, Heterogeneous chemistry of bromine species in sulfuric acid under stratospheric conditions, Geophys. Res. Lett., 22, 385–388, 1995.
- Hanson, D. R., A. R. Ravishankara, S. Solomon, Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations, J. Geophys. Res., 99, 3615–3629, 1994.
- Herman, J. R., D. Larko, Low ozone amounts during 1992–1993 from Nimbus 7 and Meteor 3 total ozone mapping spectrometers, J. Geophys. Res., 99, 3483–3496, 1994.
- Hofmann, D. J., S. Solomon, Ozone destruction through heterogeneous chemistry following the eruption of El Chichón, J. Geophys. Res., 94, 5029–5041, 1989.
- Hofmann, D. J., S. J. Oltmans, W. D. Komhyr, J. M. Harris, J. A. Lathrop, A. O. Langford, T. Deshler, B. J. Johnson, A. Torres, W. A. Mathews, Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol, Geophys. Res. Lett., 21, 65–68, 1994.
- Horn, A. B., T. Koch, M. A. Chesters, M. R. S. McCoustra, J. R. Sodeau, A low-temperature infrared study of the reactions of the stratospheric NOy reservoir species dinitrogen pentoxide with water ice, 80–160 K, J. Phys. Chem., 98, 946–951, 1994.
- Hu, J. H., Q. Shi, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, Reactive uptake of Cl2(s) and Br2(g) by aqueous surfaces as a function of Br− and I− ion concentration: The effect of chemical reaction at the interface, J. Phys. Chem., 99, 8768, 1995.
- Huthwelker, T., T. Peter, B. P. Luo, S. L. Clegg, K. S. Carslaw, P. Brimblecombe, Solubility of HOCl in water and aqueous H2SO4 to stratospheric temperatures, J. Atmos. Chem., 21, 81–95, 1995.
- Jayne, J. T., D. R. Worsnop, C. E. Kolb, E. Swartz, P. Davidovits, Uptake of gas-phase formaldehyde by aqueous acid solutions, J. Phys. Chem., 100, 8015–8022, 1996.
- Kawa, S. R., et al., Interpretation of NOx/NOy observations from AASE-II using a model of chemistry along trajectories, Geophys. Res. Lett., 20, 2507–2510, 1993.
- Kinnison, D. E., K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, The chemical and radiative effects of the Mount Pinatubo eruption, J. Geophys. Res., 99, 25,705–25,731, 1994.
- Koch, T. G., S. F. Banham, J. R. Sodeau, A. B. Horn, M. R. S. McCoustra, M. A. Chesters, Mechanisms for the heterogeneous hydrolysis of hydrogen chloride, chlorine nitrate and dinitrogen pentoxide on water-rich atmospheric particle surfaces, J. Geophys. Res., 102, 1513–1522, 1997.
- Koike, M., Y. Kondo, W. A. Matthews, P. V. Johnston, K. Yamazaki, Decrease of stratospheric NO2 at 44°N caused by Pinatubo volcanic aerosols, Geophys. Res. Lett., 20, 1975–1978, 1993.
- Koike, M., N. B. Jones, W. A. Matthews, P. V. Jounston, R. L. McKenzie, D. Kinnison, J. Rodriquez, Impact of Pinatubo aerosol on the partitioning between NO2 and HNO3, Geophys. Res. Lett., 21, 597–600, 1994.
- Kolb, C. E., et al., Laboratory studies of atmospheric heterogeneous chemistry, Progress and Problems in Atmospheric Chemistry J. R. Barker, Adv. Ser. Phys. Chem., 3, 771–875, World Sci., River Edge, N.J., 1995.
10.1142/9789812831712_0018 Google Scholar
- Lee, T. J., A coupled-cluster study of the molecular structure, vibrational spectrum, and heats of formation of XONO2(X = H, F, Cl), J. Phys. Chem., 99, 1943–1948, 1995.
- Lee, T. J., J. S. Francisco, The proton affinity of HOBr, Chem. Phys. Lett., 251, 400–404, 1996.
- Lee, T. J., J. E. Rice, Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms, J. Phys. Chem., 96, 650–657, 1992.
- Lee, T. J., J. E. Rice, Ab initio study of the chlorine nitrate protonation reaction: Implications for loss of ClONO2 in the stratosphere, J. Phys. Chem., 97, 6637–6644, 1993.
- Lloyd, S. A., Issues in stratospheric ozone depletion, Ph.D. dissertation,Harvard Univ.,Cambridge, Mass.,1993.
- Lovejoy, E. R., D. R. Hanson, Measurement of the kinetics of reactive uptake by submicron sulfuric acid particles, J. Phys. Chem., 99, 2080–2087, 1995.
- Luo, B. P., S. L. Clegg, T. Peter, R. Müller, P. J. Crutzen, HCl solubility and liquid diffusion in aqueous sulfuric acid under stratospheric conditions, Geophys. Res. Lett., 21, 49–52, 1994.
- Manion, J. A., C. M. Reihs, D. M. Golden, M. A. Tolbert, L. R. Williams, Heterogeneous reactions of chlorine nitrate and dinitrogen pentoxide on sulfuric acid surfaces representative of global stratospheric aerosol, Isr. J. Chem., 34, 355–363, 1994.
- Mather, J. H., W. H. Brune, Heterogeneous chemistry on liquid sulfate aerosols: A comparison of in situ measurements with zero-dimensional model calculations, Geophys. Res. Lett., 17, 1283–1286, 1990.
- Michelangeli, D. V., M. Allen, Y. L. Yung, El Chichon volcanic aerosols: Impact of radiative, thermal, and chemical perturbations, J. Geophys. Res., 94, 18,429–18,443, 1989.
- Mills, M. J., A. O. Langford, T. J. O'Leary, K. Arpag, H. L. Miller, M. H. Proffitt, R. W. Sanders, S. Solomon, On the relationship between stratospheric aerosols and nitrogen dioxide, Geophys. Res. Lett., 20, 1187–1190, 1993.
- Mozurkewich, M., J. G. Calvert, Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res., 93, 15,889–15,896, 1988.
- Nelson, C. M., M. Okumura, Reaction of chlorine nitrate with protonated water clusters: A model for heterogeneous reactions on polar stratospheric clouds, J. Phys. Chem., 96, 6112–6115, 1992.
- Perry, J. H., Chemical Engineers' Handbook, 184–540, McGraw-Hill, New York, 1950.
- Pitari, G., Contribution to the ozone trend of heterogeneous reactions of ClONO2 on the sulfate aerosol layer, Geophys. Res. Lett., 20, 2663–2666, 1993.
- Pitari, G., G. Visconti, V. Rizi, Sensitivity of stratospheric ozone to heterogeneous chemistry on sulfate aerosols, Geophys. Res. Lett., 18, 833–836, 1991.
- Prather, M., Catastrophic loss of stratospheric ozone in dense volcanic clouds, J. Geophys. Res., 97, 10,187–10,191, 1992.
- Rodriguez, J. M., M. K. W. Ko, N. D. Sze, Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses, Nature, 352, 134–137, 1991.
- Rodriguez, J. M., M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo, Geophys. Res. Lett., 21, 209–212, 1994.
- Rossi, M. J., R. Malhotra, D. M. Golden, Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperature, Geophys. Res. Lett., 14, 127–130, 1987.
- Rothman, L. R., et al., The HITRAN molecular data bases: Editions of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transfer, 48, 469–507, 1992.
- Ruscic, B., J. Berkowitz, Experimental determination of and ionization potentials (HOBr):Implications for corresponding properties of HOI, J. Chem. Phys., 101, 7795–7803, 1994.
- Schwartz, S. E., W. H. White, Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, Adv. Environ. Sci. Eng., 4, 1–31, 1981.
- Shack, C. J., A new synthesis of chlorine nitrate, Inorg. Chem., 6, 1938–1939, 1967.
- Sodeau, J. R., A. B. Horn, S. F. Banham, T. G. Koch, The ionization of chlorine nitrate on ice at 180 K, J. Phys. Chem., 99, 6258–6262, 1995.
- Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, M. P. McCormick, The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713–6727, 1996.
- D. R. Stull, and H. Prophet, (Eds. ), JANAF thermochemical tables, 2nd ed.,Rep. NSRDS-NBS 37,Natl. Inst. for Stand. and Technol.,Gaithersburg, Md.,1971.
- Tie, X. X., G. Brasseur, The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading, Geophys. Res. Lett., 22, 3035–3038, 1995.
- Tolbert, M. A., M. J. Rossi, D. M. Golden, Heterogeneous interactions of chlorine nitrate, hydrogen chloride and nitric acid with sulfuric acid surfaces at stratospheric temperatures, Geophys. Res. Lett., 15, 847–850, 1988.
- Toumi, R., S. Bekki, R. Cox, A model study of ATMOS observations and heterogeneous loss of N2O5 by the sulfate aerosol layer, J. Atmos. Chem., 16, 135–144, 1993.
- Van Doren, J. M., L. R. Watson, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, Temperature dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets, J. Phys. Chem., 94, 3265–3269, 1990.
- Van Doren, J. M., L. R. Watson, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, Uptake of N2O5 and HNO3 by aqueous sulfuric acid droplets, J. Phys. Chem., 95, 1684–1689, 1991.
- Van Doren, J. M., A. A. Viggiano, R. A. Morris, Rate enhancement of the reaction of HCl with ClONO2 by ions: Implications for the mechanisms of stratospherically important heterogeneous reactions, J. Am. Chem. Soc., 116, 6957–6958, 1994.
- Viggiano, A. A., The ion chemistry of N2O5 and its application for measuring the thermal decomposition of N2O5, Ph.D. dissertation,Univ. of Colo.,Boulder,1980.
- Watson, L. R., J. M. Van Doren, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, Uptake of HCl molecules by aqueous sulfuric acid droplets as a function of acid concentration, J. Geophys. Res., 95, 5631–5638, 1990.
- Webster, C. R., R. D. May, D. W. Toohey, L. M. Avallone, J. G. Anderson, S. Solomon, In situ measurements of the ClO/HCl ratio: Heterogeneous processing on sulfate aerosols and polar stratospheric clouds, Geophys. Res. Lett., 20, 2523–2526, 1993.
- Webster, C. R., R. D. May, M. Allen, J. Jaégle, M. P. McComick, Balloon profiles of stratospheric NO2 and HNO3 for testing the heterogeneous hydrolysis of N2O5 on sulfate aerosols, Geophys. Res. Lett., 21, 53–56, 1994.
- Wen, G., J. E. Frederick, Ozone within the El Chichón aerosol cloud inferred from solar backscatter ultraviolet continuous-scan measurements, J. Geophys. Res., 99, 1263–1271, 1994.
- Williams, L. R., D. M. Golden, Solubility of HCl in sulfuric acid at stratospheric temperatures, Geophys. Res. Lett., 20, 2227–2230, 1993.
- Williams, L. R., F. S. Long, Viscosity of supercooled sulfuric acid solutions, J. Phys. Chem., 99, 3748–3751, 1995.
- Williams, L. R., J. A. Manion, D. M. Golden, M. A. Tolbert, Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces, J. Appl. Meteorol., 33, 785–790, 1994.
- Worsnop, D. R., M. S. Zahniser, C. E. Kolb, J. A. Gardner, L. R. Watson, J. M. Van Doren, J. T. Jayne, P. Davidovits, Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces, J. Phys. Chem., 93, 1159–1172, 1989.
- Zhang, R., M.-T. Leu, L. F. Keyser, Heterogeneous reactions of ClONO2, HCl, and HOCl on liquid sulfuric acid surfaces, J. Phys. Chem., 98, 13,563–13,574, 1994a.
- Zhang, R., J. T. Jayne, M. J. Molina, Heterogeneous interactions of ClONO2 and HCl with sulfuric acid tetrahydrate: Implications for the stratosphere, J. Phys. Chem., 98, 867–874, 1994b.
- Zhang, R., M.-T. Leu, L. F. Keyser, Hydrolysis of N2O5 and ClONO2 on the H2SO4/HNO3/H2O ternary solutions under stratospheric conditions, Geophys. Res. Lett., 22, 1501–1504, 1995.