Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization
W. G. Large
Search for more papers by this authorJ. C. McWilliams
Search for more papers by this authorS. C. Doney
Search for more papers by this authorW. G. Large
Search for more papers by this authorJ. C. McWilliams
Search for more papers by this authorS. C. Doney
Search for more papers by this authorAbstract
If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind-driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double-diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long-Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.
References
- Anis, A., J. N. Moum, The superadiabatic surface layer of the ocean during convection, J. Phys. Oceanogr., 22, 1221–1227, 1992.
- Archer, D., S. Emerson, T. Powell, C. S. Wong, Numerical hindcasting of sea surface pCO2 at weathership station Papa, Prog. Oceanogr., 32, 319–351, 1993.
- Ball, F. K., Control of inversion height by surface heating, Q. J. R. Meteorol. Soc., 86, 483–494, 1960.
- Berliand, M. E., T. G. Berliand, Measurement of the effective radiation of the Earth with varying cloud amounts, Izv. Acad. Sci. USSR, Ser. Geophys., Engl. Transl.1, 1952.
- Blackadar, A. K., The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res., 67, 3095–3102, 1962.
- Bougeault, P., J. C. Andre, On the stability of the third order turbulence closure for the modeling of the stratocumulus-topped boundary layer, J. Atmos. Sci., 43, 1574–1581, 1986.
- Briscoe, M. G., R. A. Weller, Preliminary results from the Long-Term Upper-Ocean Study (LOTUS), Dyn. Atmos. Oceans, 8, 243–265, 1984.
- Bunker, A. F., Computations of surface energy and annual air-sea interaction cycles of the North Atlantic Ocean, Mon. Weather Rev., 104, 1122–1140, 1976.
- Businger, J. A., J. C. Wyngaard, Y. Izumi, E. F. Bradley, Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181–189, 1971.
- Carl, D. M., T. C. Tarbell, H. A. Panofsky, Profiles of wind and temperature from towers and homogeneous terrain, J. Atmos. Sci., 30, 788–794, 1973.
- Craik, A. D. D., S. Leibovich, A rational model for Langmuir circulations, J. Fluid Mech., 73, 401–426, 1976.
- D'Asaro, E. A., Ocean storms--A three-dimensional, severe storm, air/sea interaction experiment: Overview and core program, 39, Appl. Phys. Lab., Univ. of Wash., Seattle, 1985a.
- D'Asaro, E. A., Upper ocean temperature structure, inertial currents, and Richardson numbers observed during strong meteorological forcing, J. Phys. Oceanogr., 15, 943–962, 1985b.
- Davis, R. E., R. deSzoeke, D. Halpern, P. Niiler, Variability in the upper ocean during MILE, I, The heat and momentum balances, Deep Sea Res., Part A, 28, 1427–1451, 1981a.
- Davis, R. E., R. deSzoeke, P. P. Niiler, Variability in the upper ocean during MILE, II, Modeling the mixed layer response, Deep Sea Res., Part A, 28, 1453–1475, 1981b.
- Deardorff, J. W., The counter gradient heat flux in the lower atmosphere and in the laboratory, J. Atmos. Sci., 23, 503–506, 1966.
- Deardorff, J. W., A numerical study of three-dimensional channel flow at large Reynolds numbers, J. Fluid Mech., 41, 453–480, 1970.
- Deardorff, J. W., Numerical investigation of neutral and unstable planetary boundary layers, J. Atmos. Sci., 29, 91–115, 1972a.
- Deardorff, J. W., Theoretical expression for the counter-gradient vertical heat flux, J. Geophys. Res., 77, 5900–5904, 1972b.
- Deardorff, J. W., G. E. Willis, D. K. Lilly, Laboratory investigation of non-steady penetrative convection, J. Fluid Mech., 35, 7–31, 1969.
- Dobson, F. W., S. D. Smith, Bulk models of solar radiation at sea, Q. J. R. Meteorol. Soc., 114, 165–182, 1988.
- Donaldson, C., Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants, Workshop on Micrometeorology D. A. Haugen, 313–392, American Meteorological Society, Boston, Mass., 1973.
- Ekman, V. W., On the influence of the Earth's rotation on ocean currents, Ark. Mat. Astron. Fys., 211, 1–53, 1905.
- Eriksen, C. C., Measurements and models of fine structure, internal gravity waves, and wave breaking in the deep ocean, J. Geophys. Res., 83, 2989–3009, 1978.
- Fedorov, K. N., Layer thicknesses and effective diffusivities in the diffusive thermocline convection in the ocean, Small-Scale Turbulence and Mixing in the Ocean J. C. J. Nihoul, B. M. Jamart, 471–479, Elsevier, New York, 1988.
- Fung, I. Y., D. E. Harrison, A. A. Lacis, On the variability of the net longwave radiation at the ocean surface, Rev. Geophys., 22, 177–193, 1984.
- Galperin, B., L. H. Kantha, S. Hassid, A. Rosati, A quasi-equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci., 45, 55–62, 1988.
- Gargett, A. E., G. Holloway, Dissipation and diffusion by internal wave breaking, J. Mar. Res., 42, 15–27, 1984.
- Garwood, R. W., An oceanic mixed layer model capable of simulating cyclic states, J. Phys. Oceanogr., 7, 455–471, 1977.
- Gaspar, P., Modeling the seasonal cycle of the upper ocean, J. Phys. Oceanogr., 18, 161–180, 1988.
- Gaspar, P., Y. Gregoris, J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study site, J. Geophys. Res., 95, 16179–16193, 1990.
- Gill, A. E., P. P. Niiler, The theory of the seasonal variability in the ocean, Deep Sea Res., 20, 141–177, 1973.
- Gregg, M. C., Diapycnal mixing in the thermocline: A review, J. Geophys. Res., 92, 5249–5286, 1987.
- Gregg, M. C., Scaling turbulent dissipation in the thermocline, J. Geophys. Res., 94, 9686–9698, 1989.
- , Workshop on Micrometeorology D. A. Haugen, 392, American Meteorological Society, Boston, Mass., 1973.
- Heisenburg, W., On the theory of statistical and isotropic turbulence, Proc. R. Soc. London A, 195, 402–406, 1948.
- Högström, U., Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation, Boundary Layer Meteorol., 42, 55–78, 1988.
- Holtslag, A. A. M., B. A. Boville, Local versus nonlocal boundary-layer diffusion in a global climate model, J. Clim., 6, 1825–1842, 1993.
- Holtslag, A. A. M., C.-H. Moeng, Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer, J. Atmos. Sci., 48, 1690–1698, 1991.
- Holtslag, A. A. M., E. I. F. deBruijn, H.-L. Pan, A high resolution air mass transformation model for short-range weather forecasting, Mon. Weather Rev., 118, 1561–1565, 1990.
- Jerlov, N. G., Marine Optics, 231, Elsevier, New York, 1976.
10.1016/S0422-9894(08)70792-X Google Scholar
- Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, Turbulence structure in the convective boundary layer, J. Atmos. Sci., 33, 2152–2169, 1976.
- Kantha, L. H., C. A. Clayson, An improved mixed layer model for geophysical applications, J. Geophys. Res., 1994.
- Kelley, D. E., Explaining effective diffusivities within diffusive oceanic staircases, Small-Scale Turbulence and Mixing in the Ocean J. C. J. Nihoul, B. M. Jamart, 481–502, Elsevier, New York, 1988.
10.1016/S0422-9894(08)70566-X Google Scholar
- Kelley, D. E., Fluxes through diffusive staircases: A new formulation, J. Geophys. Res., 95, 3365–3371, 1990.
- Kim, J., L. Mahrt, Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer, Tellus, Ser. A, 44, 381–394, 1992.
- Koop, C. G., F. K. Brow, Instability and turbulence in a stratified fluid with shear, J. Fluid Mech., 93, 135–159, 1979.
- Koracin, D., R. Berkowicz, Nocturnal boundary-layer height: Observations by acoustic sounders and predictions in terms of surface layer height parameters, Boundary Layer Meteorol., 43, 65–83, 1988.
- Kraus, E. B., J. S. Turner, A one-dimensional model of the seasonal thermocline, II, The general theory and its consequences, Tellus, 19, 98–105, 1967.
- Kundu, P. K., R. C. Beardsley, Evidence of a critical Richardson number in moored measurements during the upwelling season off northern California, J. Geophys. Res., 96, 4855–4868, 1991.
- Kunze, E., A. J. Williams III, M. G. Briscoe, Observations of shear and vertical stability from a neutrally buoyant float, J. Geophys. Res., 95, 18127–18142, 1990.
- Kurzeja, R. J., S. Berman, A. H. Weber, A climatological study of the nocturnal planetary boundary layer, Boundary Layer Meteorol., 54, 105–128, 1991.
- Large, W. G., G. C. Crawford, Observations and simulations of upper ocean response to wind events during the Ocean Storms experiment, J. Phys. Oceanogr., 1994.
- Large, W. G., S. Pond, Sensible and latent heat flux measurements over the ocean, J. Phys. Oceanogr., 12, 464–482, 1982.
- Large, W. G., J. C. McWilliams, P. P. Niiler, Upper ocean thermal response to strong autumnal forcing of the northeast Pacific, J. Phys. Oceanogr., 16, 1524–1550, 1986.
- Ledwell, J. R., A. J. Wilson, C. S. Low, Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment, Nature, 364, 701–703, 1993.
- Lenschow, D. H., J. C. Wyngaard, W. T. Pennell, Mean-field and second-moment budgets in a baroclinic convective boundary layer, J. Atmos. Sci., 37, 1313–1326, 1980.
- Lewis, M. R., N. Kuring, C. Yentsch, Global patterns of ocean transparency: Implications for the new production of the open ocean, J. Geophys. Res., 93, 6847–6855, 1988.
- Lilly, D. K., The representation of small-scale turbulence in numerical simulation experiments, Proc. IBM Sci. Comput. Symp. Environ. Sci., 195–210, 1967.
- Liu, W. T., K. B. Katsaros, J. A. Businger, Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface, J. Atmos. Sci., 36, 1722–1735, 1979.
- Louis, J. F., A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187–202, 1979.
- Lukas, R., E. Lindstrom, The mixed layer of the western equatorial Pacific Ocean, J. Geophys. Res., 96, 3343–3357, 1991.
- Lumley, J. A., H. A. Panofsky, The Structure of Atmospheric Turbulence, 239, John Wiley, New York, 1964.
- Mahrt, L., Mixed layer moisture structure, Mon. Weather Rev., 104, 1403–1418, 1976.
- Mahrt, L., W. Gibson, Flux decomposition into coherent structures, Boundary Layer Meteorol., 60, 143–168, 1992.
- Mailhôt, J., R. Benoit, A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models, J. Atmos. Sci., 39, 2249–2266, 1982.
- Marmorino, G. O., D. R. Caldwell, Heat and salt transport through a diffusive thermohaline interface, Deep Sea Res., 23, 59–67, 1976.
- Martin, P. J., Simulation of the ocean mixed layer at OWS November and Papa with several models, J. Geophys. Res., 90, 903–916, 1985.
- McPhee, M. G., A time dependent model for turbulent transfer in a stratified oceanic boundary layer, J. Geophys. Res., 92, 6977–6986, 1987.
- McPhee, M. G., D. G. Martinson, Turbulent mixing under drifting pack ice in the Weddell Sea, Science, 263, 218–221, 1994.
- McWilliams, J. C., N. J. Norton, P. R. Gent, D. B. Haidvogel, A linear balance model of wind-driven, mid-latitude ocean circulation, J. Phys. Oceanogr., 20, 1349–1378, 1990.
- McWilliams, J. C., P. C. Gallacher, C.-H. Moeng, J. C. Wyngaard, Modeling the oceanic planetary boundary layer, Large-Eddy Simulations of Complex Engineering and Geophysical Flows B. Galperin, S. A. Orszag, 441–454, Cambridge University Press, New York, 1993.
- Mellor, G. L., Retrospect on oceanic boundary layer modeling and second moment closure, Parameterization of Small-Scale Processes, Proceedings of the ‘Aha Huliko’ a Hawaiian Winter Workshop P. Muller, D. Henderson, University of Hawaii, Manoa, Honolulu, 1989.
10.21236/ADA215507 Google Scholar
- Mellor, G. L., T. Yamada, A hierarchy of turbulent closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791–1806, 1974.
- Mellor, G. L., T. Yamada, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982.
- Moeng, C.-H., J. C. Wyngaard, Statistics of conservative scalars in the convective boundary layer, J. Atmos. Sci., 41, 3161–3169, 1984.
- Moeng, C.-H., J. C. Wyngaard, Evaluation of turbulent transport and dissipation closures in second-order modeling, J. Atmos. Sci., 46, 2311–2330, 1989.
- Monin, A. S., A. M. Yaglom, Statistical Fluid Mechanics, 1, 769, MIT Press, Cambridge, Mass., 1971.
- Mourn, J. N., D. R. Caldwell, C. A. Paulson, Mixing in the equatorial surface layer and thermocline, J. Geophys. Res., 94, 2005–2021, 1989.
- , Atmospheric Turbulence and Air Pollution Modelling F. T. M. Nieuwstadt, H. Dop, 358, D. Reidel, Norwell, Mass., 1982.
10.1007/978-94-010-9112-1 Google Scholar
- Niiler, P. P., Deepening of the wind mixed layer, J. Mar. Res., 33, 405–422, 1975.
- Niiler, P. P., E. B. Kraus, One-dimensional models of the upper ocean, Modelling and Prediction of the Upper Layers of the Ocean E. B. Kraus, 143–172, Pergamon, New York, 1977.
- O'Brien, J. J., A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer, J. Atmos. Sci., 27, 1213–1215, 1970.
- Osborn, T. R., Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83–89, 1980.
- Pacanowski, R. C., S. G. H. Philer, Parameterization of vertical mixing in numerical models of the tropical oceans, J. Phys. Oceanogr., 11, 1443–1451, 1981.
- Padman, L., T. M. Dillon, Vertical fluxes through the Beaufort Sea thermohaline staircases, J. Geophys. Res., 92, 10799–10806, 1987.
- Paduan, J. D., R. A. deSzoeke, Heat and energy balances in the upper ocean at 50°N, 150°W during November 1980 (STREX), J. Phys. Oceanogr., 16, 25–38, 1986.
- Panofsky, H. A., The boundary layer above 30 m, Boundary Layer Meteorol., 4, 251–264, 1973.
- Panofsky, H. A., J. H. Dutton, Atmospheric Turbu lence: Models and methods for Engineering Applications, 397, John Wiley, New York, 1984.
- Paulson, C. A., Representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol., 9, 857–861, 1970.
- Paulson, C. A., J. J. Simpson, Irradiance measurements in the upper ocean, J. Phys. Oceanogr., 7, 952–956, 1977.
- Peters, H., M. C. Gregg, J. M. Toole, On the parameterization of equatorial turbulence, J. Geophys. Res., 93, 1199–1218, 1988.
- Pollard, R. T., P. B. Rhines, R. O. R. Y. Thompson, The deepening of the wind mixed layer, Geophys. Fluid Dyn., 4, 381–404, 1973.
- Prandtl, L., Bericht über Untersuchungen sur augogebildeten Turbulenz, Z. Angev. Math. Mech., 5, 136–139, 1925.
- Preisendorfer, R. W., Secchi disk science: Visual optics of natural waters, Limnol. Oceanogr., 31, 909–926, 1986.
- Price, J. F., Upper ocean response to a hurricane, J. Phys. Oceanogr., 11, 153–175, 1981.
- Price, J. F., R. A. Weller, R. Pinkel, Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing, J. Geophys. Res., 91, 8411–8427, 1986.
- Price, J. F., R. A. Weller, C. M. Bowers, M. G. Briscoe, Diurnal response of sea surface temperature observed at the Long-Term Upper Ocean Study (34°N, 70°W) in the Sargasso Sea, J. Geophys. Res., 92, 14480–14490, 1987.
- Resnyanskiy, Y. D., Parameterization of the integral turbulent energy dissipation in the upper quasihomogeneous layer of the ocean, Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transl., 11, 453–457, 1975.
- Sausen, R., K. Barthel, K. Hasselmann, Coupled ocean-atmosphere models with flux corrections, Clim. Dyn., 2, 154–163, 1988.
- Schmitt, R. W., Form of the temperature-salinity relationship in the Central Water: Evidence for double-diffusive mixing, J. Phys. Oceanogr., 11, 1015–1026, 1981.
- Schmitt, R. W., Mixing in a thermohaline staircase, Small-Scale Turbulence and Mixing in the Ocean J. C. J. Nihoul, B. M. Jamart, 435–452, Elsevier, New York, 1988.
10.1016/S0422-9894(08)70563-4 Google Scholar
- Schmitt, R. W., On the density ratio balance in the central water, J. Phys. Oceanogr., 20, 900–906, 1990.
- Simpson, J. J., C. A. Paulson, Mid-ocean observations of atmospheric radiation, Q. J. R. Meteorol. Soc., 105, 487–502, 1979.
- Smagorinsky, J., General circulation experiments with the primitive equations, 1, The basic experiment, Mon. Weather Rev., 91, 99–164, 1963.
- Smith, S. D., F. W. Dobson, The heat budget at ocean weather station Bravo, Atmos. Ocean, 22, 1–22, 1984.
- Stevenson, J. W., P. P. Niiler, Upper ocean heat budget during the Hawaii to Tahiti Shuttle Experiment, J. Phys. Oceanogr., 13, 1894–1907, 1983.
- Stramma, L., P. Cornillon, R. A. Weller, J. F. Price, M. G. Briscoe, Large diurnal sea surface temperature variability: Satellite and in situ measurements, J. Phys. Oceanogr., 16, 827–837, 1986.
- Stull, R. B., Transilient turbulence theory, I, The concept of eddy-mixing across finite differences, J. Atmos. Sci., 41, 3351–3367, 1984.
- Stull, R. B., An Introduction To Boundary Layer Meteorology, 666, Kluwer, Norwell, Mass., 1988.
- Tabata, S., Variability of oceanographic conditions at ocean station P in the northeast Pacific Ocean, Trans. R. Soc. Canada, IIISeries IV, 367–418, 1965.
- Tennekes, H., The logarithmic wind profile, J. Atmos. Sci., 30, 234–238, 1973a.
- Tennekes, H., A model for the dynamics of the inversion above a convective boundary layer, J. Atmos. Sci., 30, 558–567, 1973b.
- Tricot, C., Estimation des flux chaleur en surface à la station météo-océanographique PapaSci. Rep. 1985/9Inst. d'Astron. et de Geophys. G. Lemaître, Univ. Cath. de Louvain, Louvain-La-Neuve, Belgium, 1985.
- Troen, I. B., L. Mahrt, A simple model of the atmospheric boundary layer; Sensitivity to surface evaporation, Boundary Layer Meteorol., 37, 129–148, 1986.
- Turner, J. S., The coupled turbulent transports of salt and heat across a sharp density interface, Int. J. Heat Mass Transfer, 8, 759–767, 1965.
- Turner, J. S., Buoyancy Effects in Fluids, 368, Cambridge University Press, New York, 1973.
10.1017/CBO9780511608827 Google Scholar
- Weller, R. A., J. F. Price, Langmuir circulation within the oceanic mixed layer, Deep Sea Res., 35, 711–747, 1988.
- Weller, R. A., J. P. Dean, J. Marra, J. F. Price, E. A. Francis, D. C. Boardman, Three-dimensional flow in the upper ocean, Science, 227, 1552–1556, 1984.
- Wells, N. C., A coupled ocean-atmosphere experiment: The ocean response, Q. J. R. Meteorol. Soc., 112, 355–370, 1979.
- Wyngaard, J. C., Lectures on the planetary boundary layer, Mesoscale Meteorology—Theories, Observations and Models, NATO ASI, Ser., Ser. C D. K. Lilly, T. Gal-Chen, 781, D. Reidel, Norwell, Mass., 1982.
- Wyngaard, J. C., R. A. Brost, Top-down and bottom-up diffusion in the convective boundary layer, J. Atmos. Sci., 41, 102–112, 1984.
- Zeman, O., J. L. Lumley, Modeling buoyancy driven mixed layers, J. Atmos. Sci., 33, 1974–1988, 1976.