Petrology and geochemistry of basalts from the southern Juan de Fuca Ridge: Controls on the spatial and temporal evolution of mid-ocean ridge basalt
Matthew C. Smith
Search for more papers by this authorMichael R. Perfit
Search for more papers by this authorIan R. Jonasson
Search for more papers by this authorMatthew C. Smith
Search for more papers by this authorMichael R. Perfit
Search for more papers by this authorIan R. Jonasson
Search for more papers by this authorAbstract
Three morphologically distinct regions within the neovolcanic zone of the Cleft segment of the southern Juan de Fuca Ridge were investigated and sampled in detail using the DSRV Alvin. Additional along-strike and off-axis samples were recovered by dredge. The southernmost region, the Southern Cleft site, is characterized by a 3-km-wide axial valley floored by ponded sheet flows and bisected by a 30- to 50-m-wide cleft. Farther north at the “Young Sheet Flow” site, the ridge axis is characterized by a distinct 500-m-wide inner graben that is largely covered by distinctly younger looking sheet flows. The northernmost of the three regions is defined by a linear series of discontinuous constructional pillow mounds that extend the trend of the Cleft segment well into the zone of overlap with the neighboring Vance segment. The pillowed lavas at the “Young Pillow Mound” site represent the most recent episode of volcanism along the Cleft segment. Strong correlations exist between degrees of fractionation, relative ages of lavas, and latitude; lavas are progressively younger looking and more mafic to the north. The compositional range of mid-ocean ridge basalts from the neovolcanic zone can generally be accounted for by 35–40% low-pressure fractional crystallization of relatively primitive, but not primary, depleted (N-type) melts. Scatter of the geochemical data about calculated liquid lines of descent is probably the result of mixing of magmas with slightly different parental compositions, generated from small-scale mantle heterogeneities. Furthermore, the chemical variability may be the result of mixing of very depleted and more enriched sources or melts that are present beneath the southern Juan de Fuca Ridge. The more primitive nature of the young pillow mound basalts and their slightly different chemical characteristics indicates they cannot be simply related to the older southernmost lavas by along-axis flow in a continuous axial magma chamber or conduit. Rather, the data suggest lavas were derived from discrete magma chambers or lenses, each in a different stage of evolution. The youngest events may be associated with a new influx of magma into the northern part of the segment and subsequent northward diking and propagation to form the new pillow mounds. The oldest stage (∼40% additional crystallization of the most mafic composition) is associated with focused hydrothermal activity and tectonic extension, whereas the youngest events are characterized by ridge inflation, diking, and dispersed hydrothermal activity. Geochemical and tectonomagmatic features observed along the Cleft segment are similar to those recently documented along the East Pacific Rise from 9°30′N–10°N suggesting the scales, processes, and stages of magmagenesis are similar along medium to fast spreading ridge segments.
References
- Appelgate Jr., T. B., Volcanic and structural morphology of the southern flank of the axial volcano, Juan de Fuca Ridge: Results from a SeaMARC I sidescan sonar survey, J. Geophys. Res., 95, 12765–12783, 1990.
- Baker, E. T., S. R. Hammond, Hydrothermal venting and the apparent magmatic budget of the Juan de Fuca Ridge, J. Geophys. Res., 97, 3443–3456, 1992.
- Batiza, R., Y. Niu, Petrology and magma chamber processes at the East Pacific Rise ˜9°30′N, J. Geophys. Res., 97, 6779–6797, 1992.
- Chadwick, W. W., andR. W. Embley, Lava flows from a mid-1980s submarine eruption on the Cleft segment, Juan de Fuca Ridge,J. Geophys. Res., 99B31994.
- Chadwick Jr., W. W., R. W. Embley, C. G. Fox, Evidence for volcanic eruption on the southern Juan de Fuca Ridge between 1981 and 1987, Nature, 350, 416–418, 1991.
- Clague, D. A., F. A. Frey, G. Thompson, S. Rindge, Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: Role of crystal fractionation and mantle heterogeneity, J. Geophys. Res., 86, 9469–9482, 1981.
- Delaney, J. R., H. P. Johnson, J. L. Karsten, The Juan de Fuca ridge-hot spot-propagating rift system: New tectonic, geochemical, and magnetic data, J. Geophys. Res., 86, 11747–11750, 1981.
- Delaney, J. R., J. L. Karsten, S. R. Hammond, Petrology and tectonics of the Juan de Fuca Ridge, Eos Trans. AGU, 67, 360, 1986.
- Desonie, D. L., R. A. Duncan, The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity, J. Geophys. Res., 95, 12697–12711, 1990.
- Dixon, J. E., D. A. Clague, J.-P. Eissen, Gabbroic xenoliths and host ferrobasalt from the southern Juan de Fuca Ridge, J. Geophys. Res., 91, 3795–3820, 1986.
- Eaby, J., D. A. Clague, J. R. Delaney, Sr isotope variations along the Juan de Fuca Ridge, J. Geophys. Res., 89, 7883–7890, 1984.
- Embley, R. W., andW. W. Chadwick, Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the northern Cleft segment: Juan de Fuca Ridge,J. Geophys. Res., 99B31994.
- Embley, R. W., S. Hammond, A. Malahoff, W. F. B. Ryan, K. Crane, E. Kappel, Rifts of the southern Juan de Fuca, Eos Trans. AGU, 64, 853, 1983.
- Embley, R. W., et al., Submersible observations of the “Megaplume” area: southern Juan de Fuca Ridge, Eos Trans. AGU, 69, 1497, 1988.
- Embley, R. W., K. M. Murphy, C. G. Fox, High-resolution studies of the summit of Axial volcano, J. Geophys. Res., 95, 12785–12812, 1990.
- Embley, R. W., W. W. Chadwick, M. R. Perfit, E. T. Baker, Geology of the northern Cleft segment, Juan de Fuca Ridge: Recent lava flows, sea-floor spreading, and the formation of megaplumes, Geology, 19, 771–775, 1991.
- Finney, A. R., Petrology and geochemistry of the Vance seamounts: Near-ridge seamounts along the Juan de Fuca Ridge, undergraduate honors thesis, 115 pp.,Univ. of Fla.,Gainesville,1989.
- Fox, C. G., W. W. Chadwick Jr., R. W. Embley, Detection of changes in ridge crest morphology using repeated multibeam sonar surveys, J. Geophys. Res., 97, 11149–11162, 1992.
- Garcia, M. O., R. A. Ho, J. M. Rhodes, E. W. Wolfe, Petrologic constraints on rift-zone processes, Bull. Volcanol., 52, 81–96, 1989.
- Goldstein, S. J., M. T. Murrell, D. R. Janecky, J. R. Delaney, D. A. Clague, Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda ridges by 238U-230Th disequilibrium, Earth Planet. Sci. Lett., 109, 255–272, 1992.
- Haymon, R. M., D. J. Fornari, M. H. Edwards, S. C. Carbotte, D. Wright, K. C. MacDonald, Hydrothermal vent distribution along the East Pacific Rise crest (9°09′-54′) and its relationship to magmatic and tectonic processes on fast spreading mid-ocean ridges, Earth Planet. Sci. Lett., 104, 513–534, 1991.
- Haymon, R. M., et al., Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45′-52′N: Direct submersible observations of seafloor phenomena associated with an eruption event in April 1991, Earth Planet. Sci. Lett., 119, 85–102, 1993.
- Hegner, E., M. Tatsumoto, Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge, J. Geophys. Res., 92, 11380–11386, 1987.
- Hegner, E., M. Tatsumoto, Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie Seamount chain, northeast Pacific, J. Geophys. Res., 94, 17839–17846, 1989.
- Hekinian, R., G. Thompson, D. Bideau, Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12°35′N-12°51′N and 11°26′N-11°30′N, J. Geophys. Res., 94, 17437–17463, 1989.
- Henderson, P., Inorganic Geochemistry, 353, Pergamon, New York, 1986.
- Hey, R. N., D. S. Wilson, Propagating rift explanation for the tectonic evolution of the northeast Pacific—The pseudomovie, Earth Planet. Sci. Lett., 58, 167–188, 1982.
- Holcomb, R. T., E. S. Kappel, S. L. Ross, Dive report: Alvin dive 1461U.S. Geol. Surv. Open File Rep., 86-000, 1986.
- Irving, A. J., A review of experimental studies of crystal/liquid trace element partitioning, Geochim. Cosmochim. Acta, 42, 743–770, 1978.
- Johnson, K. T. M., H. J. B. Dick, Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II Fracture Zone, J. Geophys. Res., 97, 9219–9241, 1992.
- Johnson, P. H., M. L. Holmes, Evolution in plate tectonics; The Juan de Fuca RidgeThe Geology of North America, V, The Eastern Pacific Ocean and Hawaii E. L. Winterer, D. M. Hussong, R. W. Decker, 73–91, Geological Society of America, Boulder, Colo., 1989.
10.1130/DNAG-GNA-N.73 Google Scholar
- Kappel, E. S., W. R. Normark, Morphometric variability within the axial zone of the southern Juan de Fuca Ridge: Interpretation from SeaMARC II, SeaMARC I, and deep sea photography, J. Geophys. Res., 92, 11291–11302, 1987.
- Kappel, E. S., W. B. F. Ryan, Volcanic episodicity and a non-steady state rift valley along northeast Pacific spreading centers: Evidence from SeaMARC I, J. Geophys. Res., 91, 13925–13940, 1986.
- Karsten, J. L., J. R. Delaney, J. M. Rhodes, R. A. Liias, Spatial and temporal evolution of magmatic systems beneath the Endeavour segment, Juan de Fuca Ridge: Tectonic and petrologic constraints, J. Geophys. Res., 95, 19235–19256, 1990.
- Kinzler, R. J., T. L. Grove, Primary magmas of mid-ocean ridge basalts, 2, Applications, J. Geophys. Res., 97, 6907–6926, 1992.
- Klein, E. M., C. H. Langmuir, Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, 8089–8115, 1987.
- Langmuir, C. H., Geochemical consequences of in situ crystallization, Nature, 340, 199–205, 1989.
- Langmuir, C. H., R. D. Vocke Jr., G. N. Hanson, A general mixing equation with applications to Icelandic basalts, Earth Planet. Sci. Lett., 37, 380–392, 1978.
- Langmuir, C. H., J. F. Bender, R. Batiza, Petrological segmentation of the East Pacific Rise, 5°30′-14°30′N, Nature, 322, 422–429, 1986.
- Leybourne, M. I., N. A. Van Wagoner, Heck and Heckle seamounts, northeast Pacific Ocean: High extrusion rates of primitive and highly depleted mid-ocean ridge basalt on off-ridge seamounts, J. Geophys. Res., 96, 16,275–16,293, 1991.
- McCallum, I. S., M. P. Charette, Zr and Nb partition coefficients: Implication for the genesis of mare basalts, KREEP and seafloor basalts, Geochim. Cosmochim. Acta, 42, 859–870, 1978.
- Nielsen, R. L., W. E. Gallahan, F. Newberger, Experimentally determined mineral-melt partition coefficients for Sc, Y, and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite, Contrib. Mineral. Petrol., 110, 488–499, 1992.
- Normark, W. R., J. L. Morton, R. A. Koski, D. A. Clague, Active hydrothermal vents and sulfide deposits on the southern Juan de Fuca Ridge, Geology, 11, 158–163, 1983.
- Normark, W. R., J. L. Morton, R. T. Holcomb, R. A. Koski, S. L. Ross, A continuous linear depression in the axial valley of the southern Juan de Fuca Ridge: Tectonic or volcanic origin?, Geol. Soc. Am. Abstr. Programs, 16, 611, 1984.
- Normark, W. R., J. L. Morton, S. L. Ross, Submersible observations along the southern Juan de Fuca Ridge: 1984 Alvin program, J. Geophys. Res., 92, 11283–11290, 1987.
- Perfit, M. R., D. J. Fornari, A. Malahoff, R. W. Embley, Geochemical studies of abyssal lavas recovered by DSRV Alvin from eastern Galapagos Rift, Inca Transform, and Equador Rift, 3, Trace element abundances and petrogenesis, J. Geophys. Res., 88, 10551–10572, 1983.
- Perfit, M. R., A. L. Heatherington, S. Hughes, I. R. Jonasson, J. M. Franklin, Geochemistry of basalts from Axial volcano: An example of a well-mixed axial magma chamber, Eos Trans. AGU, 69, 1467, 1988.
- Perfit, M. R., A. R. Finney, I. R. Jonasson, R. W. Embley, Geochemical and observational evidence for recent eruption and rifting as a cause of megaplume events along the southern Juan de Fuca Ridge, Eos Trans. AGU, 70, 1400, 1989.
- Perfit, M. R., D. S. Fornari, M. Smith, C. Langmuir, J. Bender, R. Haymon, Fine-scale petrological variations along the East Pacific Rise crest 9°17′N to 9°54′N: Results from Alvin diving and rock coring during the Adventure program, Eos Trans. AGU, 7244, Fall Meeting suppl., 491, 1991.
- Perfit, M. R., D. J. Fornari, M. C. Smith, J. F. Benden, C. H. Langmuir, R. M. Haymon, Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes, Geology, 1994.
- Reynolds, J. R., C. H. Langmuir, J. F. Bender, K. A. Kastens, W. B. F. Ryan, Spatial and temporal variability in the geochemistry of basalts from the East Pacific Rise, Nature, 359, 493–499, 1992.
- Reynolds, R. C., Matrix corrections in trace element analysis by x-ray fluorescence: Estimation of mass absorption coefficient by Compton scattering, Am. Mineral., 48, 1133–1143, 1963.
- Rhodes, J. M., Geochemistry of the 1984 Mauna Loa eruption: Implications for magma storage and supply, J. Geophys. Res., 93, 4453–4466, 1988.
- Rhodes, J. M., C. Morgan, R. A. Liias, Geochemistry of Axial Seamount lavas: Magmatic relationship between the Cobb hotspot and the Juan de Fuca Ridge, J. Geophys. Res., 95, 12713–12733, 1990.
- Shaw, D. M., Trace element fractionation during anatexis, Geochim. Cosmochim. Acta, 34, 237–243, 1970.
- Sigurdsson, H., R. S. J. Sparks, Rifting episode in North Iceland in 1874–1875 and the eruptions of Askja and Sveinagja, Bull. Volcanol., 413, 149–167, 1978.
- Sinton, J. M., R. S. Derrick, Mid-ocean ridge magma chambers, J. Geophys. Res., 97, 197–216, 1992.
- Sinton, J. M., D. S. Wilson, D. M. Christie, R. N. Hey, J. R. Delaney, Petrologic consequences of rift propagation on oceanic spreading ridges, Earth Planet. Sci. Lett., 62, 193–207, 1983.
- Sinton, J. M., S. M. Smaglik, J. J. Mahoney, K. C. Macdonald, Magmatic processes at superfast spreading mid-ocean ridges: Glass compositional variations along the East Pacific Rise 13°-23°S, J. Geophys. Res., 96, 6133–6155, 1991.
- Staudigel, H., J. Gee, L. Tauxe, R. J. Varga, Shallow intrusive directions of sheeted dikes in the Troodos ophiolite: Anisotropy of magnetic susceptibility and structural data, Geology, 20, 841–844, 1992.
- Stevenson, J. M., J. A. Hildebrand, M. A. Zumberge, andC. G. Fox, An ocean bottom gravity study of the southern Juan de Fuca Ridge,J. Geophys. Res., 99B31994.
- Taylor, S. R., Planetary Science: A Lunar Perspective, 481, Lunar and Planetary Institute, Houston, Tex., 1982.
- Taylor, S. R., M. P. Gorton, Geochemical applications of spark source mass spectrometry, III, Element sensitivity, precisions, and accuracy, Geochim. Cosmochim. Acta, 41, 1375–1380, 1977.
- Thompson, G., W. B. Bryan, R. Ballard, K. Hamuro, W. G. Melson, Axial processes along a segment of the East Pacific Rise, 10°-12°N, Nature, 318, 429–433, 1985.
- , U.S. Geological Survey, Juan de Fuca Study Group, Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: Preliminary observations from the submersible Alvin, Geology, 14, 823–827, 1986.
- Van Wagner, N. A., M. I. Leybourne, Evidence for magma mixing and a heterogeneous mantle on the West Valley segment of the Juan de Fuca Ridge, J. Geophys. Res., 96, 16295–16318, 1991.
- Vogt, P. R., G. R. Byerly, Magnetic anomalies and basalt composition in the Juan de Fuca-Gorda Ridge area, Earth Planet. Sci. Lett., 33, 185–207, 1976.
- Walker, D., T. Shibata, S. E. DeLong, Abyssal tholeiites from the Oceanographer Fracture Zone, Contrib. Mineral. Petrol., 70, 111–125, 1979.
- Weaver, J. S., C. H. Langmuir, Calculation of phase equilibrium in mineral-melt systems, Comput. Geosci., 16, 1–19, 1990.
- Wells, P. R. A., Pyroxene thermometry in simple and complex systems, Contrib. Mineral. Petrol., 62, 129–139, 1977.
- Wilson, D. S., R. N. Hey, C. Nishimura, Propagation as a mechanism of reorientation of the Juan de Fuca Ridge, J. Geophys. Res., 89, 9215–9226, 1984.
- Wilson, L., J. W. Head III, Nature of local magma storage and geometry of conduit systems below basaltic eruption sites: Pu'u O'o, Kilauea East Rift, Hawaii, example, J. Geophys. Res., 93, 14785–14792, 1988.