Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation
Christopher D. Charles
Search for more papers by this authorPhilip N. Froelich
Search for more papers by this authorMichael A. Zibello
Search for more papers by this authorRichard A. Mortlock
Search for more papers by this authorJoseph J. Morley
Search for more papers by this authorChristopher D. Charles
Search for more papers by this authorPhilip N. Froelich
Search for more papers by this authorMichael A. Zibello
Search for more papers by this authorRichard A. Mortlock
Search for more papers by this authorJoseph J. Morley
Search for more papers by this authorAbstract
We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°–42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°–49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°–55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.
References
- Bard, E., B. Hamelin, R. G. Fairbanks, A. Zindler, U/Th ages obtained by mass spectrometry in corals from Barbados: calibration of 14C for the last 30,000 years, Nature, 345, 405–410, 1990.
- Berger, A., Long-term variations of caloric insolation rsulting from the Earth's orbital elements, Quat. Res., 9, 139–167, 1978.
- Boyle, E. A., The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide, J. of Geophys. Res., 93, 15701–15715, 1988.
- Broecker, W. S., A revised estimate for the radiocarbon age of North Atlantic Deep Water, J. Geophys. Res., 84, 3218–3226, 1979.
- Broecker, W. S., T. H. Peng, Tracers in the Sea, 690, Eldigio, Palisades, N.Y., 1982.
- Broecker, W. S., T. H. Peng, The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochem. Cycles, 3, 215–240, 1989.
- Burckle, L. D., D. W. Cooke, Late Pleistocene Eucampia antarctica abundance stratigraphy in the Atlantic sector of the Southern Ocean, Micropaleontology, 29, 6–10, 1983.
- Burckle, L. D., D. B. Clarke, N. J. Shackleton, Isochronous last-abundant-appearance datum (LAAD) of the diatom Hemidiscus karstenii in the Subantarctic, Geology, 6, 243–246, 1978.
- Burckle, L. D., D. Robinson, D. Cooke, Reappraisal of sea-ice distribution in Atlantic and Pacific sectors of the Southern Ocean at 18,000 yr. B.P., Nature, 299, 435–437, 1982.
- Charles, C. D., Late Quaternary Ocean Chemistry and Climate Change from an Antarctic Deep Sea Sediment Perspective, Ph. D. thesis, 199 pp., Columbia Univ., New York, 1991.
- Charles, C. D., R. G. Fairbanks, Glacial-interglacial changes in the isotopic gradients of Southern Ocean surface water, The Geologic History of Polar Oceans: Arctic vs. Antarctic, NATO ASI Ser., 308 U. Bleil, J. Thiede, 519–538, Kluwer Academic, Boston, Mass., 1990.
- Chipman, D. W., T. Takahashi, Investigation of carbon chemistry in the Weddell Sea area during the 1986 winter expedition of the F/S Polarstern: June 28, 1986-September 16, 1986, NSF Tech. Rep., Lamont Doherty Geol. Observ., Palisades, N.Y., 1990.
- Clemens, S. C., W. L. Prell, W. R. Howard, Retrospective dry bulk density estimates from southeast Indian Ocean sediments: comparison of water loss and chloride-ion methods, Mar. Geol., 76, 57–69, 1987.
- , CLIMAP Project Members, The surface of the ice-age earth, Science, 191, 1131–1137, 1976.
- Cooke, D. W., Variations in the seasonal extent of sea ice in the Antarctic during the last 140,000 years determined from deep sea sediments. Ph. D. thesis, 145 pp., Columbia Univ., New York, 1978.
- Cooke, D. W., J. D. Hays, Estimates of Antarctic Ocean seasonal sea ice cover during glacial intervals, Antarctic Geoscience C. Craddock, 1017–1025, University of Wisconsin Press, Madison, 1982.
- DeMaster, D., The supply and accumulation of silica in the marine environment, Geochimica et Cosmochimica Acta, 45, 1715–1732, 1981.
- Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, N. Kallel, Deep water source variations during the last climatic variations and their impact on the global deep water circulation, Paleoceanography, 3, 343–360, 1988.
- Froelich, P. N., R. A. Mortlock, A. Shemesh, Inorganic germanium and silica in the Indian Ocean: biological fractionation during (Ge/Si)opal formation, Global Biogeochem. Cycles, 3, 79–88, 1989.
- Froelich, P. N., et al., Biogenic opal and carbonate accumulation rates in the subantarctic South Atlantic: the Late Neogene of Meteor Rise Site 704, Proc. Ocean Drill. Program, Sci. Results, 120, 515–549, 1991.
- Gordon, A. L., Seasonality of Southern Ocean sea ice, J. Geophys. Res., 85, 4193–4197, 1981.
- Gordon, A. L., Southern Ocean Atlas, 11pp + 233 plates, A.A.Balkeema, Rotterdam, 1986.
- Hays, J. D., A review of the Late Quaternary climatic history of Antarctic sea, Antarctic Glacial History and World Paleoenvironments E. M. Zinderen Bakker, 57–71, A. A.Balkema, Rotterdam, 1978.
- Hays, J. D., N. J. Shackleton, Globally synchronous extinction of the radiolarian Stylotractus universus, Geology, 4, 649–659, 1976.
- Hays, J. D., J. Imbrie, N. J. Shackleton, Variations in the earth's orbit: pacemaker of the ice ages, Science, 194, 1121–1132, 1976a.
- Hays, J. D., J. A. Lozano, N. Shackleton, G. Irving, Reconstruction of the Atlantic and western Indian Ocean sectors of the 18,000 B.P. Antarctic Ocean, Investigation of Late Quaternary Paleoceanography and Paleoclimatology, Mem Geol. Soc. Am., 145 R. M. Cline, J. D. Hays, 337–372, 1976b.
10.1130/MEM145-p337 Google Scholar
- Huber, B., S. Rennie, D. Georgi, S. Jacobs, Islas Orcadas reports (hydrographic stations), NSF Tech. Rep., Lamont Doherty Geol. Observ., Palisades, N.Y., 1981.
- Kurd, D. C., F. Theyer, Changes in the physical and chemical properties of biogenic silica, Analytical Methods in Oceanography, Adv. in Chem. Ser., 147 T. R. P. Gibbs, 211–239, 1975.
- Imbrie, J., J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, N. J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, Milankovitch and Climate A. L. Berger, et al., 269–305, D. Reidel, Norwell, Mass., 1984.
- Jacques, G., Some ecophysiological aspects of the Antarctic phytoplankton, Polar Biol., 2, 27–33, 1983.
- Jones, G. A., P. Kaiteris, A vacuum-gasometric technique for rapid and precise analysis of calcium carbonate in sediments and soils, J. Sed. Pet., 53, 655–660,.
- Kamykowski, D., S-J. Zentara, Nitrate and silicic acid in the world ocean: patterns and processes, Mar. Ecol. Prog. Ser., 26, 47–59, 1985.
- Knox, F. E., M. McElroy, Changes in atmospheric CO2; influence of marine biota at high latitudes, J. of Geophys. Res., 89, 4629–4637, 1984.
- Labeyrie, L., J. C. Duplessy, Changes in the oceanic 13C/12C ratio during the last 140,000 years: high-latitude surface water records, Palaeogeogr., Palaeoclimatol. Palaeoecol., 50, 217–240, 1985.
- Lea, D. W., E. A. Boyle, Foraminiferal recon-structions of barium distributions in water masses of the glacial oceans, Paleoceanography, 5, 719–742, 1990.
- Ledford-Hoffman, P. A., D. J. DeMaster, C. A. Nittrouer, Biogenic silica accumulation in the Ross Sea and the importance of Antarctic continental shelf deposits in the marine silica budget, Geochim. Cosmochim. Acta, 50, 2099–2110, 1986.
- Leinen, M., D. Cwienk, P. E. Biscaye, G. H. Heath, V. Kolla, J. Thiede, J. Dauphin, Distribution of biogenic silica and quartz in recent deep sea sediments, Geol., 14, 199–203, 1986.
- Lisitzin, A. P., Sedimentation in the world ocean, SEPM Spec. Pub., 17, 218–241, 1972.
10.2110/pec.72.17 Google Scholar
- Lorius, C., J. Jouzel, D. Raynaud, J. Hansen, H. Le Treut, The ice-core record: climate sensitivity and furture greenhouse warming, Nature, 347, 139–145, 1990.
- Lozano, J., Antarctic sedimentary, faunal, and sea-surface temperature responses during the last 230,000 years with emphasis on comparison between 18,000 years ago and today, Ph. D. thesis, 400 pp, Columbia University, New York, 1974.
- Lyle, M., D. W. Murray, B. P. Finney, J. Dymond, J. M. Robbins, K. Brooksforce, Record of Late Pleistocene sedimentation in the Eastern Tropical Pacific, Paleoceanography, 3, 39–60, 1988.
- Martin, J. H., Glacial-interglacial CO2 change: the iron hypothesis, Paleoceanography, 5, 1–15, 1990.
- Martinson, D. G., Southern Ocean-sea ice interaction: implications to glacial climate and modeling, Trans. R. Soc. Edinburgh: Earth Sci., 81, 397–405, 1990.
- Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore, N. J. Shackleton, Age dating and the Orbital theory of the ice ages: development of a high-resolution 0–300,000 year chronostratigraphy, Quat. Res., 27, 1–29, 1987.
- Mortlock, R. A., P. N. Froelich, A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Deep Sea Res., 36, 1415–1426, 1989.
- Mortlock, R. M., C. D. Charles, P. N. Froelich, M. Zibello, J. Saltzman, L. D. Burckle, J. D. Hays, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351, 220–222, 1991.
- Nelson, D. M., L. I. Gordon, Production and pelagic dissolution of biogenic silica in the Southern Ocean, Geochim. Cosmochim. Acta, 46, 491–501, 1982.
- Nelson, D. M., W. O. Smith Jr., L. I. Gordon, B. A. Huber, Spring distributions of density, nutrients, and phytoplankton biomass in the ice edge zone of the Weddell-Scotia Sea, J. of Geophys. Res., 92, 7181–7190, 1987.
- Oppo, D. W., R. G. Fairbanks, A. L. Gordon, N. J. Shackleton, Late Pleistocene Southern Ocean δ13C variability, Paleoceanography, 5, 43–54, 1990.
- Peterson, L., W. L. Prell, Carbonate preservation and rates of climatic change: an 800 kyr record from the Indian Ocean, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present., Geophys. Monogr. Ser., 32 E. T. Sundquist, W. S. Broecker, 251–270, AGU, Washington, D. C., 1986.
- Petit, J. R., L. Mounier, J. Jouzel, Y. S. Korotkevich, V. I. Kotlyakov, C. Lorius, Palaeoclimatiological and chronological implications of the Vostok core dust record, Nature, 343, 56–58, 1990.
- Shemesh, A., L. H. Burckle, P. N. Froelich, Dissolution and preservation of Antarctic diatoms and the effect on sediment thanatocoenoses, Quat. Res., 31, 288–308, 1989.
- Smith, W. O., D. M. Nelson, Phytoplankton blooms produced by a receeding ice edge in the Ross Sea: spatial coherence with the density fields, Science, 227, 163–166, 1985.
- Smith, W. O., E. Sakshaug, Polar phytoplankton, Polar Oceanography (Part B) W. O. Smith, 477–525, Academic, San Diego, Calif., 1990.
10.1016/B978-0-08-092595-0.50007-6 Google Scholar
- Toggweiler, J. R., J. Sarmiento, Glacial to interglacial changes in atmospheric carbon dioxide: the critical role of ocean surface water in high latitudes, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present., Geophys. Monogr. Ser., 32 E. T. Sundquist, W. S. Broecker, 163–184, AGU, Wahington, D. C., 1985.
10.1029/GM032p0163 Google Scholar
- Treguer, P., S. Gueneley, A. Kamatani, Biogenic silica and particulate organic matter from the Indian sector of the Southern Ocean, Mar. Chem., 23, 167–180, 1988.
- Van Bennekom, A. J., G. W. Berger, S. J. Van der Gaast, R.T.P. De Vries, Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector), Palaeogeogr., Palaeoclimatol. Palaeoecol., 67, 19–30, 1988.
- Wefer, G., E. Suess, W. Balzer, G. Liebezeit, P. J. Muller, C. A. Ungerer, W. Zenk, Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage, Nature, 299, 145–147, 1982.
- Wefer, G., G. Fischer, D. K. Futterer, R. Gersonde, Seasonal particle flux in the Bransfield Strait, Antarctica, Deep Sea Res., 35, 891–898, 1988.