Experimental determination of elastic constants of Oshima granite, Barre granite, and Chelmsford granite
Abstract
Employing polyhedral specimens, longitudinal and shear wave velocities were measured in various directions of propagation and polarization. Sound velocities showed orthorhombic elasticity in all of the rocks. With the assumption of orthorhombic elasticity the nine stiffness constants of all samples were determined by the sound velocities under atmospheric pressure and Kelvin-Christoffel's equation. Twenty-one stiffness constants of Oshima granite, determined without assuming any symmetry, also showed orthorhombic features. Directions of the symmetry axes agreed well with the orientation of the preexisting cracks. Akaike's Information Criterion showed that the orthorhombic model with nine nonzero elastic stiffnesses was better than the model having 21 nonzero elastic stiffnesses for Oshima granite. The polyhedrons of two granitic rocks were loaded under hydrostatic pressure. All components of the stiffness constants increased with pressure. Under pressure of more than 120 MPa, two granitic rocks were approximately isotropic. The results show that oriented microcracks are mainly responsible for the orthorhombic elasticity of the granitic rocks and also indicate that dry oriented cracks can not be a cause for the anisotropic elasticity of granites at depths of more than 6–8 km.
References
- Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Control, AC-19, 716–723, 1974.
- Anderson, D. L., B. Minster, D. Cole, The effect of oriented cracks on seismic velocities, J. Geophys. Res., 79, 4011–4015, 1974.
- Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 1, J. Geophys. Res., 65, 1083–1102, 1960.
- Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 2, J. Geophys. Res., 66, 2199–2224, 1961.
- Birch, F., Compressibility: Elastic constants, Handbook of Physical Constants S. P. Clark, 97–173, Geology Society of America, Boulder, Colo., 1966.
10.1130/MEM97-p97 Google Scholar
- Booth, D. C., S. Crampin, R. Evans, G. Roberts, Shear-wave polarizations near the North Anatolian fault, I, Evidence for anisotropy-induced shear-wave splitting, Geophys. J. R. Astron. Soc., 83, 61–73, 1985.
- Brace, W. F., Brittle fracture of rocks, State of Stress in the Earth's Crust W. R. Judd, 111–180, Elsevier Science, New York, 1964.
- Brace, W. F., Some new measurements of linear compressibility of rocks, J. Geophys. Res., 70, 391–398, 1965a.
- Brace, W. F., Relation of elastic properties of rocks to fabric, J. Geophys. Res., 70, 5657–5667, 1965b.
- Budiansky, B., R. J. O'Connell, Elastic moduli of a cracked solid, Int. J. Solids Struct., 12, 81–97, 1976.
- Chayes, F., The finer-grained calcalkaline granites of New England, J. Geol., 60, 207–254, 1952.
- Crampin, S., An introduction to wave propagation in anisotropic media, Geophys. J. R. Astron. Soc., 76, 17–28, 1984.
- Crampin, S., D. C. Booth, Shear-wave polarizations near the North Anatolian fault, II, Interpretation in terms of crack-induced anisotropy, Geophys. J. R. Astron. Soc., 83, 75–92, 1985.
- Dale, T. N., The commercial granites of New England, I, U.S. Geol. Surv. Bull., 738, 1–97, 1923.
- Douglass, P. M., B. Voight, Anisotropy of granites: A reflection of microscopic fabric, Geotechnique, 19, 376–398, 1969.
- Garbin, H. D., L. Knopoff, The compressional modulus of a material permeated by a random distribution of circular cracks, Q. Appl. Math., 30, 453–464, 1973.
- Garbin, H. D., L. Knopoff, The shear modulus of a material permeated by a random distribution of free circular cracks, Q. Appl. Math., 33, 296–300, 1975a.
- Garbin, H. D., L. Knopoff, Elastic moduli of a medium with liquid-filled cracks, Q. Appl. Math., 33, 301–303, 1975b.
- Hearmon, R. F. S., An Introduction to Applied Anisotropic Elasticity, 136, Oxford University Press, New York, 1961.
10.1063/1.3057153 Google Scholar
- Hoenig, A., Elastic moduli of a non-randomly cracked body, Int. J. Solids Struct., 15, 137–154, 1979.
- Hudson, J. A., Overall properties of a cracked solid, Math. Proc. Cambridge Philos. Soc., 88, 371–384, 1980.
- Hudson, J. A., Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. Astron. Soc., 64, 133–150, 1981.
- Isnard, P., P. Leymarie, Observations sur le fil du granite dans les carrieres du Sidobre (Tarn), Sci. Terre, 9, 423–437, 1964.
- Kaneshima, S., M. Ando, S. Kimura, Evidence from shear-wave splitting for the restriction of seismic anisotropy to the upper crust, Nature, 335, 627–629, 1988.
- Kaneshima, S., H. Ito, M. Sugihara, Shear wave polarization anisotropy observed in a riff zone in Japan, Tectonophysics, 157, 281–300, 1989.
- Kranz, R. L., Microcracks in rocks: A review, Tectonophysics, 100, 449–480, 1983.
- Kudo, Y., K. Hashimoto, O. Sano, K. Nakagawa, Relation between physical anisotropy and microstructures of granitic rock in Japan, Proceedings of the Sixth Congress of the International Society for Rock Mechanics G. Herget, S. Vongpaisal, 429–432, A. A. Balkema, Rotterdam, The Netherlands, 1987.
- Kumazawa, M., O. L. Anderson, Elastic moduli, pressure derivatives and temperature derivatives of single-crystal olivine and single-crystal forsterite, J. Geophys. Res., 74, 5961–5972, 1969.
- Kuster, G. T., M. N. Toksöz, Velocity and attenuation of seismic waves in two-phase media, Geophysics, 39, 587–606, 1974.
- Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, translated by P. Fren, 404 pp.,Holden-Day,Oakland, Calif.,1963.
- Lo, T.-W., K. B. Coyner, M. N. Toksöz, Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite, Geophysics, 51, 164–171, 1986.
- Mal, A. K., L. Knopoff, Elastic wave velocities in two-component systems, J. Inst. Math. Its Appl., 3, 376–387, 1967.
10.1093/imamat/3.4.376 Google Scholar
- Musgrave, M. J. P., Crystal Acoustics, 288, Holden-Day, Oakland, Calif., 1970.
- Nishiyama, T., Y. Kusakabe, Microscopic observation of the products of the alkali-silica reaction in the dyed thin sections of concrete cores, Concr. Libr. Jpn. Soc. Civ. Eng., 12, 67–74, 1989.
- Nishizawa, O., Seismic velocity anisotropy in a medium containing oriented cracks—Transversely isotropic case, J. Phys. Earth, 30, 331–347, 1982.
- Nur, A., G. Simmons, Stress-induced velocity anisotropy in rocks: An experimental study, J. Geophys. Res., 74, 6667–6674, 1969a.
- Nur, A., G. Simmons, The effect of viscosity of a fluid phase on velocity in low porosity rocks, Earth Planet. Sci. Lett., 7, 99–108, 1969b.
- Nur, A., G. Simmons, The origin of small cracks in igneous rocks, Int. J. Rock Mech. Min. Sci., 7, 307–314, 1970.
- Nye, J. F., Physical Properties of Crystals, 322, Clarendon, Oxford, 1957.
- O'Connell, R. J., B. Budiansky, Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426, 1974.
- O'Connell, R. J., B. Budiansky, Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res., 82, 5719–5735, 1977.
- Osborne, F. F., Rift, grain, hardway in some pre-Cambrian granites, Quebec, Econ. Geol., 30, 540–551, 1935.
10.2113/gsecongeo.30.5.540 Google Scholar
- Peng, S., A. M. Johnson, Crack growth and faulting in cylindrical specimens of Chelmsford granite, Int. J. Rock Mech. Min. Sci., 9, 37–86, 1972.
- Phillips, W. J., N. Phillips, An Introduction to Mineralogy for Geologists, 352, John Wiley, New York, 1980.
- Plumb, R., T. Engelder, D. Yale, Near-surface in situ stress, 3, Correlation with microcrack fabric within the New Hampshire granites, J. Geophys. Res., 89, 9350–9364, 1984.
- Rai, C. S., K. E. Hanson, Shear-wave velocity anisotropy in sedimentary rocks: A laboratory study, Geophysics, 53, 800–806, 1988.
- Sano, O., A note on the sources of acoustic emissions associated with subcritical crack growth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18, 259–263, 1981.
- Sano, O., A revision of the double-torsion technique for brittle materials, J. Mater. Sci., 23, 2505–2511, 1988.
- Sano, O., I. Ito, M. Terada, Influence of strain rate on dilatancy and strength of Oshima granite under uniaxial compression, J. Geophys. Res., 86, 9299–9311, 1981.
- Sano, O., Y. Kudo, Y. Mizuta, K. Nakagawa, Deformation and fracture process of granitic rocks as an anisotropic body, with English abstract, Proc. Jpn. Soc. Civ. Eng., 400, 179–188, 1988.
- Scholz, C. H., T. A. Koczynski, Dilatancy anisotropy and the response of rock to large cyclic loads, J. Geophys. Res., 84, 5525–5534, 1979.
- Schreiber, E., O. L. Anderson, N. Soga, Elastic Constants and Their Measurement, 196, McGraw-Hill, New York, 1973.
- Simmons, G., Velocity of shear waves in rocks to 10 kilobars, 1, J. Geophys. Res., 69, 1123–1130, 1964.
- Simmons, G., T. Todd, W. S. Baldridge, Toward a quantitative relationship between elastic properties and cracks in low porosity rocks, Am. J. Sci., 275, 318–345, 1975.
- Sprunt, E. S., W. F. Brace, Direct observation of microcavities in crystalline rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11, 139–150, 1974.
- Thill, R. E., T. R. Bur, R. C. Steckley, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10, 535–557, 1973.
- Todd, T., G. Simmons, W. S. Baldridge, Acoustic double refraction in low-porosity rocks, Bull. Seismol. Soc. Am., 63, 2007–2020, 1973.
- Walsh, J. B., The effect of cracks on the compressibility of rock, J. Geophys. Res., 70, 381–389, 1965a.
- Walsh, J. B., The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res., 70, 399–411, 1965b.
- Walsh, J. B., Seismic attenuation in rock due to friction, J. Geophys. Res., 71, 2591–2599, 1966.
- Walsh, J. B., Attenuation in partially melted material, J. Geophys. Res., 73, 2209–2216, 1968.
- Yanagidani, T., S. Nishiyama, M. Terada, Anisotropic development of dilatancy in uniaxially compressed granites, in Japanese with English abstract, Proc. Jpn. Soc. Civ. Eng., 382, 63–72, 1987.