A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres
Andrew A. Lacis
Search for more papers by this authorValdar Oinas
Search for more papers by this authorAndrew A. Lacis
Search for more papers by this authorValdar Oinas
Search for more papers by this authorAbstract
We describe a radiative transfer method for treating nongray gaseous absorption and thermal emission in vertically inhomogeneous multiple scattering atmospheres. We derive probability density distributions of absorption coefficient strength from line-by-line calculations to construct line-by-line and band model based k distributions. The monotonic ordering of absorption coefficient strengths in these k distributions implicitly preserves the monochromatic structure of the atmosphere at different pressure levels, thus simulating monochromatic spectral integration at a fraction of the line-by-line computing cost. The k distribution approach also permits accurate modeling of overlapping absorption by different atmospheric gases and accurate treatment of nongray absorption in multiple scattering media. To help verify the accuracy of the correlated k distribution method, we compare radiative cooling rates by atmospheric water vapor, CO2, and ozone against line-by-line calculations. The results show the correlated k distribution method is capable of achieving numerical accuracy to within 1% of cooling rates obtained with line-by-line calculations throughout the troposphere and most of the stratosphere.
References
- Altshuler, T. L., J. I. F. King, Inference of band structures from laboratory data, Specialist Conference on Molecular Radiation and its Application to Diagnostic TechniquesNASA TMX 53711, 96–112Natl. Aeronaut. and Space Admin., Washington, D. C., 1968.
- Ambartzumian, V., The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars, Publ. Obs. Astron. Univ. Leningrad, 6, 7–18, 1936.
- Arking, A. A., K. Grossman, The influence of line shape and band structure on temperatures in planetary atmospheres, J. Atmos. Sci., 29, 937–949, 1972.
- Armstrong, B. H., Analysis of the Curtis-Godson approximation and radiation transmission through inhomogeneous atmospheres, J. Atmos. Sci., 25, 312–322, 1968.
- Cess, R. D., D. P. Kratz, S. J. Kim, J. Caldwell, Infrared radiation models for atmospheric methane, J. Geophys. Res., 91, 9857–9864, 1986.
- Chou, M. D., A. Arking, Computation of infrared cooling rates in the water vapor bands, J. Atmos. Sci., 37, 855–867, 1980.
- Clough, S. A., F. X. Kneizys, R. W. Davies, Line shape and the water vapor continuum, Atmos. Res., 23, 229–241, 1989.
- Cox, S. K., K. T. Griffith, Estimates of radiative divergence during phase III of the GARP Atlantic Tropical Experiment, I, Methodology, J. Atmos. Sci., 36, 576–585, 1979.
- Curtis, A. R., Discussion of “A statistical model for water vapour absorption”, Q. J. R. Meteorol. Soc., 78, 638–640, 1952.
- Domoto, G. A., Frequency integration for radiative transfer problems involving homogeneous non-grey cases: The inverse transmission function, J. Quant. Spectrosc. Radiat. Transfer, 14, 935–942, 1974.
- Drayson, S. R., Rapid computation of the Voigt profile, J. Quant. Spectros. Radiat. Transfer, 16, 611–614, 1975.
- Elsasser, W. M., Heat Transfer by Infrared Radiation in the Atmosphere, Harvard Meteorol. Stud., 6, 107, Harvard University Press, Cambridge, Mass., 1942.
- Fels, S. B., M. D. Schwartzkopf, The simplified exchange approximations: A new method for radiative transfer calculations, J. Atmos. Sci., 32, 1475–1488, 1975.
- Fels, S. B., M. D. Schwartzkopf, An efficient, accurate algorithm for calculating CO2 15-μm band cooling rates, J. Geophys. Res., 86, 1205–1232, 1981.
- Godson, W. L., The evaluation of infrared-radiative fluxes due to atmospheric water vapour, Q. J. R. Meteorol. Soc., 79, 367–379, 1953.
- Goldman, A., T. G. Kyle, A comparison between statistical model and line by line calculations with application to the 9.6 μm ozone and the 2.7 μm water vapor bands, Appl. Opt., 7, 1167–1177, 1968.
- Goody, R. M., A statistical model for water vapor absorption, Q. J. R. Meteorol. Soc., 78, 165–169, 1952.
- Goody, R. M., Atmospheric Radiation, 436, Oxford University Press, New York, 1964.
- Goody, R., R. West, L. Chen, D. Crisp, The correlated-k method for radiation calculations in nonhomogeneous atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 42, 539–550, 1989.
- Hansen, J. E., L. D. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, 1974.
- Hansen, J. E., W. C. Wang, A. A. Lacis, Mount Agung eruption provides test of a global climate perturbation, Science, 199, 1065–1068, 1978.
- Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, G. Russell, Climate impact of increasing atmospheric carbon dioxide, Science, 213, 957–966, 1981.
- Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, L. Travis, Efficient three-dimensional global models for climate studies: Models I and II, Mon. Weather Rev., 111, 609–662, 1983.
- Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, J. Lerner, Climate sensitivity: Analysis of feedback mechanisms, Climate Processes and Climate Sensitivity J. E. Hansen, T. Takahashi, 130–163, AGU, Washington, D.C., 1984.
10.1029/GM029p0130 Google Scholar
- Hansen, J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J. Geophys. Res., 93, 9341–9364, 1988.
- Howard, J. N., D. E. Burch, D. Williams, Infrared transmission of synthetic atmospheres, Parts I-V, J. Opt. Soc. Am., 46, 186–190237–241, 242–245, 334–338, 452–455, 1956.
- Kiehl, J. T., V. Ramanathan, CO2 radiative parameterization used in climate models: Comparison with narrow band models and with laboratory data, J. Geophys. Res., 88, 5191–5202, 1983.
- Kondratyev, K. Ya., Radiation in the Atmosphere, 912, Academic, San Diego, Calif., 1969.
- Kratz, D. P., R. D. Cess, Infrared radiation models for atmospheric ozone, J. Geophys. Res., 93, 7047–7054, 1988.
- Kuhn, W. R., J. London, Infrared radiative cooling in the middle atmosphere (30–110 km), J. Atmos. Sci., 26, 189–204, 1969.
- Lacis, A. A., J. E. Hansen, A parameterization for the absorption of solar radiation in the Earth' s atmosphere, J. Atmos. Sci., 31, 118–133, 1974.
- Lacis, A., W. C. Wang, J. Hansen, Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate, NASA Conf. Publ., 2076, 309–314, 1979.
- Lacis, A., J. Hansen, P. Lee, T. Mitchell, S. Lebedeff, Greenhouse effect of trace gases, 1970–1980, Geophys. Res. Lett., 8, 1035–1038, 1981.
- Lebedinsky, A. I., Radiative equilibrium in the Earth's atmosphere, Proc. Leningrad Univ. Ser. Math., 331, 152–175, 1939.
- Lindquist, G. H., F. S. Simmons, A band model formulation for very nonuniform paths, J. Quant. Spectros. Radiat. Transfer, 12, 807–820, 1972.
- Liou, K. N., An Introduction to Atmospheric Radiation, Int. Geophys. Ser., 26, Academic, San Diego, Calif., 1980.
- Luther, F. M., Y. Fouquart, The intercomparison of radiation codes in climate models (ICRCCM)WMO Rep. WCP-93, 37World Meteorol. Organ., Geneva, Switzerland, 1984.
- Malkmus, W., Random Lorentz band model with exponential-tailed s-1 line-intensity distribution function, J. Opt. Soc. Am., 57, 323–329, 1967.
- Manabe, S., F. Moller, On the radiative-equilibrium and heat balance of the atmosphere, Mon. Weather Rev., 89, 503–532, 1961.
- McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical properties of the atmosphere, Environ. Res. Pap., 411, 108, Air Force Cambridge Res. Lab., Bedford, Mass., 1972.
- McClatchey, R. A., W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, AFCRL atmospheric absorption line parameters compilation, Environ. Res. Pap., 434, 78, Air Force Cambridge Res. Lab., Bedford, Mass., 1973.
- Oinas, V., Rapid transmittance integration using line blending and a straight-line fit to line shapes, J. Quant. Spectrosc. Radiat. Transfer, 29, 407–411, 1983.
- Pierluissi, J. H., P. C. Vanderwood, R. B. Gomez, Fast calculational algorithm for the Voigt profile, J. Quart. Spectrosc. Radiat. Transfer, 18, 555–558, 1977.
- Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, G. Russell, The GISS global climate-middle atmosphere model, I, Model structure and climatology, J. Atmos. Sci., 45, 329–370, 1988.
- Rodgers, C. D., C. D. Walshaw, The computation of infra-red cooling rate in planetary atmospheres, Q. J. R. Meteorol. Soc., 92, 67–92, 1966.
- Rothman, L. S., AFGL atmospheric absorption line parameters compilation: 1980 version, Appl. Opt., 20, 791–795, 1981.
- Smith, W. L., W. C. Shen, H. B. Howell, A radiative heating model derived from the GATE MSR experiment, J. Atmos. Meteorol., 16, 384–392, 1977.
- Stephens, G. L., The parameterization of radiation for numerical weather prediction and climate models, Mon. Weather Rev., 112, 826–867, 1984.
- van deHulst, H. C., Theory of absorption lines in the atmosphere of the Earth, Ann. Astrophys., 8, 1–11, 1945.
- Walshaw, C. D., C. D. Rodgers, The effect of the Curtis-Godson approximation on the accuracy of radiative heating-rate calculations, Q. J. R. Meteorol. Soc., 89, 122–130, 1963.
- Wang, W. C., A parameterization for the absorption of solar radiation by water vapor in the Earth's atmosphere, J. Appl. Meteorol., 15, 21–27, 1976.
- Wang, W. C., G. Y. Shi, Total band absorptance and k-distribution function for atmospheric gases, J. Quant. Spectrosc. Radiat. Transfer, 39, 387–397, 1988.
- Wang, W. C., Y. L. Yung, A. A. Lacis, T. Mo, J. E. Hansen, Greenhouse effects due to man-made perturbations of trace gases, Science, 194, 685–690, 1976.
- West, R., D. Crisp, L. Chen, Mapping transformations for broadband atmospheric radiation calculations, J. Quant. Spectrosc. Radiat. Transfer, 43, 191–199, 1990.
- Wiscombe, W., J. Evans, Exponential-sum fitting of radiative transmission functions, J. Comput. Phys., 24, 416–444, 1977.
- Yamamoto, G., Direct absorption of solar radiation by atmospheric water vapor, carbon dioxide and molecular oxygen, J. Atmos. Sci., 19, 182–188, 1962.
- Yamamoto, G., M. Tanaka, S. Asano, Radiative transfer in water clouds in the infrared region, J. Atmos. Sci., 27, 282–292, 1970.
- Yamamoto, G., M. Aida, S. Yamamoto, Improved Curtis-Godson approximation in a non-homogeneous atmosphere, J. Atmos. Sci., 29, 1150–1155, 1972.
- Young, S. J., Band model formulation for inhomogeneous optical paths, J. Quant. Spectrosc. Radiat. Transfer, 15, 483–501, 1975.