Landscape Evolution Models of Incision on Mars: Implications for the Ancient Climate
Corresponding Author
Amanda V. Steckel
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Correspondence to:
A. V. Steckel,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Resources, Data curation, Writing - original draft, Writing - review & editing, Funding acquisition
Search for more papers by this authorGregory E. Tucker
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Contribution: Conceptualization, Methodology, Software, Writing - review & editing
Search for more papers by this authorMatthew Rossi
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Earth Lab, University of Colorado Boulder, Boulder, CO, USA
Contribution: Conceptualization, Writing - review & editing
Search for more papers by this authorBrian Hynek
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO, USA
Contribution: Conceptualization, Methodology, Data curation, Writing - review & editing, Funding acquisition
Search for more papers by this authorCorresponding Author
Amanda V. Steckel
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Correspondence to:
A. V. Steckel,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Resources, Data curation, Writing - original draft, Writing - review & editing, Funding acquisition
Search for more papers by this authorGregory E. Tucker
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Contribution: Conceptualization, Methodology, Software, Writing - review & editing
Search for more papers by this authorMatthew Rossi
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Earth Lab, University of Colorado Boulder, Boulder, CO, USA
Contribution: Conceptualization, Writing - review & editing
Search for more papers by this authorBrian Hynek
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO, USA
Contribution: Conceptualization, Methodology, Data curation, Writing - review & editing, Funding acquisition
Search for more papers by this authorThis article was corrected on 20 MAY 2025. See the end of the full text for details.
Abstract
Large dendritic valley networks observed on Mars present a paleoclimate paradox. Geologic observations of Noachian units on Mars reveal a global extent of valley networks, which are believed to have been formed through incisions made by flowing water. However, most climate models predict global surface temperatures too far below the freezing point of water to support an active hydrological system. Conflicting observations and models have led to disparate theories for the climate of early Mars. In this work, we surveyed a large region of the cratered southern highlands to identify the location, elevation, and distribution of observed valley heads. These valley head locations were compared to landscape evolution simulations in which the spatial distribution of runoff was varied. The measured valley head distributions were compared to predictions from landscape evolution models for two end-member hypotheses: (a) a warm wet climate that supported spatially distributed precipitation, and (b) surface runoff from ice cap margins, as envisioned by the Late Noachian Icy Highland model (LNIH). The observed elevation distribution in valley heads is consistent with the prediction of precipitation-fed models, and inconsistent with models in which runoff derives exclusively from a single line-source of high-elevation ice-melt. The results support the view that it is unlikely for ice caps to be the sole source of water and are consistent with the hypothesis that precipitation significantly contributed to valley network formation on ancient Mars.
Key Points
-
Developed landscape evolution models comparing valley network formation from precipitation (warm wet) versus ice melt (icy cold) sources
-
In icy cold models, valley heads originate around the ice stability line, whereas warm wet models have heads distributed among all elevations
-
Valleys on Mars have heads originating across many elevations, indicating a past climate warm enough for widespread precipitation
Plain Language Summary
Our study addresses a longstanding mystery about the climate of ancient Mars. Observations of large valley networks suggest formation by flowing water. However, most climate models cannot sustain temperatures above freezing. To understand this contradiction, we modeled the two leading theories for valley formation from precipitation (a warm wet climate) or temporarily melted ice from the edge of an ice cap (an icy cold climate). We found that the main difference between these scenarios was the location of the origin of the valleys that formed. In a warm wet setting, valleys start at many different elevations. In the icy cold scenario, valleys start only near the elevation where ice melted. We then examined a region of Mars with many large valley networks, focusing on the location and elevation of valley heads. Our findings showed that the distribution of valley heads matches predictions for a climate that includes precipitation rather than just runoff from melting ice caps. This suggests that precipitation played a significant role in forming these valleys, indicating that ancient Mars likely had a climate warm enough to support rain. These results help us better understand Mars's past climate and the planet's potential to have supported life.
Supporting Information
Filename | Description |
---|---|
2024JE008637-sup-0001-Supporting Information SI-S01.docx46.8 KB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alemanno, G., Orofino, V., & Mancarella, F. (2018). Global map of Martian fluvial systems: Age and total eroded volume estimations. Earth and Space Science, 5(10), 560–577. https://doi.org/10.1029/2018EA000362
- Andrews, D. J., & Bucknam, R. C. (1987). Fitting degradation of shoreline scarps by a nonlinear diffusion model. Journal of Geophysical Research, 92(B12), 12857–12867. https://doi.org/10.1029/jb092ib12p12857
- Arvidson, R. E., Poulet, F., Bibring, J.-P., Wolff, M., Gendrin, A., Morris, R. V., et al. (2005). Spectral reflectance and morphologic correlations in Eastern Terra Meridiani, Mars. Science, 307(5715), 1591–1594. https://doi.org/10.1126/science.1109509
- Barnhart, K. R., Hutton, E. W., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E., et al. (2020). Landlab v2.0: A software package for Earth surface dynamics. Earth Surface Dynamics, 8(2), 379–397. https://doi.org/10.5194/esurf-8-379-2020
- Burr, D. M., Enga, M.-T., Williams, R. M. E., Zimbelman, J. R., Howard, A. D., & Brennand, T. A. (2009). Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars. Icarus, 200(1), 52–76. https://doi.org/10.1016/j.icarus.2008.10.014
- Burr, D. M., Williams, R. M. E., Wendell, K. D., Chojnacki, M., & Emery, J. P. (2010). Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates. Journal of Geophysical Research, 115(E7), E07011. https://doi.org/10.1029/2009JE003496
- Cardenas, B. T., Lamb, M. P., & Grotzinger, J. P. (2022). Martian landscapes of fluvial ridges carved from ancient sedimentary basin fill. Nature Geoscience, 15(11), 871–877. https://doi.org/10.1038/s41561-022-01058-2
- Carr, M. H. (1995). The Martian drainage system and the origin of valley networks and fretted channels. Journal of Geophysical Research, 100(E4), 7479–7507. https://doi.org/10.1029/95JE00260
- Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., & Murchie, S. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets, 118(4), 831–858. https://doi.org/10.1029/2012je004145
- Carter, J., Riu, L., Poulet, F., Bibring, J.-P., Langevin, Y., & Gondet, B. (2023). A Mars orbital catalog of aqueous alteration signatures (MOCAAS). Icarus, 389, 115164. https://doi.org/10.1016/j.icarus.2022.115164
- Craddock, R. A., & Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 107(E11), 21-1–21-36. https://doi.org/10.1029/2001JE001505
- Culling, W. E. H. (1963). Soil creep and the development of hillside slopes. The Journal of Geology, 71(2), 127–161. https://doi.org/10.1086/626891
- Di Achille, G., & Hynek, B. M. (2010). Ancient Ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience, 3(7), 459–463. https://doi.org/10.1038/ngeo891
- Di Achille, G., Hynek, B. M., & Searls, M. L. (2009). Positive identification of lake strandlines in Shalbatana Vallis, Mars. Geophysical Research Letters, 36(14), L14201. https://doi.org/10.1029/2009gl038854
- Ehlmann, B. L., & Edwards, C. S. (2014). Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences, 42(1), 291–315. https://doi.org/10.1146/annurev-earth-060313-055024
- Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., et al. (2022). Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars. Science, 377(6614), eabo2196. https://doi.org/10.1126/science.abo2196
- Fassett, C. I., & Head III, J. W. (2008). Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus, 198(1), 37–56. https://doi.org/10.1016/j.icarus.2008.06.016
- Fastook, J. L., & Head, J. W. (2014). Amazonian mid-to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration. Planetary and Space Science, 91, 60–76. https://doi.org/10.1016/j.pss.2013.12.002
- Fastook, J. L., & Head, J. W. (2015). Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planetary and Space Science, 106, 82–98. https://doi.org/10.1016/j.pss.2014.11.028
- Fastook, J. L., Head, J. W., Marchant, D. R., Forget, F., & Madeleine, J.-B. (2012). Early Mars climate near the Noachian–Hesperian boundary: Independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea Formation) and implications for valley network formation. Icarus, 219(1), 25–40. https://doi.org/10.1016/j.icarus.2012.02.013
- Feulner, G. (2012). The faint young Sun problem. Reviews of Geophysics, 50(2), RG2006. https://doi.org/10.1029/2011RG000375
- Forget, F., Wordsworth, R., Millour, E., Madeleine, J.-B., Kerber, L., Leconte, J., et al. (2013). 3D modelling of the early Martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 222(1), 81–99. https://doi.org/10.1016/j.icarus.2012.10.019
- Gallagher, C. J., & Bahia, R. (2021). Outflow channels on Mars. In Mars geological enigmas (pp. 13–40). Elsevier.
10.1016/B978-0-12-820245-6.00002-1 Google Scholar
- Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F., & Aureli, K. L. (2016). Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology, 44(6), 419–422. https://doi.org/10.1130/G37734.1
- Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., et al. (2014). A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science, 343(6169), 1242777. https://doi.org/10.1126/science.1242777
- Gulick, V. C., & Baker, V. R. (1989). Fluvial valleys and Martian palaeoclimates. Nature, 341(6242), 6242–6516. https://doi.org/10.1038/341514a0
10.1038/341514a0 Google Scholar
- Hartmann, W. K., & Neukum, G. (2001). Cratering chronology and the evolution of Mars. In R. Kallenbach, J. Geiss, & W. K. Hartmann (Eds.), Chronology and evolution of Mars (pp. 165–194). Springer. https://doi.org/10.1007/978-94-017-1035-0_6
10.1007/978-94-017-1035-0_6 Google Scholar
- Head, J. W., & Marchant, D. R. (2014). The climate history of early Mars: Insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarctic Science, 26(6), 774–800. https://doi.org/10.1017/s0954102014000686
- Head, J. W., & Marchant, D. R. (2008). Evidence for non-polar ice deposits in the past history of Mars.1295.
- Head, J. W., Wordsworth, R., Forget, F., Madeleine, J.-B., & Halevy, I. (2014). Late Noachian “cold and icy highlands” model: Geological predictions for equilibrium environments and equilibrium/non-equilibrium melting scenarios.1412.
- Heydari, E., Schroeder, J. F., Calef, F. J., Parker, T. J., & Fairén, A. G. (2023). Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Scientific Reports, 13(1), 1. https://doi.org/10.1038/s41598-023-45068-5
- Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46. https://doi.org/10.5194/esurf-5-21-2017
- Hoke, M. R. T., & Hynek, B. M. (2009). Roaming zones of precipitation on ancient Mars as recorded in valley networks. Journal of Geophysical Research, 114(E8), E08002. https://doi.org/10.1029/2008JE003247
- Hoke, M. R. T., Hynek, B. M., & Tucker, G. E. (2011). Formation timescales of large Martian valley networks. Earth and Planetary Science Letters, 312(1), 1–12. https://doi.org/10.1016/j.epsl.2011.09.053
- Howard, A. D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285. https://doi.org/10.1029/94wr00757
- Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., McLennan, S. M., Milliken, R. E., Stein, N., et al. (2017). Redox stratification of an ancient lake in Gale crater, Mars. Science, 356(6341), eaah6849. https://doi.org/10.1126/science.aah6849
- Hynek, B. M., Arvidson, R. E., & Phillips, R. J. (2002). Geologic setting and origin of Terra Meridiani hematite deposit on Mars. Journal of Geophysical Research, 107(E10), 18-1–18-14. https://doi.org/10.1029/2002JE001891
- Hynek, B. M., Beach, M., & Hoke, M. R. T. (2010). Updated global map of Martian valley networks and implications for climate and hydrologic processes. Journal of Geophysical Research, 115(E9), E09008. https://doi.org/10.1029/2009JE003548
- Irwin III, R. P., Howard, A. D., Craddock, R. A., & Moore, J. M. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research, 110(E12), E12S15. https://doi.org/10.1029/2005JE002460
- Ivanov, M. A., & Head, J. W. (2001). Chryse Planitia, Mars: Topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research, 106(E2), 3275–3295. https://doi.org/10.1029/2000je001257
- Kamada, A., Kuroda, T., Kasaba, Y., Terada, N., Nakagawa, H., & Toriumi, K. (2020). A coupled atmosphere–hydrosphere global climate model of early Mars: A ‘cool and wet’ scenario for the formation of water channels. Icarus, 338, 113567. https://doi.org/10.1016/j.icarus.2019.113567
- Kasting, J. F. (1991). CO2 condensation and the climate of early Mars. Icarus, 94(1), 1–13. https://doi.org/10.1016/0019-1035(91)90137-I
- Kite, E. S., Mayer, D. P., Wilson, S. A., Davis, J. M., Lucas, A. S., & Stucky de Quay, G. (2019). Persistence of intense, climate-driven runoff late in Mars history. Science Advances, 5(3), eaav7710. https://doi.org/10.1126/sciadv.aav7710
- Lefort, A., Burr, D. M., Beyer, R. A., & Howard, A. D. (2012). Inverted fluvial features in the Aeolis-Zephyria Plana, western Medusae Fossae formation, Mars: Evidence for post-formation modification. Journal of Geophysical Research, 117(E3), E03007. https://doi.org/10.1029/2011JE004008
10.1029/2011JE004008 Google Scholar
- Luo, W., & Stepinski, T. F. (2009). Computer-generated global map of valley networks on Mars. Journal of Geophysical Research, 114(E11), E11010. https://doi.org/10.1029/2009JE003357
- Malin, M. C., & Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302(5652), 1931–1934. https://doi.org/10.1126/science.1090544
- Morgan, A. M., Wilson, S. A., & Howard, A. D. (2022). The global distribution and morphologic characteristics of fan-shaped sedimentary landforms on Mars. Icarus, 385, 115137. https://doi.org/10.1016/j.icarus.2022.115137
- Murchie, S., Arvidson, R., Bedini, P., Beisser, K., Bibring, J.-P., Bishop, J., et al. (2007). Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). Journal of Geophysical Research, 112(E5), E05S03. https://doi.org/10.1029/2006JE002682
- Murchie, S. L., Mustard, J. F., Ehlmann, B. L., Milliken, R. E., Bishop, J. L., McKeown, N. K., et al. (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114(E2), E00D06. https://doi.org/10.1029/2009JE003342
- Osterloo, M. M., Anderson, F. S., Hamilton, V. E., & Hynek, B. M. (2010). Geologic context of proposed chloride-bearing materials on Mars. Journal of Geophysical Research, 115(E10), E10012. https://doi.org/10.1029/2010JE003613
- Palumbo, A. M., & Head, J. W. (2020). Groundwater release on early Mars: Utilizing models and proposed evidence for groundwater release to estimate the required climate and subsurface water budget. Geophysical Research Letters, 47(8), e2020GL087230. https://doi.org/10.1029/2020GL087230
- Palumbo, A. M., Head, J. W., & Wordsworth, R. D. (2018). Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures. Icarus, 300, 261–286. https://doi.org/10.1016/j.icarus.2017.09.007
- Pollack, J. B., Kasting, J. F., Richardson, S. M., & Poliakoff, K. (1987). The case for a wet, warm climate on early Mars. Icarus, 71(2), 203–224. https://doi.org/10.1016/0019-1035(87)90147-3
- Ramirez, R. M., & Craddock, R. A. (2018). The geological and climatological case for a warmer and wetter early Mars. Nature Geoscience, 11(4), 230–237. https://doi.org/10.1038/s41561-018-0093-9
- Ramirez, R. M., Craddock, R. A., & Usui, T. (2020). Climate simulations of early mars with estimated precipitation, runoff, and erosion rates. Journal of Geophysical Research: Planets, 125(3), e2019JE006160. https://doi.org/10.1029/2019JE006160
- Roering, J. J., Kirchner, J. W., & Dietrich, W. E. (1999). Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 35(3), 853–870. https://doi.org/10.1029/1998wr900090
- Scanlon, K. E., Head, J. W., Madeleine, J. B., Wordsworth, R. D., & Forget, F. (2013). Orographic precipitation in valley network headwaters: Constraints on the ancient Martian atmosphere. Geophysical Research Letters, 40(16), 4182–4187. https://doi.org/10.1002/grl.50687
- Segura, T. L., Toon, O. B., Colaprete, A., & Zahnle, K. (2002). Environmental effects of large impacts on Mars. Science, 298(5600), 1977–1980. https://doi.org/10.1126/science.1073586
- Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., et al. (2001). Mars orbiter laser altimeter: Experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 106(E10), 23689–23722. https://doi.org/10.1029/2000JE001364
- Smith, D. E., Zuber, M. T., Neumann, G. A., Guiness, M. E. A., & Slayney, S. (2003). Mars global surveyor laser altimeter mission experiment gridded data record, MGS-M-MOLA-5-MEGDR-L3-V1.0. NASA Planetary Data System. https://doi.org/10.17189/1519460
- Soto, A., Mischna, M., Schneider, T., Lee, C., & Richardson, M. (2015). Martian atmospheric collapse: Idealized GCM studies. Icarus, 250, 553–569. https://doi.org/10.1016/j.icarus.2014.11.028
- Squyres, S. W., Arvidson, R. E., Bell, J. F., Brückner, J., Cabrol, N. A., Calvin, W., et al. (2004). The opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306(5702), 1698–1703. https://doi.org/10.1126/science.1106171
- Steckel. (2024). Simple_Model.py (version 1), avsteckel/MVNS: MVN (version v1.0) [Dataset, Software]. Zenodo. https://doi.org/10.5281/ZENODO.14029190
10.5281/ZENODO.14029190 Google Scholar
- Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
- Tanaka, K. L., & Kolb, E. J. (2001). Geologic history of the polar regions of Mars based on mars global surveyor data: I. Noachian and hesperian periods. Icarus, 154(1), 3–21. https://doi.org/10.1006/icar.2001.6675
- Vaz, D. A., Di Achille, G., Hynek, B. M., Nelson, W., & Williams, R. M. E. (2020). Martian fan deposits: Insights on depositional processes and origin from mass balance survey. Earth and Planetary Science Letters, 533, 116049. https://doi.org/10.1016/j.epsl.2019.116049
- Weiss, D. K., & Head, J. W. (2015). Crater degradation in the Noachian highlands of Mars: Assessing the hypothesis of regional snow and ice deposits on a cold and icy early Mars. Planetary and Space Science, 117, 401–420. https://doi.org/10.1016/j.pss.2015.08.009
- Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104(B8), 17661–17674. https://doi.org/10.1029/1999JB900120
- Williams, R. M. E., Grotzinger, J. P., Dietrich, W. E., Gupta, S., Sumner, D. Y., Wiens, R. C., et al. (2013). Martian fluvial conglomerates at gale crater. Science, 340(6136), 1068–1072. https://doi.org/10.1126/science.1237317
- Wolman, M. G., & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68(1), 54–74. https://doi.org/10.1086/626637
- Wordsworth, R., Forget, F., Millour, E., Head, J. W., Madeleine, J.-B., & Charnay, B. (2013). Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus, 222(1), 1–19. https://doi.org/10.1016/j.icarus.2012.09.036
- Wordsworth, R., Kalugina, Y., Lokshtanov, S., Vigasin, A., Ehlmann, B., Head, J., et al. (2017). Transient reducing greenhouse warming on early Mars. Geophysical Research Letters, 44(2), 665–671. https://doi.org/10.1002/2016GL071766
- Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F., & Head, J. W. (2015). Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. Journal of Geophysical Research: Planets, 120(6), 1201–1219. https://doi.org/10.1002/2015JE004787