Methane Emissions From the Qinghai-Tibet Plateau Ponds and Lakes: Roles of Ice Thaw and Vegetation Zone
Yang Li
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Conceptualization, Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Genxu Wang
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Correspondence to:
G. Wang and C. Song,
Contribution: Conceptualization, Writing - review & editing, Project administration, Funding acquisition
Search for more papers by this authorShouqin Sun
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing, Funding acquisition
Search for more papers by this authorShan Lin
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorPeng Huang
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorJinwang Xiao
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Investigation
Search for more papers by this authorLinmao Guo
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorJinlong Li
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorCorresponding Author
Chunlin Song
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Correspondence to:
G. Wang and C. Song,
Contribution: Conceptualization, Writing - review & editing, Supervision, Funding acquisition
Search for more papers by this authorYang Li
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Conceptualization, Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Genxu Wang
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Correspondence to:
G. Wang and C. Song,
Contribution: Conceptualization, Writing - review & editing, Project administration, Funding acquisition
Search for more papers by this authorShouqin Sun
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing, Funding acquisition
Search for more papers by this authorShan Lin
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorPeng Huang
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorJinwang Xiao
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Investigation
Search for more papers by this authorLinmao Guo
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorJinlong Li
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorCorresponding Author
Chunlin Song
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
Correspondence to:
G. Wang and C. Song,
Contribution: Conceptualization, Writing - review & editing, Supervision, Funding acquisition
Search for more papers by this authorAbstract
Comprehensive seasonal observation is essential for accurately quantifying methane (CH4) emissions from ponds and lakes in permafrost regions. Although CH4 emissions during ice thaw are important and highly variable in high-latitude freshwater ponds and lakes (north of ∼50°N), their contribution is seldom included in estimates of aquatic-atmospheric CH4 exchange across different alpine ecosystems. Here, we characterized annual CH4 emissions, including emissions during ice thaw, from ponds and lakes across four alpine vegetation zones in the Qinghai-Tibet Plateau (QTP) permafrost region. We observed significant spatial variability in annual CH4 emission rates (8.44−421.05 mmol m−2 yr−1), CH4 emission rates during ice thaw (0.26−144.39 mmol m−2 yr−1), and the contribution of CH4 emissions during ice thaw to annual emissions (3−33%) across different vegetation zones. Dissolved oxygen concentration under ice, along with substrate availability and water salinity, played critical roles in influencing CH4 flux during ice thaw. We estimated annual CH4 emissions from ponds and lakes in the QTP permafrost region as 0.04 (0.03−0.05) Tg CH4 yr−1 (median (first quartile−third quartile)), with approximately 20% occurring during ice thaw. Notably, the average areal CH4 emission rate from ponds and lakes in the QTP permafrost region amounts to only 8% of that from high-latitude waterbodies, primarily due to the dominance of large saline lakes with lower CH4 emission rates in the alpine permafrost region. Our findings emphasize the significance of incorporating comprehensive seasonal observation of CH4 emissions across different vegetation zones in better predicting CH4 emissions from alpine ponds and lakes.
Key Points
-
Alpine ponds and lakes emit about 20% of annual CH4 emissions at ice thaw, but the ratio varies greatly across vegetation zones
-
Limited substrates and high dissolved oxygen under ice reduce CH4 emissions at ice thaw from saline waterbodies in alpine desert zones
-
The average areal CH4 flux from ponds and lakes on the Qinghai-Tibet Plateau is only 8% of that reported for high-latitude waterbodies
Open Research
Data Availability Statement
The collected CH4 emission data from lakes on the QTP are available at Li (2023) https://doi.org/10.6084/m9.figshare.23972571.
Supporting Information
Filename | Description |
---|---|
2024GB008106-sup-0001-Supporting Information SI-S01.pdf2.5 MB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Avrahamov, N., Antler, G., Yechieli, Y., Gavrieli, I., Joye, S. B., Saxton, M., et al. (2014). Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer. Geobiology, 12(6), 511–528. https://doi.org/10.1111/gbi.12095
- Bouchard, F., Fortier, D., Paquette, M., Boucher, V., Pienitz, R., & Laurion, I. (2020). Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic. The Cryosphere, 14(8), 2607–2627. https://doi.org/10.5194/tc-14-2607-2020
- Cai, Y., Ke, C. Q., Li, X. G., Zhang, G. Q., Duan, Z., & Lee, H. (2019). Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. Journal of Geophysical Research-Atmospheres, 124(2), 825–843. https://doi.org/10.1029/2018JD028993
- Chen, H., Ju, P., Zhu, Q., Xu, X., Wu, N., Gao, Y., et al. (2022). Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment, 3(10), 701–716. https://doi.org/10.1038/s43017-022-00344-2
- Clilverd, H., White, D., & Lilly, M. (2009). Chemical and physical controls on the oxygen regime of ice-covered Arctic lakes and reservoirs. Journal of the American Water Resources Association, 45(2), 500–511. https://doi.org/10.1111/j.1752-1688.2009.00305.x
- Cunada, C. L., Lesack, L., & Tank, S. E. (2018). Seasonal dynamics of dissolved methane in lakes of the Mackenzie Delta and the role of carbon substrate quality. Journal of Geophysical Research-Biogeosciences, 123(2), 591–609. https://doi.org/10.1002/2017JG004047
- Cunada, C. L., Lesack, L., & Tank, S. E. (2021). Methane emission dynamics among CO2-absorbing and thermokarst lakes of a great Arctic delta. Biogeochemistry, 156(3), 375–399. https://doi.org/10.1007/s10533-021-00853-0
- Denfeld, B. A., Baulch, H. M., Del Giorgio, P. A., Hampton, S. E., & Karlsson, J. (2018). A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes. Limnology and Oceanography Letters, 3(3), 117–131. https://doi.org/10.1002/lol2.10079
- Denfeld, B. A., Klaus, M., Laudon, H., Sponseller, R. A., & Karlsson, J. (2018). Carbon dioxide and methane dynamics in a small boreal lake during winter and spring melt events. Journal of Geophysical Research: Biogeosciences, 123(8), 2527–2540. https://doi.org/10.1029/2018JG004622
- Denfeld, B. A., Lupon, A., Sponseller, R. A., Laudon, H., & Karlsson, J. (2020). Heterogeneous CO2 and CH4 patterns across space and time in a small boreal lake. Inland Waters, 10(3), 348–359. https://doi.org/10.1080/20442041.2020.1787765
- Desyatkin, A. R., Takakai, F., Fedorov, P. P., Nikolaeva, M. C., Desyatkin, R. V., & Hatano, R. (2009). CH4 emission from different stages of thermokarst formation in Central Yakutia, East Siberia. Soil Science & Plant Nutrition, 55(4), 558–570. https://doi.org/10.1111/j.1747-0765.2009.00389.x
- Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222–226. https://doi.org/10.1038/NGEO2654
- Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., et al. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014
- Huttunen, J. T., Hammar, T., Manninen, P., Servomaa, K., & Martikainen, P. J. (2004). Potential springtime greenhouse gas emissions from a small southern boreal lake (Keihäsjärvi, Finland). Boreal Environment Research, 9(5), 421–427.
- Jammet, M., Crill, P., Dengel, S., & Friborg, T. (2015). Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. Journal of Geophysical Research-Biogeosciences, 120(11), 2289–2305. https://doi.org/10.1002/2015JG003137
- Jansen, J., Thornton, B. F., Jammet, M. M., Wik, M., Cortes, A., Friborg, T., et al. (2019). Climate-sensitive controls on large spring emissions of CH4 and CO2 from northern lakes. Journal of Geophysical Research-Biogeosciences, 124(7), 2379–2399. https://doi.org/10.1029/2019JG005094
- Juutinen, S., Rantakari, M., Kortelainen, P., Huttunen, J. T., Larmola, T., Alm, J., et al. (2009). Methane dynamics in different boreal lake types. Biogeosciences, 6(2), 209–223. https://doi.org/10.5194/bg-6-209-2009
- Johnson, J. E., Hughes, J. E., DonaghaY, P. L., & Sieburth, J. M. (1990). Bottle-calibration static head space method for the determination of methane dissolved in seawater. Analytical Chemistry, 62(21), 2408–2412. https://doi.org/10.1021/ac00220a030
- Karlsson, J., Giesler, R., Persson, J., & Lundin, E. (2013). High emission of carbon dioxide and methane during ice thaw in high latitude lakes. Geophysical Research Letters, 40(6), 1123–1127. https://doi.org/10.1002/grl.50152
- Kuhn, M. A., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., et al. (2021). BAWLD-CH4: A comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 13(11), 5151–5189. https://doi.org/10.5194/essd-13-5151-2021
- Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., et al. (2023). Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates. Global Biogeochemical Cycles, 37(5), e2022GB007658. https://doi.org/10.1029/2022GB007658
- Li, S. Y., Bush, R. T., Santos, I. R., Zhang, Q. F., Song, K. S., Mao, R., et al. (2018). Large greenhouse gases emissions from China's lakes and reservoirs. Water Research, 147, 13–24. https://doi.org/10.1016/j.watres.2018.09.053
- Li, Y. (2023). TP lake CH4 emissions.xlsx figshare [Dataset]. https://doi.org/10.6084/m9.figshare.23972571.v1
10.6084/m9.figshare.23972571.v1 Google Scholar
- Li, Y., Wang, G. X., Bing, H. J., Wang, T., Huang, K. W., Song, C. L., et al. (2021). Watershed scale patterns and controlling factors of ecosystem respiration and methane fluxes in a Tibetan alpine grassland. Agricultural and Forest Meteorology, 306, 108451. https://doi.org/10.1016/j.agrformet.2021.108451
- Liu, C., Zhu, L., Wang, J., Ju, J., Ma, Q., & Kou, Q. (2023). The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019 based on remote sensing model inversions. International Journal of Digital Earth, 16(1), 2644–2659. https://doi.org/10.1080/17538947.2023.2233469
- Liu, C., Zhu, L. P., Wang, J. B., Ju, J. T., Ma, Q. F., Qiao, B. J., et al. (2021). In-situ water quality investigation of the lakes on the Tibetan Plateau. Science Bulletin, 66(17), 1727–1730. https://doi.org/10.1016/j.scib.2021.04.024
- Liu, J. (2022). A dataset of lake-catchment characteristics for the Tibetan Plateau (v1.0) (1979-2018). National Tibetan Plateau Data Center. https://doi.org/10.11888/Terre.tpdc.272026
10.11888/Terre.tpdc.272026 Google Scholar
- Liu, J. Z., Fang, P. C., Que, Y. F., Zhu, L. J., Duan, Z., Tang, G. A., et al. (2022). A dataset of lake-catchment characteristics for the Tibetan Plateau. Earth System Science Data, 14(8), 3791–3805. https://doi.org/10.5194/essd-14-3791-2022
- Liu, Y., Priscu, J. C., Xiong, J., Conrad, R., Vick-Majors, T., Chu, H., & Hou, J. (2016). Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiology Ecology, 92(3). https://doi.org/10.1093/femsec/fiw033
- Luo, J., Niu, F. J., Lin, Z. J., Liu, M. H., & Yin, G. A. (2015). Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China. Science Bulletin, 60(5), 556–564. https://doi.org/10.1007/s11434-015-0730-2
- Martinez-Cruz, K., Sepulveda-Jauregui, A., Anthony, K. W., & Thalasso, F. (2015). Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeosciences, 12(15), 4595–4606. https://doi.org/10.5194/bg-12-4595-2015
- Messager, M. L., Lehner, B., Grill, G., Nedeva, I., & Schmitt, O. (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7(1), 13603. https://doi.org/10.1038/ncomms13603
- Michmerhuizen, C. M., Striegl, R. G., & McDonald, M. E. (1996). Potential methane emission from north-temperate lakes following ice melt. Limnology & Oceanography, 41(5), 985–991. https://doi.org/10.4319/lo.1996.41.5.0985
- Mu, C. C., Mu, M., Wu, X., Jia, L., Fan, C., Peng, X., et al. (2023). High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau. Global Change Biology, 29(10), 2732–2745. https://doi.org/10.1111/gcb.16658
- Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., et al. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews, 193, 299–316. https://doi.org/10.1016/j.earscirev.2019.04.023
- Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J., Connolly, J., et al. (2021). The Boreal–Arctic wetland and lake dataset (BAWLD). Earth System Science Data, 13(11), 5127–5149. https://doi.org/10.5194/essd-13-5127-2021
- Pi, X. H., Luo, Q. Q., Feng, L., Xu, Y., Tang, J., Liang, X. Y., et al. (2022). Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 13(1), 5777. https://doi.org/10.1038/s41467-022-33239-3
- Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355–359. https://doi.org/10.1038/nature12760
- Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King, K. B., Alfonso, M. B., et al. (2022). A functional definition to distinguish ponds from lakes and wetlands. Scientific Reports, 12(1), 10472. https://doi.org/10.1038/s41598-022-14569-0
- Sepulveda-Jauregui, A., Anthony, K., Martinez-Cruz, K., Greene, S., & Thalasso, F. (2015). Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska. Biogeosciences, 12(11), 3197–3223. https://doi.org/10.5194/bg-12-3197-2015
- Sieczko, A. K., Duc, N. T., Schenk, J., Pajala, G., Rudberg, D., Sawakuchi, H. O., & Bastviken, D. (2020). Diel variability of methane emissions from lakes. Proceedings of the National Academy of Sciences of the United States of America, 117(35), 21488–21494. https://doi.org/10.1073/pnas.2006024117
- Soued, C., Bogard, M. J., Finlay, K., Bortolotti, L. E., Leavitt, P. R., Badiou, P., et al. (2024). Salinity causes widespread restriction of methane emissions from small inland waters. Nature Communications, 15(1), 717. https://doi.org/10.1038/s41467-024-44715-3
- Sun, H., Lu, X., Yu, R., Yang, J., Liu, X., Cao, Z., et al. (2021). Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai. Water Research, 201, 117363. https://doi.org/10.1016/j.watres.2021.117363
- Tang, W., Xu, Y. J., & Li, S. Y. (2021). Rapid urbanization effects on partial pressure and emission of CO2 in three rivers with different urban intensities. Ecological Indicators, 125, 107515. https://doi.org/10.1016/j.ecolind.2021.107515
- Tranvik, L. J., Cole, J. J., & Prairie, Y. T. (2018). The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters, 3(3), 41–48. https://doi.org/10.1002/lol2.10068
- Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R., Treat, C. C., Striegl, R. G., et al. (2015). Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: A meta-analysis. Biogeosciences, 12(23), 6915–6930. https://doi.org/10.5194/bg-12-6915-2015
- Walsh, S. E., Vavrus, S. J., Foley, J. A., Fisher, V. A., Wynne, R. H., & Lenters, J. D. (1998). Global patterns of lake ice phenology and climate: Model simulations and observations. Journal of Geophysical Research, 103(D22), 28825–28837. https://doi.org/10.1029/98JD02275
- Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., & Chapin, F. S. (2006). Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443(7107), 71–75. https://doi.org/10.1038/nature05040
- Wang, L., Du, Z., Wei, Z., Ouyang, W., Maher, D. T., Xu, Q., & Xiao, C. (2023). Large methane emission during ice-melt in spring from thermokarst lakes and ponds in the interior Tibetan Plateau. Catena, 232, 107454. https://doi.org/10.1016/j.catena.2023.107454
- Wang, L., Du, Z., Wei, Z., Xu, Q., Feng, Y., Lin, P., et al. (2021). High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Science of the Total Environment, 801, 149692. https://doi.org/10.1016/j.scitotenv.2021.149692
- Wang, X. J., Ran, Y. H., Pang, G. J., Chen, D. L., Su, B., Chen, R., et al. (2022). Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. Earth-Science Reviews, 230, 104042. https://doi.org/10.1016/j.earscirev.2022.104042
- Wang, Y., Xiao, J., Ma, Y., Ding, J., Chen, X., Ding, Z., & Luo, Y. (2023). Persistent and enhanced carbon sequestration capacity of alpine grasslands on Earth's Third Pole. Science Advances, 9(20), eade6875. https://doi.org/10.1126/sciadv.ade6875
- Wang, Z. W., Wang, Q., Zhao, L., Wu, X. D., Yue, G. Y., Zou, D. F., et al. (2016). Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. Journal of Mountain Science, 13(6), 1035–1046. https://doi.org/10.1007/s11629-015-3485-y
- Wei, D., Tarchen, T., Dai, D. X., Wang, Y. S., & Wang, Y. H. (2015). Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320m above sea level. Journal of Geophysical Research-Biogeosciences, 120(9), 1741–1750. https://doi.org/10.1002/2015JG002974
- Wei, D., & Wang, X. (2017). Recent climatic changes and wetland expansion turned Tibet into a net CH4 source. Climatic Change, 144(4), 657–670. https://doi.org/10.1007/s10584-017-2069-y
- Wei, Z. Q., Du, Z. H., Wang, L., Lin, J. H., Feng, Y. R., Xu, Q., & Xiao, C. D. (2021). Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau. Earth and Space Science, 8(11). https://doi.org/10.1029/2021EA001950
- Welch, H. E., Legault, J. A., & Bergmann, M. A. (1987). Effects of snow and ice on the annual cycles of heat and light in Saqvaqjuac lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44(8), 1451–1461. https://doi.org/10.1139/f87-174
- Wik, M., Crill, P. M., Varner, R. K., & Bastviken, D. (2013). Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research-Biogeosciences, 118(3), 1307–1321. https://doi.org/10.1002/jgrg.20103
- Wik, M., Johnson, J. E., Crill, P. M., DeStasio, J. P., Erickson, L., Halloran, M. J., et al. (2018). Sediment characteristics and methane ebullition in three subarctic lakes. Journal of Geophysical Research-Biogeosciences, 123(8), 2399–2411. https://doi.org/10.1029/2017JG004298
- Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., & Bastviken, D. (2016). Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience, 9(2), 99–105. https://doi.org/10.1038/ngeo2578
- Xiao, Q., Zhang, M., Hu, Z., Gao, Y., Hu, C., Liu, C., et al. (2017). Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. Journal of Geophysical Research: Biogeosciences, 122(7), 1597–1614. https://doi.org/10.1002/2017JG003805
- Xiong, J. B., Liu, Y. Q., Lin, X. G., Zhang, H. Y., Zeng, J., Hou, J. Z., et al. (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14(9), 2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x
- Xun, F., Li, B., Chen, H., Zhou, Y. Q., Gao, P. X., & Xing, P. (2022). Effect of salinity in alpine lakes on the southern Tibetan Plateau on greenhouse gas diffusive fluxes. Journal of Geophysical Research-Biogeosciences, 127(7). https://doi.org/10.1029/2022JG006984
- Yan, F. P., Sillanpaa, M., Kang, S. C., Aho, K. S., Qu, B., Wei, D., et al. (2018). Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. Journal of Geophysical Research-Biogeosciences, 123(7), 2091–2103. https://doi.org/10.1029/2017JG004379
- Yang, G., Zheng, Z., Abbott, B. W., Olefeldt, D., Knoblauch, C., Song, Y., et al. (2023). Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau. Nature Communications, 14(1), 3121. https://doi.org/10.1038/s41467-023-38907-6
- Zhang, G. Q., Yao, T. D., Xie, H. J., Yang, K., Zhu, L. P., Shum, C. K., et al. (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 103269. https://doi.org/10.1016/j.earscirev.2020.103269
- Zhang, J., Zhu, Q., Yuan, M., Liu, X., Chen, H., Peng, C., et al. (2020). Extrapolation and uncertainty evaluation of carbon dioxide and methane emissions in the Qinghai-Tibetan Plateau wetlands since the 1960s. Frontiers in Earth Science, 8, 361. https://doi.org/10.3389/feart.2020.00361
- Zhang, L. W., Xia, X. H., Liu, S. D., Zhang, S. B., Li, S. L., Wang, J. F., et al. (2020). Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau. Nature Geoscience, 13(5), 349–354. https://doi.org/10.1038/s41561-020-0571-8
- Zhang, Q. W., Yang, G., Song, Y., Kou, D., Wang, G., Zhang, D., et al. (2019). Magnitude and drivers of potential methane oxidation and production across Tibetan alpine permafrost region. Environmental Science & Technology, 53(24), 14243–14252. https://doi.org/10.1021/acs.est.9b03490
- Zhang, S. L., Yang, Y. T., McVicar, T. R., & Yang, D. W. (2018). An analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. Water Resources Research, 54(1), 519–537. https://doi.org/10.1002/2017WR022028
- Zhu, D., Wu, Y., Chen, H., He, Y., & Wu, N. (2016). Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau. Science of the Total Environment, 542, 57–64. https://doi.org/10.1016/j.scitotenv.2015.10.087
- Zimov, S. A., Voropaev, Y. V., Semiletov, I. P., Davidov, S. P., Prosiannikov, S. F., Chapin Iii, F. S., et al. (1997). North Siberian lakes: A methane source fueled by Pleistocene carbon. Science, 277(5327), 800–802. https://doi.org/10.1126/science.277.5327.800
- Zou, D. F., Zhao, L., Sheng, Y., Chen, J., Hu, G. J., Wu, T. H., et al. (2017). A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere, 11(6), 2527–2542. https://doi.org/10.5194/tc-11-2527-2017
References From the Supporting Information
- Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology & Oceanography, 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647
- Crusius, J., & Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology & Oceanography, 48(3), 1010–1017. https://doi.org/10.4319/lo.2003.48.3.1010
- Jähne, B., Heinz, G., & Dietrich, W. (1987). Measurement of the diffusion coefficients of sparingly soluble gases in water. Journal of Geophysical Research, 92(C10), 10767–10776. https://doi.org/10.1029/JC092iC10p10767
- Liss, P. S., & Merlivat, L. (1986). Air-sea gas exchange rates: Introduction and synthesis. In The role of Air-Sea exchange in geochemical cycling (pp. 113–127).
10.1007/978-94-009-4738-2_5 Google Scholar
- Niu, B., Zhang, X., Piao, S., Janssens, I. A., Fu, G., He, Y., et al. (2021). Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 7(15), eabc7358. https://doi.org/10.1126/sciadv.abc7358
- Vachon, D., Prairie, Y. T., & Cole, J. J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology & Oceanography, 55(4), 1723–1732. https://doi.org/10.4319/lo.2010.55.4.1723
- Wanninkhof, R. (1992). Relationship between wind-speed and gas-exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382. https://doi.org/10.1029/92JC00188