The Music of Rivers: The Mathematics of Waves Reveals Global Structure and Drivers of Streamflow Regime
Corresponding Author
Brian C. Brown
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
Department of Computer Science, Brigham Young University, Provo, UT, USA
Correspondence to:
B. C. Brown,
Search for more papers by this authorAimee H. Fullerton
Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
Search for more papers by this authorDarin Kopp
Oak Ridge Institute for Science and Education (ORISE), Corvallis, OR, USA
Search for more papers by this authorFlavia Tromboni
Rheinland-PfälzischeTechnische Universität Kaiserslautern Landau, Landau, Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Search for more papers by this authorArial J. Shogren
Earth and Environmental Sciences Department, Michigan State University, East Lansing, MI, USA
Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
Search for more papers by this authorJ. Angus Webb
Water, Environment and Agriculture Program, Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
Search for more papers by this authorClaire Ruffing
The Nature Conservancy in Oregon, Portland, OR, USA
Search for more papers by this authorMatthew Heaton
Department of Statistics, Brigham Young University, Provo, UT, USA
Search for more papers by this authorLenka Kuglerová
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Search for more papers by this authorDaniel C. Allen
Department of Ecosystem Science and Management, Penn State, University Park, PA, USA
Search for more papers by this authorLillian McGill
Center for Quantitative Science, University of Washington, Seattle, WA, USA
Search for more papers by this authorJay P. Zarnetske
Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
Search for more papers by this authorMatt R. Whiles
Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
Search for more papers by this authorJeremy B. Jones Jr.
Institute for Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
Search for more papers by this authorBenjamin W. Abbott
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
Search for more papers by this authorCorresponding Author
Brian C. Brown
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
Department of Computer Science, Brigham Young University, Provo, UT, USA
Correspondence to:
B. C. Brown,
Search for more papers by this authorAimee H. Fullerton
Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
Search for more papers by this authorDarin Kopp
Oak Ridge Institute for Science and Education (ORISE), Corvallis, OR, USA
Search for more papers by this authorFlavia Tromboni
Rheinland-PfälzischeTechnische Universität Kaiserslautern Landau, Landau, Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Search for more papers by this authorArial J. Shogren
Earth and Environmental Sciences Department, Michigan State University, East Lansing, MI, USA
Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
Search for more papers by this authorJ. Angus Webb
Water, Environment and Agriculture Program, Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
Search for more papers by this authorClaire Ruffing
The Nature Conservancy in Oregon, Portland, OR, USA
Search for more papers by this authorMatthew Heaton
Department of Statistics, Brigham Young University, Provo, UT, USA
Search for more papers by this authorLenka Kuglerová
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Search for more papers by this authorDaniel C. Allen
Department of Ecosystem Science and Management, Penn State, University Park, PA, USA
Search for more papers by this authorLillian McGill
Center for Quantitative Science, University of Washington, Seattle, WA, USA
Search for more papers by this authorJay P. Zarnetske
Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
Search for more papers by this authorMatt R. Whiles
Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
Search for more papers by this authorJeremy B. Jones Jr.
Institute for Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
Search for more papers by this authorBenjamin W. Abbott
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
Search for more papers by this authorThis article was corrected on 9 AUG 2023. See the end of the full text for details.
Abstract
River flows change on timescales ranging from minutes to millennia. These vibrations in flow are tuned by diverse factors globally, for example, by dams suppressing multi-day variability or vegetation attenuating flood peaks in some ecosystems. The relative importance of the physical, biological, and human factors influencing flow is an active area of research, as is the related question of finding a common language for describing overall flow regime. Here, we addressed both topics using a daily river discharge data set for over 3,000 stations across the globe from 1988 to 2016. We first studied similarities between common flow regime quantification methods, including traditional flow metrics, wavelets, and Fourier analysis. Across all these methods, the flow data showed low-dimensional structure (i.e., simple and consistent patterns), suggesting that fundamental mechanisms are constraining flow regime. One such pattern was that day-to-day variability was negatively correlated with year-to-year variability. Additionally, the low-dimensional structure in river flow data correlated closely with only a small number of catchment characteristics, including catchment area, precipitation, and temperature—but notably not biome, dam surface area, or number of dams. We discuss these findings in a framework intended to be accessible to the many communities engaged in river research and management, while stressing the importance of letting structure in data guide both mechanistic inference and interdisciplinary discussion.
Key Points
-
We compared tools for describing streamflow timeseries, including streamflow metrics, wavelet, and Fourier analysis
-
Each method indicated streamflow data are structured: variability at short timescales is negatively correlated with long timescales
-
Globally, dams were less correlated with streamflow regime than catchment size and climate were
Open Research
Data Availability Statement
The data used in this study are available on https://www.researchgate.net at https://doi.org/10.13140/RG.2.2.24985.95842 and https://doi.org/10.13140/RG.2.2.31696.84487 under CC BY 4.0 licenses. Code for the analyses in this paper can be found at https://doi.org/10.5281/zenodo.7820994, or alternatively release v1.1.0 at https://github.com/Populustremuloides/TheMusicOfRivers.git.
Supporting Information
Filename | Description |
---|---|
2023WR034484-T-sup-0001-Supporting Information SI-S01.docx4.7 MB | Supporting Information S1 |
2023WR034484-T-sup-0002-Table SI-S01.xlsx16 KB | Table S1 |
2023WR034484-T-sup-0003-Data Set SI-S01.csv7.7 MB | Data Set S1 |
2023WR034484-T-sup-0004-Data Set SI-S02.txt192.9 MB | Data Set S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Abbott, B. W., Bishop, K., Zarnetske, J. P., Hannah, D. M., Frei, R. J., Minaudo, C., et al. (2019). A water cycle for the Anthropocene. Hydrological Processes, 33(23), 3046–3052. https://doi.org/10.1002/hyp.13544
- Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., et al. (2019). Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 12(7), 533–540. https://doi.org/10.1038/s41561-019-0374-y
- Abbott, B. W., Gruau, G., Zarnetske, J. P., Moatar, F., Barbe, L., Thomas, Z., et al. (2018). Unexpected spatial stability of water chemistry in headwater stream networks. Ecology Letters, 21(2), 296–308. https://doi.org/10.1111/ele.12897
- Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C., & Salamon, P. (2020). A global streamflow reanalysis for 1980–2018. Journal of Hydrology X, 6, 100049. https://doi.org/10.1016/j.hydroa.2019.100049
- Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5(1), 180040. https://doi.org/10.1038/sdata.2018.40
- Archfield, S. A., Kennen, J. G., Carlisle, D. M., & Wolock, D. M. (2014). An objective and parsimonious approach for classifying natural flow regimes at a continental scale. River Research and Applications, 30(9), 1166–1183. https://doi.org/10.1002/rra.2710
- Arheimer, B., Donnelly, C., & Lindström, G. (2017). Regulation of snow-fed rivers affects flow regimes more than climate change. Nature Communications, 8(1), 62. https://doi.org/10.1038/s41467-017-00092-8
- Ascott, M. J., Gooddy, D. C., Fenton, O., Vero, S., Ward, R. S., Basu, N. B., et al. (2021). The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Science of the Total Environment, 781, 146698. https://doi.org/10.1016/j.scitotenv.2021.146698
- Ashraf, F. B., Haghighi, A. T., Riml, J., Mathias Kondolf, G., Kløve, B., & Marttila, H. (2022). A method for assessment of sub-daily flow alterations using wavelet analysis for regulated rivers. Water Resources Research, 58(1), e2021WR030421. https://doi.org/10.1029/2021WR030421
- Barbarossa, V., Huijbregts, M. A. J., Beusen, A. H. W., Beck, H. E., King, H., & Schipper, A. M. (2018). FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Scientific Data, 5(1), 180052. https://doi.org/10.1038/sdata.2018.52
- Bates, C. (2020). Efficient data compression in human perception. Retrieved from https://urresearch.rochester.edu/institutionalPublicationPublicView.action?institutionalItemId=35450
- Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., & Kirchner, J. W. (2019). The relative importance of different flood-generating mechanisms across Europe. Water Resources Research, 55(6), 4582–4593. https://doi.org/10.1029/2019WR024841
- Bernhardt, E. S., Rosi, E. J., & Gessner, M. O. (2017). Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 15(2), 84–90. https://doi.org/10.1002/fee.1450
- Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
- Bladon, K. D., Emelko, M. B., Silins, U., & Stone, M. (2014). Wildfire and the future of water supply. Environmental Science & Technology, 48(16), 8936–8943. https://doi.org/10.1021/es500130g
- Bochet, O., Bethencourt, L., Dufresne, A., Farasin, J., Pédrot, M., Labasque, T., et al. (2020). Iron-oxidizer hotspots formed by intermittent oxic–anoxic fluid mixing in fractured rocks. Nature Geoscience, 13(2), 1–7. https://doi.org/10.1038/s41561-019-0509-1
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
- Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30(4), 492–507. https://doi.org/10.1007/s00267-002-2737-0
- Carey, S. K., Tetzlaff, D., Buttle, J., Laudon, H., McDonnell, J., McGuire, K., et al. (2013). Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments. Water Resources Research, 49(10), 6194–6207. https://doi.org/10.1002/wrcr.20469
- Carlisle, D. M., Falcone, J., Wolock, D. M., Meador, M. R., & Norris, R. H. (2010). Predicting the natural flow regime: Models for assessing hydrological alteration in streams. River Research and Applications, 26(2), 118–136. https://doi.org/10.1002/rra.1247
- Chalise, D. R., Sankarasubramanian, A., Olden, J. D., & Ruhi, A. (2023). Spectral signatures of flow regime alteration by dams across the United States. Earth's Future, 11(2), e2022EF003078. https://doi.org/10.1029/2022EF003078
- Chalise, D. R., Sankarasubramanian, A., & Ruhi, A. (2021). Dams and climate interact to alter river flow regimes across the United States. Earth's Future, 9(4), e2020EF001816. https://doi.org/10.1029/2020EF001816
- Chezik, K. A., Anderson, S. C., & Moore, J. W. (2017). River networks dampen long-term hydrological signals of climate change. Geophysical Research Letters, 44(14), 7256–7264. https://doi.org/10.1002/2017GL074376
- Cosh, M. H., Jackson, T. J., Moran, S., & Bindlish, R. (2008). Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sensing of Environment, 112(2), 304–313. https://doi.org/10.1016/j.rse.2007.07.001
- Coutu, S., Del Giudice, D., Rossi, L., & Barry, D. A. (2012). Parsimonious hydrological modeling of urban sewer and river catchments. Journal of Hydrology, 464(465), 477–484. https://doi.org/10.1016/j.jhydrol.2012.07.039
- Dey, P., & Mujumdar, P. (2022). On the statistical complexity of streamflow. Hydrological Sciences Journal, 67(1), 40–53. https://doi.org/10.1080/02626667.2021.2000991
- Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., et al. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471). https://doi.org/10.1126/science.aax3100
- Döll, P., & Schmied, H. M. (2012). How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7(1), 014037. https://doi.org/10.1088/1748-9326/7/1/014037
- Dupas, R., Abbott, B. W., Minaudo, C., & Fovet, O. (2019). Distribution of landscape units within catchments influences nutrient export dynamics. Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00043
- Eckmann, J.-P., & Tlusty, T. (2021). Dimensional reduction in complex living systems: Where, why, and how. BioEssays, 43(9), 2100062. https://doi.org/10.1002/bies.202100062
- Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
- Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
- Fisher, S. G., Grimm, N. B., Martí, E., Holmes, R. M., & Jones, J. B., Jr. (1998). Material spiraling in stream corridors: A telescoping ecosystem model. Ecosystems, 1(1), 19–34. https://doi.org/10.1007/s100219900003
- Frei, R. J., Abbott, B. W., Dupas, R., Gu, S., Gruau, G., Thomas, Z., et al. (2020). Predicting nutrient incontinence in the Anthropocene at watershed scales. Frontiers in Environmental Science, 7, 200. https://doi.org/10.3389/fenvs.2019.00200
- Frei, R. J., Lawson, G. M., Norris, A. J., Cano, G., Vargas, M. C., Kujanpää, E., et al. (2021). Limited progress in nutrient pollution in the U.S. caused by spatially persistent nutrient sources. PLoS One, 16(11), e0258952. https://doi.org/10.1371/journal.pone.0258952
- George, R., McManamay, R., Perry, D., Sabo, J., & Ruddell, B. L. (2021). Indicators of hydro-ecological alteration for the rivers of the United States. Ecological Indicators, 120, 106908. https://doi.org/10.1016/j.ecolind.2020.106908
- Gerten, D., Rost, S., von Bloh, W., & Lucht, W. (2008). Causes of change in 20th century global river discharge. Geophysical Research Letters, 35(20), L20405. https://doi.org/10.1029/2008GL035258
- Giano, S. I. (2021). Fluvial geomorphology and river management. Water, 13(11), 1608. https://doi.org/10.3390/w13111608
- Gleeson, T., Wang-Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F., Gerten, D., et al. (2020). Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 56(4), e2019WR024957. https://doi.org/10.1029/2019WR024957
- Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J. K., & McMillan, H. K. (2021). TOSSH: A toolbox for streamflow signatures in hydrology. Environmental Modelling & Software, 138, 104983. https://doi.org/10.1016/j.envsoft.2021.104983
- Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrological Processes, 28(23), 5791–5803. https://doi.org/10.1002/hyp.10310
- Goeking, S. A., & Tarboton, D. G. (2020). Forests and water yield: A synthesis of disturbance effects on streamflow and snowpack in western coniferous forests. Journal of Forestry, 118(2), 172–192. https://doi.org/10.1093/jofore/fvz069
- Gorski, G., & Zimmer, M. A. (2021). Hydrologic regimes drive nitrate export behavior in human-impacted watersheds. Hydrology and Earth System Sciences, 25(3), 1333–1345. https://doi.org/10.5194/hess-25-1333-2021
- Graf, W. L. (2006). Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79(3), 336–360. https://doi.org/10.1016/j.geomorph.2006.06.022
- Hain, E. F., Kennen, J. G., Caldwell, P. V., Nelson, S. A. C., Sun, G., & McNulty, S. G. (2018). Using regional scale flow–ecology modeling to identify catchments where fish assemblages are most vulnerable to changes in water availability. Freshwater Biology, 63(8), 928–945. https://doi.org/10.1111/fwb.13048
- Hales, R. C., Nelson, E. J., Souffront, M., Gutierrez, A. L., Prudhomme, C., Kopp, S., et al. (2022). Advancing global hydrologic modeling with the GEOGloWS ECMWF streamflow service. Journal of Flood Risk Management, e12859. https://doi.org/10.1111/jfr3.12859
- Hannah, D. M., Demuth, S., Lanen, H. A. J. V., Looser, U., Prudhomme, C., Rees, G., et al. (2011). Large-scale river flow archives: Importance, current status and future needs. Hydrological Processes, 25(7), 1191–1200. https://doi.org/10.1002/hyp.7794
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
- Harrison, I., Abell, R., Darwall, W., Thieme, M. L., Tickner, D., & Timboe, I. (2018). The freshwater biodiversity crisis. Science, 362(6421), 1369. https://doi.org/10.1126/science.aav9242
- Helton, A. M., Poole, G. C., Meyer, J. L., Wollheim, W. M., Peterson, B. J., Mulholland, P. J., et al. (2011). Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems. Frontiers in Ecology and the Environment, 9(4), 229–238. https://doi.org/10.1890/080211
- Henriksen, J., Heasley, J., Kennen, J., & Nieswand, S. (2006). Users’ manual for the hydroecological integrity assessment process software (including the New Jersey assessment tools).
- Hogeboom, R. J., de Bruin, D., Schyns, J. F., Krol, M. S., & Hoekstra, A. Y. (2020). Capping human water footprints in the world’s river basins. Earth's Future, 8(2), e2019EF001363. https://doi.org/10.1029/2019EF001363
- Horton, P., Schaefli, B., & Kauzlaric, M. (2022). Why do we have so many different hydrological models? A review based on the case of Switzerland. WIREs Water, 9(1), e1574. https://doi.org/10.1002/wat2.1574
- Jones, N. E., Schmidt, B. J., & Melles, S. J. (2014). Characteristics and distribution of natural flow regimes in Canada: A habitat template approach. Canadian Journal of Fisheries and Aquatic Sciences, 71(11), 1616–1624. https://doi.org/10.1139/cjfas-2014-0040
- Kennedy, T. A., Muehlbauer, J. D., Yackulic, C. B., Lytle, D. A., Miller, S. W., Dibble, K. L., et al. (2016). Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience, 66(7), 561–575. https://doi.org/10.1093/biosci/biw059
- Kipper, J. (2021). Intuition, intelligence, data compression. Synthese, 198(27), 6469–6489. https://doi.org/10.1007/s11229-019-02118-8
- Labat, D. (2010). Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology, 385(1), 269–278. https://doi.org/10.1016/j.jhydrol.2010.02.029
- Lane, B. A., Dahlke, H. E., Pasternack, G. B., & Sandoval-Solis, S. (2017). Revealing the diversity of natural hydrologic regimes in California with relevance for environmental flows applications. JAWRA Journal of the American Water Resources Association, 53(2), 411–430. https://doi.org/10.1111/1752-1688.12504
- Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., et al. (2011). High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9), 494–502. https://doi.org/10.1890/100125
- Levia, D. F., Creed, I. F., Hannah, D. M., Nanko, K., Boyer, E. W., Carlyle-Moses, D. E., et al. (2020). Homogenization of the terrestrial water cycle. Nature Geoscience, 13(10), 656–658. https://doi.org/10.1038/s41561-020-0641-y
- Liermann, C. R., Nilsson, C., Robertson, J., & Ng, R. Y. (2012). Implications of dam obstruction for global freshwater fish diversity. BioScience, 62(6), 539–548. https://doi.org/10.1525/bio.2012.62.6.5
- Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., et al. (2019). Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resources Research, 55(8), 6499–6516. https://doi.org/10.1029/2019WR025287
- Liu, J., Zhang, Q., Singh, V. P., Song, C., Zhang, Y., Sun, P., & Gu, X. (2018). Hydrological effects of climate variability and vegetation dynamics on annual fluvial water balance in global large river basins. Hydrology and Earth System Sciences, 22(7), 4047–4060. https://doi.org/10.5194/hess-22-4047-2018
- Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., et al. (2022). The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proceedings of the National Academy of Sciences, 119(11), e2106322119. https://doi.org/10.1073/pnas.2106322119
- Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., et al. (2013). Extracting insights from the shape of complex data using topology. Scientific Reports, 3(1), 1236. https://doi.org/10.1038/srep01236
- Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., & Zarfl, C. (2020). River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 1(2), 103–116. https://doi.org/10.1038/s43017-019-0019-0
- Malone, E. T., Abbott, B. W., Klaar, M. J., Kidd, C., Sebilo, M., Milner, A. M., & Pinay, G. (2018). Decline in ecosystem δ13C and mid-successional nitrogen loss in a two-century postglacial chronosequence. Ecosystems, 21(8), 1659–1675. https://doi.org/10.1007/s10021-018-0245-1
- Manning, A. L., Harpold, A., & Csank, A. (2022). Spruce beetle outbreak increases streamflow from snow-dominated basins in southwest Colorado, USA. Water Resources Research, 58(5), e2021WR029964. https://doi.org/10.1029/2021WR029964
- Masaki, Y., Hanasaki, N., Biemans, H., Schmied, H. M., Tang, Q., Wada, Y., et al. (2017). Intercomparison of global river discharge simulations focusing on dam operation—Multiple models analysis in two case-study river basins, Missouri–Mississippi and green–Colorado. Environmental Research Letters, 12(5), 055002. https://doi.org/10.1088/1748-9326/aa57a8
- McMahon, T. A., Vogel, R. M., Peel, M. C., & Pegram, G. G. S. (2007). Global streamflows—Part 1: Characteristics of annual streamflows. Journal of Hydrology, 347(3), 243–259. https://doi.org/10.1016/j.jhydrol.2007.09.002
- McMillan, H. (2021). A review of hydrologic signatures and their applications. WIREs Water, 8(1), e1499. https://doi.org/10.1002/wat2.1499
- Mei, Y., Anagnostou, E. N., Stampoulis, D., Nikolopoulos, E. I., Borga, M., & Vegara, H. J. (2014). Rainfall organization control on the flood response of mild-slope basins. Journal of Hydrology, 510, 565–577. https://doi.org/10.1016/j.jhydrol.2013.12.013
- Minaudo, C., Dupas, R., Gascuel-Odoux, C., Fovet, O., Mellander, P.-E., Jordan, P., et al. (2017). Nonlinear empirical modeling to estimate phosphorus exports using continuous records of turbidity and discharge. Water Resources Research, 53(9), 7590–7606. https://doi.org/10.1002/2017WR020590
- Moatar, F., Abbott, B. W., Minaudo, C., Curie, F., & Pinay, G. (2017). Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research, 53(2), 1270–1287. https://doi.org/10.1002/2016WR019635
- Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics, 18(6), 275–285. https://doi.org/10.1002/cem.873
- Nicolau, M., Levine, A. J., & Carlsson, G. (2011). Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences, 108(17), 7265–7270. https://doi.org/10.1073/pnas.1102826108
- Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50(1), 143–175. https://doi.org/10.1023/A:1010616428763
- Olden, J. D., & Poff, N. L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19(2), 101–121. https://doi.org/10.1002/rra.700
- Oldfield, J. D. (2016). Mikhail budyko’s (1920–2001) contributions to global climate science: From heat balances to climate change and global ecology. Wiley Interdisciplinary Reviews: Climate Change, 7(5), 682–692. https://doi.org/10.1002/wcc.412
- Palmer, M., & Ruhi, A. (2019). Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science, 365(6459). https://doi.org/10.1126/science.aaw2087
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 6.
- Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1), 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7
- Pinay, G., Bernal, S., Abbott, B. W., Lupon, A., Marti, E., Sabater, F., & Krause, S. (2018). Riparian corridors: A new conceptual framework for assessing nitrogen buffering across biomes. Frontiers in Environmental Science, 6, 47. https://doi.org/10.3389/fenvs.2018.00047
- Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). The natural flow regime. BioScience, 47(11), 769–784. https://doi.org/10.2307/1313099
- Poff, N. L., & Zimmerman, J. K. H. (2010). Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x
- Poon, P. K., & Kinoshita, A. M. (2018). Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. Journal of Hydrology, 559, 71–83. https://doi.org/10.1016/j.jhydrol.2018.02.023
- Raymond, P. A., Saiers, J. E., & Sobczak, W. V. (2016). Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse-shunt concept. Ecology, 97(1), 5–16. https://doi.org/10.1890/14-1684.1
- Reaver, N. G. F., Kaplan, D. A., Klammler, H., & Jawitz, J. W. (2020). Reinterpreting the budyko framework. Hydrology and Earth System Sciences Discussions, 1–31. https://doi.org/10.5194/hess-2020-584
- Rösch, A., & Schmidbauer, H. W. (2018). WaveletComp: Computational wavelet analysis. R package version 1.1.
- Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J., & Dartus, D. (2011). A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Natural Hazards and Earth System Sciences, 11(9), 2567–2582. https://doi.org/10.5194/nhess-11-2567-2011
- Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x
- Ryo, M., Iwasaki, Y., Yoshimura, C., & Saavedra, V. O. C. (2015). Evaluation of spatial pattern of altered flow regimes on a river network using a distributed hydrological model. PLoS One, 10(7), e0133833. https://doi.org/10.1371/journal.pone.0133833
- Sabo, J. L., & Post, D. M. (2008). Quantifying periodic, stochastic, and catastrophic environmental variation. Ecological Monographs, 78(1), 19–40. https://doi.org/10.1890/06-1340.1
- Sanborn, S. C., & Bledsoe, B. P. (2006). Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon. Journal of Hydrology, 325(1), 241–261. https://doi.org/10.1016/j.jhydrol.2005.10.018
- Sang, Y.-F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 122(Supplement C), 8–15. https://doi.org/10.1016/j.atmosres.2012.11.003
- Savenije, H. H. G. (2018). HESS Opinions: Linking Darcy’s equation to the linear reservoir. Hydrology and Earth System Sciences, 22(3), 1911–1916. https://doi.org/10.5194/hess-22-1911-2018
- Schmidbauer, H., & Roesch, A. (2018). WaveletComp 1.1: A guided tour through the R package.
- Schneider, C., Laizé, C. L. R., Acreman, M. C., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325–339. https://doi.org/10.5194/hess-17-325-2013
- Sivapalan, M. (2006). Pattern, process and function: Elements of a unified theory of hydrology at the catchment scale. In Encyclopedia of hydrological Sciences. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa012
- Smith, L. C., Turcotte, D. L., & Isacks, B. L. (1998). Stream flow characterization and feature detection using a discrete wavelet transform. Hydrological Processes, 12(2), 233–249. https://doi.org/10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3
- Sposito, G. (2017). Understanding the budyko equation. Water, 9(4), 236. https://doi.org/10.3390/w9040236
- Tague, C., & Grant, G. E. (2004). A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 40(4), 14. https://doi.org/10.1029/2003WR002629
- Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I., & Abbott, B. W. (2020). Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafrost and Periglacial Processes, 31(3), 358–370. https://doi.org/10.1002/ppp.2057
- Teixeira, H., Lillebø, A. I., Culhane, F., Robinson, L., Trauner, D., Borgwardt, F., et al. (2019). Linking biodiversity to ecosystem services supply: Patterns across aquatic ecosystems. Science of the Total Environment, 657, 517–534. https://doi.org/10.1016/j.scitotenv.2018.11.440
- Tetzlaff, D., McDonnell, J., Uhlenbrook, S., McGuire, K., Bogaart, P., Naef, F., et al. (2008). Conceptualizing catchment processes: Simply too complex? Hydrological Processes, 22, 11–1730. https://doi.org/10.1002/hyp.7069
- Thomas, Z., Abbott, B. W., Troccaz, O., Baudry, J., & Pinay, G. (2016). Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments. Biogeosciences, 13(6), 1863–1875. https://doi.org/10.5194/bg-13-1863-2016
- Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
- Tucker, G. E., & Hancock, G. R. (2010). Modelling landscape evolution. Earth Surface Processes and Landforms, 35(1), 28–50. https://doi.org/10.1002/esp.1952
- Unpingco, J. (2014). Discrete-time Fourier transform. In J. Unpingco (Ed.) Python for signal processing: Featuring IPython notebooks (pp. 45–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-01342-8_3
- Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K., Hannaford, J., et al. (2016). Drought in the Anthropocene. Nature Geoscience, 9(2), 89–91. https://doi.org/10.1038/ngeo2646
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
- Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440
- Wenger, S. J., Isaak, D. J., Luce, C. H., Neville, H. M., Fausch, K. D., Dunham, J. B., et al. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences, 108(34), 14175–14180. https://doi.org/10.1073/pnas.1103097108
- White, M. A., Schmidt, J. C., & Topping, D. J. (2005). Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen Canyon Dam and the Colorado River at Lees Ferry, Arizona. River Research and Applications, 21(5), 551–565. https://doi.org/10.1002/rra.827
- Wolff, J. G. (2019). Information compression as a unifying principle in human learning, perception, and cognition. Complexity, 2019, e18797466. https://doi.org/10.1155/2019/1879746
- Wu, F.-C., Chang, C.-F., & Shiau, J.-T. (2015). Assessment of flow regime alterations over a spectrum of temporal scales using wavelet-based approaches. Water Resources Research, 51(5), 3317–3338. https://doi.org/10.1002/2014WR016595
- Wu, H., Kimball, J. S., Mantua, N., & Stanford, J. (2011). Automated upscaling of river networks for macroscale hydrological modeling. Water Resources Research, 47(3), 2011-03. https://doi.org/10.1029/2009WR008871
- Wu, S., Zhao, J., Wang, H., & Sivapalan, M. (2021). Regional patterns and physical controls of streamflow generation across the conterminous United States. Water Resources Research, 57(6), e2020WR028086. https://doi.org/10.1029/2020WR028086
- Xenopoulos, M. A., & Lodge, D. M. (2006). Going with the flow: Using species–discharge relationships to forecast losses in fish biodiversity. Ecology, 87(8), 1907–1914. https://doi.org/10.1890/0012-9658(2006)87[1907:GWTFUS]2.0.CO;2
- Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resources Research, 55(6), 5053–5073. https://doi.org/10.1029/2019WR024873
- Zammit-Mangion, A., & Cressie, N. (2017). FRK: An R package for spatial and spatio-temporal prediction with large datasets.
- Zarnetske, J. P., Bouda, M., Abbott, B. W., Saiers, J., & Raymond, P. A. (2018). Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States. Geophysical Research Letters, 45(21), 11702–11711. https://doi.org/10.1029/2018GL080005
- Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., et al. (2015). Global pattern for the effect of climate and land cover on water yield. Nature Communications, 6(1), 5918. https://doi.org/10.1038/ncomms6918
- Zipper, S. C., Jaramillo, F., Wang-Erlandsson, L., Cornell, S. E., Gleeson, T., Porkka, M., et al. (2020). Integrating the water planetary boundary with water management from local to global scales. Earth's Future, 8(2), e2019EF001377. https://doi.org/10.1029/2019EF001377