Aperture Synthesis Imaging of Ionospheric Irregularities Using Time Diversity MIMO Radar
Corresponding Author
D. L. Hysell
Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Correspondence to:
D. L. Hysell,
Contribution: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Writing - original draft, Visualization, Funding acquisition
Search for more papers by this authorJ. L. Chau
Leibniz Institute of Atmospheric Physics at the University of Rostock, Külungsborn, Germany
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorCorresponding Author
D. L. Hysell
Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Correspondence to:
D. L. Hysell,
Contribution: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Writing - original draft, Visualization, Funding acquisition
Search for more papers by this authorJ. L. Chau
Leibniz Institute of Atmospheric Physics at the University of Rostock, Külungsborn, Germany
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorAbstract
Aperture-synthesis images of ionospheric irregularities in the equatorial electrojet are computed using multiple-input multiple-output (MIMO) radar methods at the Jicamarca Radio Observatory. MIMO methods increase the number of distinct interferometry baselines available for imaging (by a factor of essentially three in these experiments) as well as the overall size of the synthetic aperture. The particular method employed here involves time-division multiplexing or time diversity to distinguish pulses transmitted from different quarters of the Jicamarca array. The method comes at the cost of a large increase in computation time and complexity and a reduced signal-to-noise ratio. We discuss the details involved in the signal processing and the trade space involved in image optimization.
Key Points
-
Multiple-input, multiple output (MIMO) radar imaging method implemented at Jicamarca to observe large-scale waves in the equatorial electrojet
-
Specific method involves time division multiplexing or time diversity
-
The resolution of the images was increased but is limited by motion of scatterers which needs mitigation
Open Research
Data Availability Statement
Data used for this publication are available through Hysell and Chau (2023).
Supporting Information
Filename | Description |
---|---|
2023RS007765-sup-0001-Movie SI-S01.mp4502.7 KB | Movie S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Bahcivan, H., Hysell, D. L., Lummerzheim, D., Larsen, M. F., & Pfaff, R. F. (2006). Observations of collocated optical and radar auroras. Journal of Geophysical Research, 111(A12), A12308. https://doi.org/10.1029/2006JA011923
- Bui, M. X., Hysell, D. L., & Larsen, M. F. (2023). Midlatitude sporadic E-layer horizontal structuring modulated by neutral instability and mixing in the lower thermosphere. Journal of Geophysical Research: Space Physics, 128(2), e2022JA030929. https://doi.org/10.1029/2022JA030929
- Chau, J. L., Urco, J. M., Avsarkisov, V., Vierinen, J. P., Latteck, R., Hall, C. M., & Tsutsumi, M. (2020). Four-dimensional quantification of Kelvin-Helmholtz instabilities in the polar summer mesosphere using volumetric radar imaging. Geophysical Research Letters, 47(1), e2019GL086081. https://doi.org/10.1029/2019GL086081
- Chau, J. L., Urco, J. M., Pekka Vierinen, J., Andrew Volz, R., Clahsen, M., Pfeffer, N., & Trautner, J. (2019). Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere. Atmospheric Measurement Techniques, 12(4), 2113–2127. https://doi.org/10.5194/amt-12-2113-2019
- Chau, J. L., Urco, J. M., Vierinen, J., Harding, B. J., Clahsen, M., Pfeffer, N., et al. (2021). Multistatic specular meteor radar network in Peru: System description and initial results. Earth and Space Science, 8(1), e01293. https://doi.org/10.1029/2020EA001293
- Du, H., Wang, W., & Bai, L. (2015). Observation noise modeling based particle filter: An efficient algorithm for target tracking in glint noise environment. Neurocomputing, 158, 155–166. https://doi.org/10.1016/j.neucom.2015.01.057
- Farley, D. T. (1969). Incoherent scatter correlation function measurements. Radio Science, 4(10), 935–953. https://doi.org/10.1029/rs004i010p00935
- Farley, D. T., Ierkic, H. M., & Fejer, B. G. (1981). Radar interferometry: A new technique for studying plasma turbulence in the ionosphere. Journal of Geophysical Research, 86(A3), 1467–1472. https://doi.org/10.1029/ja086ia03p01467
- Farley, D. T., Swartz, W. E., Hysell, D. L., & Ronchi, C. (1994). High-resolution radar observations of daytime kilometer-scale wave structure in the equatorial electrojet. Journal of Geophysical Research, 99(A1), 299–307. https://doi.org/10.1029/93ja02355
- Frazer, G. J., Abramovich, Y. I., & Johnson, B. A. (2007). Spatially waveform diverse radar: Perspectives for high frequency OTHR. In 2007 IEEE radar conference (pp. 385–390). https://doi.org/10.1109/RADAR.2007.374247
- Harding, B. J., & Milla, M. A. (2013). Radar imaging with compressed sensing. Radio Science, 48(5), 582–588. https://doi.org/10.1002/rds.20063
- He, Z., Chen, G., Yan, C., Zhang, S., Yang, G., Li, Y., et al. (2023). Imaging radar observations of the daytime F-region irregularities in low-latitudes of China. Journal of Geophysical Research: Space Physics, 128(2), e2022JA030878. https://doi.org/10.1029/2022JA030878
- Hu, S., & Bhattacharjee, A. (1999). Gradient drift instabilities and turbulence in the nighttime equatorial electrojet. Journal of Geophysical Research, 104(A12), 28123–28132. https://doi.org/10.1029/1999ja900399
- Huang, Y., Brennan, P. V., Patrick, D. E., Weller, I., Roberts, P., & Hughes, K. (2011). FMCW based MIMO imaging radar for maritime navigation. Progress in Electromagnetics Research, 115, 327–342. https://doi.org/10.2528/pier11021509
- Huyghebaert, D., Clahsen, M., Chau, J. L., Renkwitz, T., Latteck, R., Johnsen, M. G., & Vierinen, J. (2022). Multiple E-region radar propagation modes measured by the VHF SIMONe Norway system during active ionospheric conditions. Frontiers in Astronomy and Space Sciences, 9(May), 1–16. https://doi.org/10.3389/fspas.2022.886037
- Hysell, D. L. (1996). Radar imaging of equatorial F region irregularities with maximum entropy interferometry. Radio Science, 31(6), 1567–1578. https://doi.org/10.1029/96rs02334
- Hysell, D. L., & Chau, J. L. (2002). Imaging radar observations and nonlocal theory of large-scale waves in the equatorial electrojet. Annales Geophysicae, 20(8), 1167–1179. https://doi.org/10.5194/angeo-20-1167-2002
- Hysell, D. L., & Chau, J. L. (2006). Optimal aperture synthesis radar imaging. Radio Science, 41(2), RS2003. https://doi.org/10.1029/2005RS003383
- Hysell, D. L., & Chau, J. L. (2012). Aperture synthesis imaging for upper atmospheric research. In J. Bech & J. L. Chau (Eds.), Doppler radar observations - Weather radar, wind profiler, ionospheric radar, and other advanced applications. InTech. https://doi.org/10.5772/39024
- Hysell, D. L., & Chau, J. L. (2023). Jan. 2023 EEJ dataset [Dataset]. JRO Database. Retrieved from https://www.igp.gob.pe/observatorios/radio-observatorio-jicamarca/database/dataset/2023-january-16-18-imaging-intermediate-data
- Hysell, D. L., Yamamoto, M., & Fukao, S. (2002). Imaging radar observations and theory of type I and type II quasi-periodic echoes. Journal of Geophysical Research, 107(A11), 1360. https://doi.org/10.1029/2002ja009292
- Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939–952. https://doi.org/10.1109/proc.1982.12425
- Kosarev, E. L. (1990). Shannon's superresolution limit for signal recovery. Inverse Problems, 6(1), 55–76. https://doi.org/10.1088/0266-5611/6/1/007
- Kudeki, E., & Farley, D. T. (1989). Aspect sensitivity of equatorial electrojet irregularities and theoretical implications. Journal of Geophysical Research, 94(A1), 426–434. https://doi.org/10.1029/ja094ia01p00426
- Kudeki, E., Farley, D. T., & Fejer, B. G. (1982). Long wavelength irregularities in the equatorial electrojet. Geophysical Research Letters, 9(6), 684–687. https://doi.org/10.1029/gl009i006p00684
- Kudeki, E., & Sürücü, F. (1991). Radar interferometric imaging of field-aligned plasma irregularities in the equatorial electrojet. Geophysical Research Letters, 18(1), 41–44. https://doi.org/10.1029/90gl02603
- Larsen, M. F., Hysell, D. L., Zhou, Q. H., Smith, S. M., Friedman, J., & Bishop, R. L. (2007). Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers. Journal of Geophysical Research, 112(A6), A06321. https://doi.org/10.1029/2006JA012051
- Ma, Y. (2020). A research on dynamic target tracking with camera based on Kalman filter. Journal of Physics: Conference Series, 1453(1), 012106. https://doi.org/10.1088/1742-6596/1453/1/012106
- Matsuda, T., & Hashiguchi, H. (2023). DDMA-MIMO observations with the mu radar: Validation by measuring a beam broadening effect. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 3083–3091. https://doi.org/10.1109/JSTARS.2023.3258139
- Pfaff, R. F., Kelley, M. C., Kudeki, E., Fejer, B. G., & Baker, K. D. (1987). Electric field and plasma density measurements in the strongly driven daytime equatorial electrojet. 1. The unstable layer and gradient drift waves. Journal of Geophysical Research, 92(A12), 13578–13596. https://doi.org/10.1029/ja092ia12p13578
- Ronchi, C. (1990). Large scale turbulence in the equatorial electrojet (Unpublished doctoral dissertation). Cornell University.
- Ronchi, C., Similon, P. L., & Sudan, R. N. (1989). A nonlocal linear theory of the gradient drift instability in the equatorial electrojet. Journal of Geophysical Research, 94(A2), 1317–1326. https://doi.org/10.1029/ja094ia02p01317
- Ronchi, C., Sudan, R. N., & Farley, D. T. (1991). Numerical simulations of large-scale plasma turbulence in the daytime equatorial electrojet. Journal of Geophysical Research, 96(A12), 21263–21279. https://doi.org/10.1029/91ja01951
- Sahr, J. D., Farley, D. T., & Swartz, W. E. (1989). Removal of aliasing in pulse-to-pulse Doppler radar measurements. Radio Science, 24(6), 697–704. https://doi.org/10.1029/rs024i006p00697
- Saito, S., Yamamoto, M., & Hashiguchi, H. (2008). Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system. Annales Geophysicae, 26(8), 2345–2352. https://doi.org/10.5194/angeo-26-2345-2008
- Skilling, J., & Bryan, R. K. (1984). Maximum entropy image reconstruction: General algorithm. Monthly Notices of the Royal Astronomical Society, 211(1), 111–124. https://doi.org/10.1093/mnras/211.1.111
- Sommer, S., & Chau, J. L. (2016). Patches of polar mesospheric summer echoes characterized from radar imaging observations with MAARSY. Annales Geophysicae, 34(12), 1231–1241. https://doi.org/10.5194/angeo-34-1231-2016
- Swartz, W. E., & Farley, D. T. (1994). High-resolution radar measurements of turbulent structure in the equatorial electrojet. Journal of Geophysical Research, 99(A1), 309–317. https://doi.org/10.1029/93ja02354
- Thompson, A. R., Moran, J. M., & Swenson, G. W., Jr. (2017). Interferometry and synthesis in radio astronomy ( 3rd ed.). John Wiley.
- Urco, J. M., Chau, J. L., Milla, M. A., Vierinen, J. P., & Weber, T. (2018). Coherent MIMO to improve aperture synthesis radar imaging of field-aligned irregularities: First results at Jicamarca. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2980–2990. https://doi.org/10.1109/TGRS.2017.2788425
- Urco, J. M., Chau, J. L., Weber, T., & Latteck, R. (2019). Enhancing the spatiotemporal features of polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY. Atmospheric Measurement Techniques, 12(2), 955–969. https://doi.org/10.5194/amt-12-955-2019
- Wernecke, S. J., & D’Addario, L. R. (1977). Maximum entropy image reconstruction. IEEE Transactions on Computers, C-26(4), 351–364. https://doi.org/10.1109/tc.1977.1674845
- Wilczek, R., & Drapatz, S. (1985). A high accuracy algorithm for maximum entropy image restoration in the case of small data sets. Astronomy and Astrophysics, 142, 9–12.
- Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096. https://doi.org/10.1109/TIT.2003.810646