Developing a Redox Network for Coastal Saltmarsh Systems in the PFLOTRAN Reaction Model
Corresponding Author
T. A. O’Meara
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Smithsonian Environmental Research Center, Edgewater, MD, USA
Correspondence to:
T. A. O’Meara,
Contribution: Conceptualization, Methodology, Validation, Writing - original draft, Visualization
Search for more papers by this authorF. Yuan
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Contribution: Conceptualization, Methodology, Software, Writing - review & editing
Search for more papers by this authorB. N. Sulman
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Visualization
Search for more papers by this authorG. L. Noyce
Smithsonian Environmental Research Center, Edgewater, MD, USA
Contribution: Conceptualization, Data curation, Writing - review & editing
Search for more papers by this authorR. Rich
Smithsonian Environmental Research Center, Edgewater, MD, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Supervision
Search for more papers by this authorP. E. Thornton
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Supervision
Search for more papers by this authorJ. P. Megonigal
Smithsonian Environmental Research Center, Edgewater, MD, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Supervision
Search for more papers by this authorCorresponding Author
T. A. O’Meara
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Smithsonian Environmental Research Center, Edgewater, MD, USA
Correspondence to:
T. A. O’Meara,
Contribution: Conceptualization, Methodology, Validation, Writing - original draft, Visualization
Search for more papers by this authorF. Yuan
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Contribution: Conceptualization, Methodology, Software, Writing - review & editing
Search for more papers by this authorB. N. Sulman
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Visualization
Search for more papers by this authorG. L. Noyce
Smithsonian Environmental Research Center, Edgewater, MD, USA
Contribution: Conceptualization, Data curation, Writing - review & editing
Search for more papers by this authorR. Rich
Smithsonian Environmental Research Center, Edgewater, MD, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Supervision
Search for more papers by this authorP. E. Thornton
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Supervision
Search for more papers by this authorJ. P. Megonigal
Smithsonian Environmental Research Center, Edgewater, MD, USA
Contribution: Conceptualization, Methodology, Writing - review & editing, Supervision
Search for more papers by this authorAbstract
Coastal ecosystems have been largely ignored in Earth system models but are important zones for carbon and nutrient processing. Interactions between water, microbes, soil, sediments, and vegetation are important for mechanistic representation of coastal processes and ecosystem function. To investigate the role of these feedbacks, we used a reactive transport model (PFLOTRAN) that has the capability to be connected to the Energy Exascale Earth System Model (E3SM). PFLOTRAN was used to incorporate redox reactions and track chemical species important for coastal ecosystems as well as define simple representations of vegetation dynamics. Our goal was to incorporate oxygen flux, salinity, pH, sulfur cycling, and methane production along with plant-mediated transport of gases and tidal flux. Using porewater profile and incubation data for model calibration and evaluation, we were able to create depth-resolved biogeochemical soil profiles for saltmarsh habitat and use this updated representation to simulate direct and indirect effects of elevated CO2 and temperature on subsurface biogeochemical cycling. We found that simply changing the partial pressure of CO2 or increasing temperature in the model did not fully reproduce observed changes in the porewater profile, but the inclusion of plant or microbial responses to CO2 and temperature manipulations was more accurate in representing porewater concentrations. This indicates the importance of characterizing tightly coupled vegetation-subsurface processes for developing predictive understanding and the need for measurement of plant-soil interactions on the same time scale to understand how hotspots or moments are generated.
Plain Language Summary
Earth system models typically do not represent interactions between plants, water, and soil in coastal systems. We used a model, PFLOTRAN, to test how changing temperature and CO2 can alter the connections between plants, water flow and soil processes in a saltmarsh. We were primarily focused on how the daily cycles associated with tides and photosynthesis would affect nutrient cycling in the soil. We found that including daily fluctuations instead of constant rates influenced rate estimates resulting in a higher or lower nutrient content or gas emission than anticipated. Our results show the importance of including variation in space and time to capture daily changes that influence coastal environments.
Key Points
-
Energy Exascale Earth System Model (E3SM) does not fully characterize coastal plant-soil-water interactions in the land or ocean module
-
Representation of coastal biogeochemical processes requires spatiotemporal heterogeneity, which can be oversimplified in large-scale models
-
Plant-soil-water interactions play an important role in regulating coastal ecosystems
Open Research
Data Availability Statement
Long-term porewater, water level, and soil data sets for GCReW are openly available through the Smithsonian Environmental Research Center website (https://serc.si.edu/gcrew/data). PFLOTRAN code as well as documentation is available through https://www.pflotran.org. Input files for SWaMP are accessible through Github (https://github.com/omearata/REDOX-PFLOTRAN) as well as the ESS-Dive repository (https://data.ess-dive.lbl.gov/datasets/doi:10.15485/2294096).
References
- Agee, E., He, L., Bisht, G., Couvreur, V., Shahbaz, P., Meunier, F., et al. (2021). Root lateral interaction drive water update patterns under water limitation. Advances in Water Resources, 151, 103896. https://doi.org/10.1016/j.advwatres.2021.103896
- Aller, R. C. (2004). Conceptual models of early diagenetic processes: The muddy seafloor as an unsteady, batch reactor. Journal of Marine Research, 62(6), 815–835. https://doi.org/10.1357/0022240042880837
- Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., et al. (2013). Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth. System Models, 26(18), 6801–6843. https://doi.org/10.1175/JCLI-D-12-00417.1
10.1175/JCLI?D?12?00417.1 Google Scholar
- Aromokeye, D. A., Kulkarni, A. C., Elvert, M., Wegener, G., Henkel, S., Coffinet, S., et al. (2020). Rates and microbial Players of iron-driven anaerobic oxidation of methane. Methanic Marine Sediments, 10, 3041. https://doi.org/10.3389/fmicb.2019.03041
10.3389/fmicb.2019.03041 Google Scholar
- Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., et al., (2013). Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. Journal of Climate, 26(15), 5289–5314. https://doi.org/10.1175/JCLI-D-12-00494.1
- Avery, G. B., Shannon, R. D., White, J. R., Martens, C. S., & Alperin, M. J. (2003). Controls on methane production in a tidal freshwater estuary and a peatland: Methane production via acetate. Fermentation and CO2 Reduction, 62(1), 19–37. https://doi.org/10.1023/A:1021128400602
10.1023/A:1021128400602 Google Scholar
- Bianchi, T. S. (2007). Biogeochemistry of estuaries. Oxford University Press.
- Burrows, S. M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., et al. (2020). The DOE E3SM v1.1 biogeochemistry configuration. Description and Simulated Ecosystem-Climate Responses to Historical Changes in Forcing, 12(9). https://doi.org/10.1029/2019MS001766
10.1029/2019MS001766 Google Scholar
- Byun, D.-S., & Wang, X. H. (2005). The effect of sediment stratification on tidal dynamics and sediment transport patterns (Vol. 110). https://doi.org/10.1029/2004JC002459
10.1029/2004JC002459 Google Scholar
- Canfield, D. E., & Thamdrup, B. (2009). Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology, 7(4), 385–392. https://doi.org/10.1111/j.1472-4669.2009.00214.x
- Capone, D. G., Reese, D. D., & Kiene, R. P. (1983). Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Applied and Environmental Microbiology, 45(5), 1586–1591. https://doi.org/10.1128/aem.45.5.1586-1591.1983
- Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal. saline wetland soils, 17(4). https://doi.org/10.1029/2002GB001917
10.1029/2002GB001917 Google Scholar
- Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., et al. (2011). Development and evaluation of an Earth-System model –. HadGEM2, 4(4), 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011
10.5194/gmd?4?1051?2011 Google Scholar
- Correll, D. L., Jordan, T. E., & Weller, D. E. (1999). Transport of nitrogen and phosphorus from rhode river watersheds during storm events. Water Resources Research, 35(8), 2513–2521. https://doi.org/10.1029/1999WR900058
- Craft, C. B., Seneca, E. D., & Broome, S. W. (1991). Porewater chemistry or natural and created marsh soils. Journal of Experimental Marine Biology and Ecology, 152(2), 187–200. https://doi.org/10.1016/0022-0981(91)90214-H
- Duarte, C., Dennison, W., Orth, R., & Carruthers, T. (2008). The charisma of coastal ecosystems: Addressing the imbalance. Estuaries and Coasts, 31(2), 233–238. https://doi.org/10.1007/s12237-008-9038-7
- Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., et al. (2013). GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: Carbon System Formulation and Baseline Simulation Characteristics, 26(7), 2247–2267. https://doi.org/10.1175/JCLI-D-12-00150.1
10.1175/JCLI?D?12?00150.1 Google Scholar
- Ensign, S., Siporin, K., Piehler, M., Doyle, M., & Leonard, L. (2013). Hydrologic versus biogeochemical controls of denitrification in tidal freshwater wetlands (pp. 519–532).
- Fulweiler, R. W., & Heiss, E. M. (2014). (Nearly) A decade of directly measured sediment N2 fluxes: What can narragansett bay tell us about the global ocean nitrogen budget? Oceanography, 27(1), 184–195. https://doi.org/10.5670/oceanog.2014.22
- Furukawa, Y., Smith, A. C., Kostka, J. E., Watkins, J., & Alexander, C. R. (2004). Quantification of macrobenthic effects on diagenesis using a multicomponent inverse. Model in Salt Marsh Sediments, 49(6), 2058–2072. https://doi.org/10.4319/lo.2004.49.6.2058
- Gardner, L. R. (1990). Simulation of the diagenesis of carbon, sulfur, and dissolved oxygen in. Salt Marsh Sediments, 60(1), 91–111. https://doi.org/10.2307/1943027
10.2307/1943027 Google Scholar
- Gongol, C., & Savage, C. (2016). Spatial variation in rates of benthic denitrification and environmental controls in four New Zealand estuaries. Marine Ecology Progress Series, 556, 59–77. https://doi.org/10.3354/meps11865
- Grangere, K., Lefebvre, S., Bacher, C., Cugier, P., & Menesguen, A. (2010). Modelling the spatial heterogeneity of ecological processes in an intertidal estuarine bay: Dynamic interactions between bivalves and phytoplankton. Marine Ecology Progress Series, 415, 141–158. https://doi.org/10.3354/meps08659
- Gunderson, A. R., Armstrong, E. J., & Stillman, J. H. (2016). Multiple stressors in a changing world: The need for an improved perspective. Physiological Responses to the Dynamic Marine Environment, 8(1), 357–378. https://doi.org/10.1146/annurev-marine-122414-033953
10.1146/annurev?marine?122414?033953 Google Scholar
- Hammond, G. E., Lichtner, P. C., Lu, C., & Mills, R. T. (2019). Pflotran: Reactive flow and transport code for use on laptops to leadership-class supercomputers. In Groundwater reactive transport models. Bentham Science Publishers. https://doi.org/10.2174/97816080530631120101
- Hamner, B., & Frasco, M. (2018). Metrics: Evaluation Metrics for machine learning. R package version 0.1.4 Retrieved from https://CRAN.R-project.org/package=Metrics
- Hargrave, B. T., & Phillips, G. A. (1981). Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment. https://doi.org/10.1016/S0302-3524(81)80068-0
10.1016/S0302?3524(81)80068?0 Google Scholar
- Heiss, J. W., Post, V. E. A., Laattoe, T., Russoniello, C. J., & Michael, H. A. (2017). Physical controls on biogeochemical processes in intertidal zones of beach aquifers. Water Resources Research, 53(11), 9225–9244. https://doi.org/10.1002/2017WR021110
- Holmer, M., Gribsholt, B., & Kristensen, E. (2002). Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and salt marsh sediments. Marine Ecology Progress Series, 225, 197–204. https://doi.org/10.3354/meps225197
- Holmquist, J. R., Schile-Beers, L., Buffington, K., Lu, M., Mozdzer, T. J., Reira, J., et al. (2021). Scalability and performance tradeoffs in quantifying relationships between elevation and tidal wetland plant communities. Marine Ecology Progress Series, 666, 57–72. https://doi.org/10.3354/meps13683
- Itoh, S., Takeshige, A., Kasai, A., & Kimura, S. (2018). Modeling the coastal ecosystem complex: Present situation and challenges. Fisheries Science, 84(2), 293–307. https://doi.org/10.1007/s12562-018-1181-x
- Jensen, S. I., Kuhl, M., Glud, R. N., Jorgensen, L. B., & Prieme, A. (2005). Oxic microzones and radial oxygen loss from roots of Zostera marina. Marine Ecology Progress Series, 293, 49–58. https://doi.org/10.3354/meps293049
- Jordan, T. E., & Correll, D. L. (1991). Continuous automated sampling of tidal exchanges of nutrients by brackish marshes. Estuarine, Coastal and Shelf Science, 32(6), 527–545. https://doi.org/10.1016/0272-7714(91)90073-K
- Joye, S. B., & Hollibaugh, J. T. (1995). Influence of sulfide inhibition of nitrification on nitrogen regeneration in. Sediments, 270(5236), 623–625. https://doi.org/10.1126/science.270.5236.623
- Kauppi, L., Göbeler, N., Norkko, J., Norkko, A., Romero-Ramirez, A., & Bernard, G. (2023). Changes in macrofauna bioturbation during repeated heatwaves mediate changes in biogeochemical cycling of nutrients. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1070377
- Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate. Variability, 96(8), 1333–1349. https://doi.org/10.1175/BAMS-D-13-00255.1
10.1175/BAMS?D?13?00255.1 Google Scholar
- King, G. M., Rslev, P., & Skovgaard, H. (1990). Distribution and rate of methane oxidation in sediments of the Florida Everglades. https://doi.org/10.1128/aem.56.9.2902-2911.1990
10.1128/aem.56.9.2902?2911.1990 Google Scholar
- Kleinhuizen, A. A., & Mortazavi, B. (2018). Denitrification capacity of a natural and a restored marsh in the Northern Gulf of Mexico. https://doi.org/10.1007/s00267-018-1057-y
10.1007/s00267?018?1057?y Google Scholar
- LaFond-Hudson, S., & Sulman, B. (2023). Modeling strategies and data needs for representing coastal wetland vegetation in land surface models. New Phytologist, 238(3), 938–951. https://doi.org/10.1111/nph.18760
- Laverman, A. M., Meile, C., Van Cappellen, P., & Wieringa, E. B. A. (2007). Vertical distribution of denitrification in an estuarine sediment: Integrating sediment flowthrough reactor experiments and microprofiling via reactive transport. Modeling, 73(1), 40–47. https://doi.org/10.1128/AEM.01442-06
- Lichtner, P. C., Hammond, G. E., Lu, C., Karra, S., Bisht, G., Andre, B., et al. (2019). PFLOTRAN webpage. Retrieved from http://www.pflotran.org
- Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23(4), 399–417. https://doi.org/10.2307/1930126
10.2307/1930126 Google Scholar
- Maricle, B. R., & Lee, R. W. (2002). Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. Anglica, 74(2), 109–120. https://doi.org/10.1016/S0304-3770(02)00051-7
10.1016/S0304?3770(02)00051?7 Google Scholar
- McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4), 301–312. https://doi.org/10.1007/s10021-003-0161-9
- Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: Linkages to trace gases and aerobic processes. In W. H. Schlesinger (Ed.), Biogeochemistry (pp. 317–424). Elsevier-Pergamon.
- Megonigal, P. (2003a). Global change research wetland: Biogeochemistry publications. Retrieved from https://serc.si.edu/labs/biogeochemistry/publications
- Megonigal, P. (2003b). Global change research wetland: Long-term datasets. Retrieved from https://serc.si.edu/gcrew/data
- Miller-Way, T., & Twilley, R. R. (1996). A comparison of batch and continuous flow methodologies for determining benthic fluxes. Marine Ecology Progress Series, 142, 257–269. https://doi.org/10.3354/meps140257
- National Weather Service. (2023). Climate data: Local data/records. Retrieved from https://www.weather.gov/wrh/climate
- Noyce, G., Megonigal, P., Smith, A. J., Kirwan, M., & Rich, R. (2022). Dataset: Oxygen priming induced by elevated CO2 reduces carbon accumulation and methane emissions in coastal wetlands (pp. 2017–2020). https://doi.org/10.25573/serc.21263328.v3
10.25573/serc.21263328.v3 Google Scholar
- Noyce, G. L., Kirwan, M. L., Rich, R. L., & Megonigal, J. P. (2019). Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated co2. Proceedings of the National Academy of Sciences, 116(43), 21623–21628. https://doi.org/10.1073/pnas.1904990116
- Noyce, G. L., & Megonigal, J. P. (2021). Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to. whole-ecosystem warming, 18(8), 2449–2463. https://doi.org/10.5194/bg-18-2449-2021
- Noyce, G. L., Smith, A. J., Kirwan, M. L., Rich, R. L., & Megonigal, J. P. (2023). Oxygen priming induced by elevated CO2 reduces carbon accumulation and methane emissions in coastal wetlands. Nature Geoscience, 16(1), 63–68. https://doi.org/10.1038/s41561-022-01070-6
- Nydahl, A., Panigrahi, S., & Wikner, J. (2013). Increased microbial activity in a warmer and wetter climate enhances the risk of coastal hypoxia. FEMS Microbiology Ecology, 85(2), 338–347. https://doi.org/10.1111/1574-6941.12123
- O'Meara, T., Yuan, F., Sulman, B., Noyce, G., Rich, R., Thornton, P., & Megonigal, J. P. (2024). Biogeochemistry simulations for the salt marsh accretion response to temperature eXperiment (SMARTX) [Dataset]. https://doi.org/10.15485/2294096. Coastal Wetland Carbon Cycling Processes in a Warmer Climate, ESS-DIVE repository
10.15485/2294096 Google Scholar
- O’Meara, T. A., Hillman, J. R., & Thrush, S. F. (2017). Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions. Scientific Reports, 7(1), 10218. https://doi.org/10.1038/s41598-017-11058-7
- O’Meara, T. A., Thornton, P. E., Ricciuto, D. M., Noyce, G. L., Rich, R. L., & Megonigal, J. P. (2021). Considering coasts: Adapting terrestrial models to characterize coastal. wetland ecosystems, 450, 109561. https://doi.org/10.1016/j.ecolmodel.2021.109561
10.1016/j.ecolmodel.2021.109561 Google Scholar
- Ostrowski, A., Connolly, R. M., Brown, C. J., & Sievers, M. (2022). Fluctuating fortunes: Stressor synchronicity and fluctuating intensity influence biological impacts. Ecology Letters, 25(12), 2611–2623. https://doi.org/10.1111/ele.14120
- Peltola, O., Raivonen, M., Li, X., & Vesala, T. (2018). Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models. Biogeosciences, 15(3), 937–951. https://doi.org/10.5194/bg-15-937-2018
- Pezeshki, S. R., Matthews, S. W., & Delaune, R. D. (1991). Root cortex structure and metabolic responses of Spartina patens to soil redox conditions. Environmental and Experimental Botany, 31(1), 91–97. https://doi.org/10.1016/0098-8472(91)90011-C
- Piehler, M. F., & Smyth, A. R. (2011). Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere, 2(1), art12. https://doi.org/10.1890/ES10-00082.1
- Pinsonneault, A. J., Neale, P. J., Tzortziou, M., Canuel, E. A., Pondell, C. R., Morrissette, H., et al. (2020). Dissolved organic carbon sorption dynamics in tidal marsh soils. Limnology & Oceanography, 66(1), 214–225. https://doi.org/10.1002/lno.11598
- Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921. https://doi.org/10.1038/nature04617
- R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
- Rich, J. J., Dale, O. R., Song, B., & Ward, B. B. (2008). Anaerobic ammonium oxidation (Anammox) in Chesapeake bay. Sediments, 55(2), 311–320. https://doi.org/10.1007/s00248-007-9277-3
- Romero, E., Garnier, J., Billen, G., Ramarson, A., Riou, P., & Le Gendre, R. (2019). Modeling the biogeochemical functioning of the Seine estuary and its coastal zone. Export, retention, and transformations, 64(3), 895–912. https://doi.org/10.1002/lno.11082
- Rovira, P., & Vallejo, V. R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An aci hydrolysis approach, 107, 1–2. https://doi.org/10.1016/S0016-7061(01)00143-4
10.1016/S0016?7061(01)00143?4 Google Scholar
- Santos, I. R., Burnett, W. C., Dittmar, T., Suryaputra, I. G. N. A., & Chanton, J. (2009). Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. https://doi.org/10.1016/j.gca.2008.11.029
10.1016/j.gca.2008.11.029 Google Scholar
- Santos, I. R., Eyre, B. D., & Huettel, M. (2012). The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. https://doi.org/10.1016/j.ecss.2011.10.024
10.1016/j.ecss.2011.10.024 Google Scholar
- Savage, C., Thrush, S. F., Lohrer, A. M., Hewitt, J. E., & Lin, S. (2012). Ecosystem services transcend boundaries: Estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. PLoS One, 7(8), e42708. https://doi.org/10.1371/journal.pone.0042708
- Säwström, C., Hyndes, G. A., Eyre, B. D., Huggett, M. J., Fraser, M. W., Lavery, P. S., et al. (2016). Coastal connectivity and spatial subsidy from a microbial perspective. Ecology and Evolution, 6(18), 6662–6671. https://doi.org/10.1002/ece3.2408
- Schlesinger, W. H. (2013). Biogeochemistry an analysis of global change. ( E. S. Bernhardt, Ed.). : Academic Press.
- Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K.-U., & Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane. emissions, 6(1), 7477. https://doi.org/10.1038/ncomms8477
- Seitzinger, S., Nixon, S., Pilson, M. E. Q., & Burke, S. (1980). Denitrification and N2O production in near-shore marine sediments. Denitrification and N 2O production in near- shore marine sediments, 44(11), 1853–1860. https://doi.org/10.1016/0016-7037(80)90234-3
- Sela-Adler, M., Ronen, Z., Herut, B., Antler, G., Vigderovich, H., Eckert, W., & Sivan, O. (2017). Co-Existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine. Sediments, 8, 766. https://doi.org/10.3389/fmicb.2017.00766
10.3389/fmicb.2017.00766 Google Scholar
- Stagg, C. L., Schoolmaster, D. R., Krauss, K. W., Cormier, N., & Conner, W. H. (2017). Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands. Ecology, 98(8), 2003–2018. https://doi.org/10.1002/ecy.1890
- Steinmuller, H. E., & Chambers, L. G. (2019). Characterization of coastal wetland soil organic matter: Implications for wetland submergence. https://doi.org/10.1016/j.scitotenv.2019.04.405
10.1016/j.scitotenv.2019.04.405 Google Scholar
- Steinmuller, H. E., Dittmer, K. M., White, J. R., & Chambers, L. G. (2019). Understanding the fate of soil organic matter in submerging coastal wetland soils: A microcosm approach. https://doi.org/10.1016/j.geoderma.2018.08.020
10.1016/j.geoderma.2018.08.020 Google Scholar
- Taillefert, M., Neuhuber, S., & Bristow, G. (2007). The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochemical Transactions, 8(1), 6. https://doi.org/10.1186/1467-4866-8-6
- Tang, G., Yuan, F., Bisht, G., Hammond, G. E., Lichtner, P. C., Kumar, J., et al. (2016). Addressing numerical challenges in introducing a reactive transport code into a land surface model: A biogeochemical modeling proof-of-concept with CLM--PFLOTRAN 1. 0. 9(3), 927–946. https://doi.org/10.5194/gmd-9-927-2016
10.5194/gmd?9?927?2016 Google Scholar
- Thrush, S. F., Townsend, M., Hewitt, J. E., Davies, K., Lohrer, A. M., & Lundquist, C. (2013). The many uses and values of estuarine ecosystems. ( J. R. Dymond, Ed.) (pp. 226–237). : Manaai Whenua Press.
- Unger, V., Elsey-Quirk, T., Sommerfield, C., & Velinsky, D. (2016). Stability of organic carbon accumulating in Spartina alterniflora-domimated salt marshes of the Mid-Atlantic U.S. 182 (Part A). https://doi.org/10.1016/j.ecss.2016.10.001
10.1016/j.ecss.2016.10.001 Google Scholar
- van Oevelen, D., Middelburg, J. J., Soetaert, K., & Moodley, L. (2006). The fate of bacterial carbon in an intertidal sediment: Modeling an in situ isotope tracer experiment. Limnology & Oceanography, 51(3), 1302–1314. https://doi.org/10.4319/lo.2006.51.3.1302
- Volta, C., Arndt, S., Savenije, H. H. G., Laruelle, G. G., & Regnier, P. (2014). C-GEM (v 1.0): A new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geoscientific Model Development, 7(4), 1271–1295. https://doi.org/10.5194/gmd-7-1271-2014
- Walter, B. P., & Heimann, M. (2000). A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters. Climate, 14(3), 745–765. https://doi.org/10.1029/1999gb001204
- Wang, J., O’Meara, T., LaFond-Hudson, S., He, S., Maiti, K., Ward, E., & Sulman, B. N. (2023). Subsurface redox interactions regulate ebullitive methane flux in heterogeneous Mississippi River deltaic wetland. https://doi.org/10.1029/2023MS003762
10.1029/2023MS003762 Google Scholar
- Wania, R., Ross, I., & Prentice, I. C. (2010). Implementation and evaluation of a new methane model within a dynamic global vegetation model. LPJ-WHyMe v1.3.1, 3(2), 565–584. https://doi.org/10.5194/gmd-3-565-2010
10.5194/gmd?3?565?2010 Google Scholar
- Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., et al. (2020). Representing the function and sensitivity of coastal interfaces in. Earth system models, 11(1), 2458. https://doi.org/10.1038/s41467-020-16236-2
- Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., et al. (2001). The UVic earth system climate model: Model description, climatology, and applications to past. present and future climates, 39(4), 361–428. https://doi.org/10.1080/07055900.2001.9649686
10.1080/07055900.2001.9649686 Google Scholar
- Wild-Allen, K., Herzfeld, M., Thompson, P. A., Rosebrock, U., Parslow, J., & Volkman, J. K. (2010). Applied coastal biogeochemical modelling to quantify the environmental impact of fish farm nutrients and inform managers. Journal of Marine Systems, 81(1), 134–147. https://doi.org/10.1016/j.jmarsys.2009.12.013
- Yu, K., Faulkner, S. P., & Patrick, W. H. (2006). Redox potential characterization and soil greenhouse gas concentration across a. hydrological gradient in a Gulf coast forest, 62(6), 905–914. https://doi.org/10.1016/j.chemosphere.2005.05.033
- Zhang, J.-Z., & Millero, F. J. (1993). The products from the oxidation of H2S in seawater. Geochimica et Cosmochimica Acta, 57(8), 1705–1718. https://doi.org/10.1016/0016-7037(93)90108-9
- Zhang, Y., Li, W., Sun, G., Miao, G., Noormets, A., Emanuel, R., & King, J. S. (2018). Understanding coastal wetland hydrology with a new regional-scale. process-based hydrological model, 32(20), 3158–3173. https://doi.org/10.1002/hyp.13247