Defining Arctic Stratospheric Polar Vortex Intensification Events
Corresponding Author
Jinlong Huang
College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Correspondence to:
J. Huang,
Search for more papers by this authorPeter Hitchcock
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Search for more papers by this authorCorresponding Author
Jinlong Huang
College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Correspondence to:
J. Huang,
Search for more papers by this authorPeter Hitchcock
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Search for more papers by this authorAbstract
Using the ERA5 reanalysis data, we identify seven easily calculable indices of the strength of the Arctic stratospheric vortex: zonal winds at 10 hPa and temperature or height anomalies at 10 , 50, and 100 hPa. We then compare the climatological statistics and meteorological properties of strong and weak events based on these indices. We particularly consider the sensitivity of the event statistics to the choice of thresholds, the use of these indices in capturing stratosphere–troposphere coupling, and meteorological conditions relevant to chemical ozone depletion. The frequency, seasonal distribution, and interdecadal variability of strong events is more sensitive to threshold or index choice compared to weak events. Composites of polar-cap geopotential height anomalies are found to differ significantly based on the choice of index. In particular, height-based events reveal a strong and immediate barotropic response near the central date due to surface pressure fluctuations, making it more difficult to regard central dates of height-based events as purely stratospheric in origin. We further characterize the relationship of all indices to conditions relevant to chemical ozone depletion, finding that temperature-based indices in the lower stratosphere perform best. Finally, we present four dynamical benchmarks used to assess and compare the representation of strong events in climate models. Our results highlight the challenges in determining the optimal definition for strong events and emphasize the implications of different choices, providing valuable insights for guiding future studies in defining strong events.
Key Points
-
The statistics of strong and weak vortex events as defined by several easily calculated indices of stratospheric variability are compared
-
Statistical and dynamical properties of strong events are found to be more sensitive to the choice of definition than are weak events
-
The character of stratosphere-troposphere coupling near the central date of strong events depends strongly on the choice of definition
Plain Language Summary
At times, the stratospheric polar vortex can undergo significant strengthening. Such strengthening is referred to as the polar vortex intensification event. These events are known to improve subseasonal-to-seasonal forecast skills of surface extremes, such as strong winds, and heavy rain. They also have an impact on the Arctic springtime stratospheric ozone concentrations. However, compared to the extensive literature exploring stratospheric sudden warmings, there have been relatively few attempts to establish comprehensive climatology and dynamical benchmarks for strong polar vortex events, and less consensus on how to define strong vortex events. We consider here a range of simple indices of the strength of the polar vortex and evaluate different possible definitions of strong vortex events. To assess these possible definitions, we evaluate how sensitive the climatological statistics of these events are to the choice of definition. We also assess their ability to capture stratosphere–troposphere coupling and meteorological conditions relevant to chemical ozone depletion and show that there are substantial implications for making different choices. Our results highlight the difficulty of settling on a single common definition of strong vortex events and provide useful guidance for selecting an appropriate definition for strong events.
Open Research
Data Availability Statement
The ERA5 reanalysis dataset is publicly available from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) at (Hersbach et al., 2023).
Supporting Information
Filename | Description |
---|---|
2023JD039373-sup-0001-Supporting Information SI-S01.docx10.5 MB | Supporting Information S1 |
2023JD039373-sup-0002-Supporting Information SI-S02.docx881.1 KB | Supporting Information S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ayarzagüena, B., Charlton-Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., et al. (2020). Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. Journal of Geophysical Research: Atmospheres, 125(6), e2019JD032345. https://doi.org/10.1029/2019JD032345
- Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., et al. (2021). Sudden stratospheric warmings. Reviews of Geophysics, 59(1), e2020RG000708. https://doi.org/10.1029/2020RG000708
- Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric Harbingers of anomalous weather regimes. Science, 294(5542), 581–584. https://doi.org/10.1126/science.1063315
- Baldwin, M. P., & Thompson, D. W. J. (2009). A critical comparison of stratosphere–troposphere coupling indices. Quarterly Journal of the Royal Meteorological Society, 135(644), 1661–1672. https://doi.org/10.1002/qj.479
- Butchart, N. (2022). The stratosphere: A review of the dynamics and variability. Weather and Climate Dynamics, 3(4), 1237–1272. https://doi.org/10.5194/wcd-3-1237-2022
- Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a sudden stratospheric warming. Journal of Climate, 31(6), 2337–2344. https://doi.org/10.1175/JCLI-D-17-0648.1
- Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., & Match, A. (2015). Defining sudden stratospheric warmings. Bulletin of the American Meteorological Society, 96(11), 1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1
- Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017
- Calvo, N., Polvani, L. M., & Solomon, S. (2015). On the surface impact of Arctic stratospheric ozone extremes. Environmental Research Letters, 10(9), 094003. https://doi.org/10.1088/1748-9326/10/9/094003
- Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20(3), 449–469. https://doi.org/10.1175/JCLI3996.1
- Charney, J. G., & Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research (1896-1977), 66(1), 83–109. https://doi.org/10.1029/JZ066i001p00083
- Domeisen, D. I. V., & Butler, A. H. (2020). Stratospheric drivers of extreme events at the Earth’s surface. Communications Earth & Environment, 1(1), 1–8. https://doi.org/10.1038/s43247-020-00060-z
10.1038/s43247-020-00060-z Google Scholar
- Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., et al. (2020). The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. Journal of Geophysical Research: Atmospheres, 125(2), e2019JD030923. https://doi.org/10.1029/2019JD030923
- Friedel, M., Chiodo, G., Stenke, A., Domeisen, D. I. V., Fueglistaler, S., Anet, J. G., & Peter, T. (2022). Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nature Geoscience, 15(7), 541–547. https://doi.org/10.1038/s41561-022-00974-7
- Gerber, E. P., Baldwin, M. P., Akiyoshi, H., Austin, J., Bekki, S., Braesicke, P., et al. (2010). Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. Journal of Geophysical Research, 115(D3). https://doi.org/10.1029/2009JD013770
- Gillett, N. P., Scinocca, J. F., Plummer, D. A., & Reader, M. C. (2009). Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone. Geophysical Research Letters, 36(10). https://doi.org/10.1029/2009GL037246
10.1029/2009GL037246 Google Scholar
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. (2023). ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6
10.24381/cds.bd0915c6 Google Scholar
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
- Hitchcock, P. (2019). On the value of reanalyses prior to 1979 for dynamical studies of stratosphere–troposphere coupling. Atmospheric Chemistry and Physics, 19(5), 2749–2764. https://doi.org/10.5194/acp-19-2749-2019
- Hitchcock, P., & Shepherd, T. G. (2013). Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings. Journal of the Atmospheric Sciences, 70(2), 688–707. https://doi.org/10.1175/JAS-D-12-0111.1
- Hitchcock, P., Shepherd, T. G., & Manney, G. L. (2013). Statistical characterization of Arctic polar-night jet oscillation events. Journal of Climate, 26(6), 2096–2116. https://doi.org/10.1175/JCLI-D-12-00202.1
- Hitchcock, P., Shepherd, T. G., & McLandress, C. (2009). Past and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Atmosphere Model. Atmospheric Chemistry and Physics, 9(2), 483–495. https://doi.org/10.5194/acp-9-483-2009
- Hitchcock, P., & Simpson, I. R. (2014). The downward influence of stratospheric sudden warmings. Journal of the Atmospheric Sciences, 71(10), 3856–3876. https://doi.org/10.1175/JAS-D-14-0012.1
- Hu, D., & Guan, Z. (2018). Decadal relationship between the stratospheric arctic vortex and Pacific decadal oscillation. Journal of Climate, 31(9), 3371–3386. https://doi.org/10.1175/JCLI-D-17-0266.1
- Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., & Tian, W. (2021). Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Communications Earth & Environment, 2(1), 1–11. https://doi.org/10.1038/s43247-021-00215-6
10.1038/s43247-021-00215-6 Google Scholar
- Huang, J., Hitchcock, P., Tian, W., & Sillin, J. (2022). Stratospheric influence on the development of the 2018 late winter European cold air outbreak. Journal of Geophysical Research: Atmospheres, 127(5), e2021JD035877. https://doi.org/10.1029/2021JD035877
- Ivy, D. J., Solomon, S., Calvo, N., & Thompson, D. W. J. (2017). Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environmental Research Letters, 12(2), 024004. https://doi.org/10.1088/1748-9326/aa57a4
- Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., & Schneidereit, A. (2017). Predictability of downward propagation of major sudden stratospheric warmings. Quarterly Journal of the Royal Meteorological Society, 143(704), 1459–1470. https://doi.org/10.1002/qj.3017
- Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., & Vitart, F. (2018). Predicting sudden stratospheric warming 2018 and its climate impacts with a Multimodel Ensemble. Geophysical Research Letters, 45(24), 13538–13546. https://doi.org/10.1029/2018GL081091
- Kautz, L.-A., Polichtchouk, I., Birner, T., Garny, H., & Pinto, J. G. (2020). Enhanced extended-range predictability of the 2018 late-winter Eurasian cold spell due to the stratosphere. Quarterly Journal of the Royal Meteorological Society, 146(727), 1040–1055. https://doi.org/10.1002/qj.3724
- Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., & Gray, L. J. (2015). Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 8(6), 433–440. https://doi.org/10.1038/ngeo2424
- Kim, J., Son, S.-W., Gerber, E. P., & Park, H.-S. (2017). Defining sudden stratospheric warming in climate models: Accounting for biases in model climatologies. Journal of Climate, 30(14), 5529–5546. https://doi.org/10.1175/JCLI-D-16-0465.1
- Kolstad, E. W., Breiteig, T., & Scaife, A. A. (2010). The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quarterly Journal of the Royal Meteorological Society, 136(649), 886–893. https://doi.org/10.1002/qj.620
- Kretschmer, M., Coumou, D., Agel, L., Barlow, M., Tziperman, E., & Cohen, J. (2018). More-persistent weak stratospheric polar vortex states linked to cold extremes. Bulletin of the American Meteorological Society, 99(1), 49–60. https://doi.org/10.1175/BAMS-D-16-0259.1
- Kuroda, Y. (2008). Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate. Journal of Geophysical Research, 113(D15). https://doi.org/10.1029/2007JD009550
- Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A., Lee, S. H., & Nash, E. R. (2020). The Remarkably strong arctic stratospheric polar vortex of winter 2020: Links to record-breaking arctic oscillation and ozone loss. Journal of Geophysical Research: Atmospheres, 125(22), e2020JD033271. https://doi.org/10.1029/2020JD033271
- Liang, Z., Rao, J., Guo, D., & Lu, Q. (2022). Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Climate Dynamics, 59(11), 3741–3761. https://doi.org/10.1007/s00382-022-06293-2
- Limpasuvan, V., Hartmann, D. L., Thompson, D. W. J., Jeev, K., & Yung, Y. L. (2005). Stratosphere-troposphere evolution during polar vortex intensification. Journal of Geophysical Research, 110(D24). https://doi.org/10.1029/2005JD006302
- Manney, G. L., & Lawrence, Z. D. (2016). The major stratospheric final warming in 2016: Dispersal of vortex air and termination of Arctic chemical ozone loss. Atmospheric Chemistry and Physics, 16(23), 15371–15396. https://doi.org/10.5194/acp-16-15371-2016
- Manney, G. L., Lawrence, Z. D., Santee, M. L., Read, W. G., Livesey, N. J., Lambert, A., et al. (2015). A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. Geophysical Research Letters, 42(18), 7808–7816. https://doi.org/10.1002/2015GL065864
- Manney, G. L., Livesey, N. J., Santee, M. L., Froidevaux, L., Lambert, A., Lawrence, Z. D., et al. (2020). Record-low arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophysical Research Letters, 47(16), e2020GL089063. https://doi.org/10.1029/2020GL089063
- Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., et al. (2009). Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophysical Research Letters, 36(12). https://doi.org/10.1029/2009GL038586
- Martineau, P., & Son, S.-W. (2010). Quality of reanalysis data during stratospheric vortex weakening and intensification events. Geophysical Research Letters, 37(22). https://doi.org/10.1029/2010GL045237
10.1029/2010GL045237 Google Scholar
- Matsuno, T. (1971). A dynamical model of the stratospheric sudden warming. Journal of the Atmospheric Sciences, 28(8), 1479–1494. https://doi.org/10.1175/1520-0469(1971)028<1479:admots>2.0.co;2
- Matthewman, N. J., Esler, J. G., Charlton-Perez, A. J., & Polvani, L. M. (2009). A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. Journal of Climate, 22(6), 1566–1585. https://doi.org/10.1175/2008JCLI2365.1
- Mitchell, D. M., Charlton-Perez, A. J., & Gray, L. J. (2011). Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. Journal of the Atmospheric Sciences, 68(6), 1194–1213. https://doi.org/10.1175/2010JAS3555.1
- Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin, M. P., & Charlton-Perez, A. J. (2012). The influence of stratospheric vortex displacements and splits on surface climate. Journal of Climate, 26(8), 2668–2682. https://doi.org/10.1175/JCLI-D-12-00030.1
- Mudryk, L. R., & Kushner, P. J. (2011). A method to diagnose sources of annular mode time scales. Journal of Geophysical Research, 116(D14), D14114. https://doi.org/10.1029/2010JD015291
10.1029/2010JD015291 Google Scholar
- Palmeiro, F. M., Barriopedro, D., García-Herrera, R., & Calvo, N. (2015). Comparing sudden stratospheric warming definitions in reanalysis data. Journal of Climate, 28(17), 6823–6840. https://doi.org/10.1175/JCLI-D-15-0004.1
- Pawson, S., & Naujokat, B. (1999). The cold winters of the middle 1990s in the northern lower stratosphere. Journal of Geophysical Research, 104(D12), 14209–14222. https://doi.org/10.1029/1999JD900211
- Quiroz, R. S. (1975). The stratospheric evolution of sudden warmings in 1969–74 determined from measured infrared radiation fields. Journal of the Atmospheric Sciences, 32(1), 211–224. https://doi.org/10.1175/1520-0469(1975)032<0211:tseosw>2.0.co;2
- Rao, J., & Garfinkel, C. I. (2020). Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases. Journal of Geophysical Research: Atmospheres, 125(21), e2020JD033524. https://doi.org/10.1029/2020JD033524
- Rao, J., & Garfinkel, C. I. (2021a). CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environmental Research Letters, 16(3), 034024. https://doi.org/10.1088/1748-9326/abd4fe
- Rao, J., & Garfinkel, C. I. (2021b). The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: Implications for empirical prediction of the low arctic total ozone extreme. Journal of Geophysical Research: Atmospheres, 126(9), e2020JD034190. https://doi.org/10.1029/2020JD034190
- Rao, J., Garfinkel, C. I., & White, I. P. (2020). Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. Journal of Geophysical Research: Atmospheres, 125(2), e2019JD031919. https://doi.org/10.1029/2019JD031919
- Rao, J., Garfinkel, C. I., Wu, T., Lu, Y., & Chu, M. (2022). Mean state of the northern hemisphere stratospheric polar vortex in three generations of CMIP models. Journal of Climate, 35(14), 4603–4625. https://doi.org/10.1175/JCLI-D-21-0694.1
- Rao, J., Ren, R., & Yang, Y. (2015). Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Advances in Atmospheric Sciences, 32(7), 952–966. https://doi.org/10.1007/s00376-014-4192-2
- Rex, M., Salawitch, R. J., Deckelmann, H., Von der Gathen, P., Harris, N. R. P., Chipperfield, M. P., et al. (2006). Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophysical Research Letters, 33(23). https://doi.org/10.1029/2006GL026731
- Rex, M., Salawitch, R. J., Von der Gathen, P., Harris, N. R. P., Chipperfield, M. P., & Naujokat, B. (2004). Arctic ozone loss and climate change. Geophysical Research Letters, 31(4). https://doi.org/10.1029/2003GL018844
- Scherhag, R. (1952). Die explosions artigen Stratosphärenerwärmungen des Spätwinter 1951/1952 (The explosive warmings in the stratosphere of the late winter 1951/1952). Ber. Dtsch. Wetterdienstes U.S. Zone, 38, 51–63.
- Schoeberl, M. R. (1978). Stratospheric warmings: Observations and theory. Reviews of Geophysics, 16(4), 521–538. https://doi.org/10.1029/RG016i004p00521
- Schoeberl, M. R., & Hartmann, D. L. (1991). The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251(4989), 46–52. https://doi.org/10.1126/science.251.4989.46
- Seviour, W. J. M., Mitchell, D. M., & Gray, L. J. (2013). A practical method to identify displaced and split stratospheric polar vortex events. Geophysical Research Letters, 40(19), 5268–5273. https://doi.org/10.1002/grl.50927
- Sigmond, M., Scinocca, J. F., Kharin, V. V., & Shepherd, T. G. (2013). Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geoscience, 6(2), 98–102. https://doi.org/10.1038/ngeo1698
- Silverman, B. W. (2017). Density estimation for statistics and data analysis. Routledge. https://doi.org/10.1201/9781315140919
- Smith, K. L., & Polvani, L. M. (2014). The surface impacts of Arctic stratospheric ozone anomalies. Environmental Research Letters, 9(7), 074015. https://doi.org/10.1088/1748-9326/9/7/074015
- Thompson, D. W. J., Baldwin, M. P., & Wallace, J. M. (2002). Stratospheric connection to northern hemisphere wintertime weather: Implications for prediction. Journal of Climate, 15(12), 1421–1428. https://doi.org/10.1175/1520-0442(2002)015<1421:sctnhw>2.0.co;2
- Tian, W., Huang, J., Zhang, J., Xie, F., Wang, W., & Peng, Y. (2023). Role of stratospheric processes in climate change: Advances and challenges. Advances in Atmospheric Sciences, 40(8), 1379–1400. https://doi.org/10.1007/s00376-023-2341-1
- Tripathi, O. P., Charlton-Perez, A., Sigmond, M., & Vitart, F. (2015). Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, 10(10), 104007. https://doi.org/10.1088/1748-9326/10/10/104007
- Waugh, D. W., & Randel, W. J. (1999). Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. Journal of the Atmospheric Sciences, 56(11), 1594–1613. https://doi.org/10.1175/1520-0469(1999)056<1594:coaaap>2.0.co;2
- Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., & Huang, J. (2016). Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Climate Change, 6(12), 1094–1099. https://doi.org/10.1038/nclimate3136
- Zhang, J., Tian, W., Xie, F., Li, Y., Wang, F., Huang, J., & Tian, H. (2015). Influence of the El Niño southern oscillation on the total ozone column and clear-sky ultraviolet radiation over China. Atmospheric Environment, 120, 205–216. https://doi.org/10.1016/j.atmosenv.2015.08.080
- Zhang, R., Tian, W., Zhang, J., Huang, J., Xie, F., & Xu, M. (2019). The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies. Journal of Climate, 32(6), 1857–1873. https://doi.org/10.1175/JCLI-D-18-0574.1