Loop Current Eddies as a Possible Cause of the Rapid Sea Level Rise in the Gulf of Mexico
Corresponding Author
Gabriel Thirion
LEGOS (CNES/CNRS/IRD/UT3), Université de Toulouse, Toulouse, France
Correspondence to:
G. Thirion,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorFlorence Birol
LEGOS (CNES/CNRS/IRD/UT3), Université de Toulouse, Toulouse, France
Contribution: Conceptualization, Methodology, Validation, Supervision
Search for more papers by this authorJulien Jouanno
LEGOS (CNES/CNRS/IRD/UT3), Université de Toulouse, Toulouse, France
Contribution: Conceptualization, Methodology, Validation
Search for more papers by this authorCorresponding Author
Gabriel Thirion
LEGOS (CNES/CNRS/IRD/UT3), Université de Toulouse, Toulouse, France
Correspondence to:
G. Thirion,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorFlorence Birol
LEGOS (CNES/CNRS/IRD/UT3), Université de Toulouse, Toulouse, France
Contribution: Conceptualization, Methodology, Validation, Supervision
Search for more papers by this authorJulien Jouanno
LEGOS (CNES/CNRS/IRD/UT3), Université de Toulouse, Toulouse, France
Contribution: Conceptualization, Methodology, Validation
Search for more papers by this authorAbstract
The Gulf of Mexico (GOM), with its densely populated coastline, is one of the world's most vulnerable regions to climate change and sea level (SL) rise. Over the last three decades, various works have been conducted to assess coastal SL trends around the basin using tide gauge stations, separately from studies dealing with regional dynamical processes. Using altimetry, Argo, and eddy atlas products over the period from January 1993 to December 2020, we have analyzed the regional SL variations in the area to define their characteristics and explore their possible dynamical causes. We observe a mean GIA-corrected SL rise rate of 4.81 ± 0.85 mm yr−1, which is 25% higher than that of the adjacent Caribbean Sea and 44% higher than that of the global ocean. This result highlights the singular SL evolution in the GOM over the 28-year study period. Over 2010–2020, the SL trend in the GOM has even accelerated, along with a strong warming of the upper-layer (0.58 ± 0.17°C), which explains ∼60% of the SL rise rate through the thermosteric effect. Finally, the heat input estimates emphasize the role of the Loop Current eddies as a major contributor to the recent acceleration of SL rise due to upper-layer warming.
Key Points
-
Sea level rise (SLR) trend in the Gulf of Mexico is 44% higher than the global mean sea level trend over the period 1993–2020
-
This trend has accelerated since ∼2010, along with a deep upper-layer warming that explains more than half of the SLR through steric effects
-
Loop Current eddies may be responsible for this acceleration
Plain Language Summary
While it is generally accepted that global SL is rising as a result of climate change, the rate of rise varies depending on the ocean area being studied. Using devices called tide gauges, researchers have shown that the SL has risen sharply along the densely populated coasts of the GOM. However, little research has been done on the causes of this phenomenon throughout the basin. Oceanographers know that SL variations depend on several parameters such as heat input. Indeed, the warmer the water, the more its volume increases, leading to a rise in SL. Using satellite data, we show that the surface waters of the Gulf have warmed since the early 2010s, and that SL rise there is faster than in the adjacent Caribbean where no such warming has occurred. This difference may be related to the large warm-water eddies generated by the Loop Current. Indeed, the larger the eddies, the more heat they carry with them. Yet, our results show that the size of these eddies has increased in recent years and that they could be a major contributor to the surface water warming and ultimately to the SL rise in the area.
Open Research
Data Availability Statement
The data sets used in this study are available in these in-text data citation references: Copernicus Marine Service (2023a, 2023b, 2023c), Kolodziejczyk et al. (2021), and SSALTO/DUACS (2022). They can be accessed online freely, following those links: https://doi.org/10.48670/moi-00148 (for CMEMS sea surface heights), https://doi.org/10.48670/moi-00237 (for TOPEX/Poseidon instrumental drift), https://doi.org/10.48670/moi-00052 (for CMEMS T&S), https://doi.org/10.17882/52367 (for ISAS), https://sio-argo.ucsd.edu/RG_Climatology.html (for Roemmich-Gilson Argo climatology), and https://doi.org/10.24400/527896/a01-2022.005 (for META3.2 DT ALLSAT).
References
- Ablain, M. (2017). The TOPEX-A drift and impacts on GMSL time series. Retrieved from https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_OSTST17_GMSL_Drift_TOPEX-A.pdf
- Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., et al. (2019). Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth System Science Data, 11(3), 1189–1202. https://doi.org/10.5194/essd–11–1189-2019
- Athié, G., Sheinbaum, J., Leben, R., Ochoa, J., Shannon, M. R., & Candela, J. (2015). Interannual variability in the Yucatan Channel flow. Geophysical Research Letters, 42(5), 1496–1503. https://doi.org/10.1002/2014GL062674
- Badan, A., Candela, J., Sheinbaum, J., & Ochoa, J. (2005). Upper-layer circulation in the approaches to Yucatan Channel. In W. Sturges & A. Lugo-Fernandez (Eds.), Circulation in the Gulf of Mexico: Observations and models, Geophysical Monograph Series (Vol. 161, pp. 57–69). American Geophysical Union.
10.1029/161GM05 Google Scholar
- Barnoud, A., Pfeffer, J., Guérou, A., Frery, M.-L., Siméon, M., Cazenave, A., et al. (2021). Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016. Geophysical Research Letters, 48(14), e2021GL092824. https://doi.org/10.1029/2021GL092824
- Becker, M., Karpytchev, M., & Papa, F. (2018). Hotspots of relative sea level rise in the tropics. In Tropical extremes: Natural variability and trends (pp. 203–251). Elsevier. https://doi.org/10.1016/B978-0–12-809248-4.00007-8
- Beckley, B. D., Callahan, P. S., Hancock, D. W., Mitchum, G. T., & Ray, R. D. (2017). On the “cal-mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. Journal of Geophysical Research: Oceans, 122(11), 8371–8384. https://doi.org/10.1002/2017JC013090
- Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2(7), 488–491. https://doi.org/10.1038/ngeo553
- Boon, J. D., & Mitchell, M. (2015). Nonlinear change in sea level observed at North American tide stations. Journal of Coastal Research, 31(6), 1295–1305. https://doi.org/10.2112/JCOASTRES-D–15-00041.1
- Brokaw, R. J., Subrahmanyam, B., Trott, C. B., & Chaigneau, A. (2020). Eddy surface characteristics and vertical structure in the Gulf of Mexico from satellite observations and model simulations. Journal of Geophysical Research: Oceans, 125(2), e2019JC015538. https://doi.org/10.1029/2019JC015538
- Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., et al. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116. https://doi.org/10.1038/nclimate2100
- Carnero-Bravo, V., Sanchez-Cabeza, J.-A., Ruiz-Fernández, A. C., Merino-Ibarra, M., Hillaire-Marcel, C., Corcho-Alvarado, J. A., et al. (2016). Sedimentary records of recent sea level rise and acceleration in the Yucatan Peninsula. Science of the Total Environment, 573, 1063–1069. https://doi.org/10.1016/j.scitotenv.2016.08.142
- Cazenave, A., & Moreira, L. (2022). Contemporary sea-level changes from global to local scales: A review. Proceedings of the Royal Society, A, 478(2261), 20220049. https://doi.org/10.1098/rspa.2022.0049
10.1098/rspa.2022.0049 Google Scholar
- Copernicus Marine Service. (2023a). Global ocean gridded L4 sea surface heights and derived variables reprocessed 1993 ongoing [Dataset]. E.U. Copernicus Marine Service Information/Copernicus Climate Service. https://doi.org/10.48670/moi-00148
10.48670/moi?00148 Google Scholar
- Copernicus Marine Service. (2023b). Global ocean mean sea level time series and trend from observations reprocessing [Dataset]. E.U. Copernicus Marine Service Information/Copernicus Climate Service. https://doi.org/10.48670/moi-00237
10.48670/moi?00237 Google Scholar
- Copernicus Marine Service. (2023c). Multi observation global ocean 3D temperature salinity height geostrophic current and MLD [Dataset]. E.U. Copernicus Marine Service Information/Copernicus Climate Service. https://doi.org/10.48670/moi-00052
10.48670/moi?00052 Google Scholar
- DiMarco, S. F., Nowlin, W. D., Jr., & Reid, O. R. (2005). A statistical description of the velocity field from upper ocean drifters in the Gulf of Mexico. In W. Sturges & A. Lugo-Fernandez (Eds.), Circulation in the Gulf of Mexico: Observations and models, Geophysical Monograph Series (Vol. 161, pp. 101–110). American Geophysical Union.
10.1029/161GM08 Google Scholar
- Donoghue, J. F. (2011). Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change, 107(1–2), 17–33. https://doi.org/10.1007/s10584-011-0077-x
- Durand, F., Piecuch, C., Becker, M., Papa, F., Raju, S., Khan, J., & Ponte, R. (2019). Impact of continental freshwater runoff on coastal sea level. Surveys in Geophysics, 40(6), 1437–1466. https://doi.org/10.1007/s10712-019-09536-w
- Gaillard, F., Reynaud, T., Thierry, V., Kolodziejczyk, N., & von Schuckmann, K. (2016). In-situ based reanalysis of the global ocean temperature and salinity with ISAS: Variability of the heat content and steric height. Journal of Climate, 29(4), 1305–1323. https://doi.org/10.1175/JCLI-D–15-0028.1
- Germineaud, C., Volkov, D. L., Cravatte, S., & Llovel, W. (2023). Forcing mechanisms of the interannual sea level variability in the midlatitude South Pacific during 2004–2020. Remote Sensing, 15(2), 352. https://doi.org/10.3390/rs15020352
- Greatbatch, R. J. (1994). A note on the representation of steric sea level in models that conserve volume rather than mass. Journal of Geophysical Research, 99(C6), 12767–12771. https://doi.org/10.1029/94JC00847
- Gregory, J. M., Griffies, S. M., Hughes, C., Lowe, J., Church, J. A., Fukimori, I., et al. (2019). Concepts and terminology for sea level: Mean, variability and change, both local and global. Surveys in Geophysics, 40(6), 1251–1289. https://doi.org/10.1007/s10712-019-09525-z
- Guinehut, S., Dhomps, A.-L., Larnicol, G., & Le Traon, P.-Y. (2012). High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5), 845–857. https://doi.org/10.5194/os-8-845-2012
- Hamilton, P., Leben, R., Bower, A., Furey, H., & Pérez-Brunius, P. (2018). Hydrography of the Gulf of Mexico using autonomous floats. Journal of Physical Oceanography, 48(4), 773–794. https://doi.org/10.1175/JPO-D–17-0205.1
- Hamilton, P., & Lee, T. N. (2005). Eddies and jets over the slope of the northeast Gulf of Mexico. In W. Sturges & A. Lugo-Fernandez (Eds.), Circulation in the Gulf of Mexico: Observations and models, Geophysical Monograph Series (Vol. 161, pp. 123–142). American Geophysical Union.
10.1029/161GM010 Google Scholar
- Hamilton, P., Lugo-Fernández, A., & Sheinbaum, J. (2016). A Loop Current experiment: Field and remote measurements. Dynamics of Atmospheres and Oceans, 76(2), 156–173. https://doi.org/10.1016/j.dynatmoce.2016.01.005
- Hamlington, B. D., Chambers, D. P., Frederikse, T., Dangendorf, S., Fournier, S., Buzzanga, B., & Nerem, R. S. (2022). Observation-based trajectory of future sea level for the coastal United States tracks near high-end model projections. Communications Earth & Environment, 3(1), 230. https://doi.org/10.1038/s43247-022-00537-z
- Hasson, A., Delcroix, T., Boutin, J., Dussin, R., & Ballabrera-Poy, J. (2014). Analyzing the 2010–2011 La Niña signature in the tropical Pacific sea surface salinity using in situ data, SMOS observations, and a numerical simulation. Journal of Geophysical Research: Oceans, 119(6), 3855–3867. https://doi.org/10.1002/2013JC009388
- Hernandez, O., Boutin, J., Kolodziejczyk, N., Reverdin, G., Martin, N., Gaillard, F., et al. (2014). SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity. Journal of Geophysical Research: Oceans, 119(12), 8878–8896. https://doi.org/10.1002/2013JC009610
- Herring, H. J. (2010). Gulf of Mexico hydrographic climatology and method of synthesizing subsurface profiles from the satellite sea surface height anomaly (Report 122). Dynalysis of Princeton.
- Ibrahim, D. I., & Sun, Y. (2020). Mechanism study of the 2010–2016 rapid rise of the Caribbean Sea level. Global and Planetary Change, 191, 103219. https://doi.org/10.1016/j.gloplacha.2020.103219
- IOC. (2010). The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Manuals and Guides No. 56. Intergovernmental Oceanographic Commission, UNESCO. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000188170
- Kennedy, A. J., Griffin, M. L., Morey, S. L., Smith, S. R., & O’Brien, J. J. (2007). Effects of El Niño–Southern Oscillation on sea level anomalies along the Gulf of Mexico coast. Journal of Geophysical Research, 112(C5), C05047. https://doi.org/10.1029/2006JC003904
- Kolodziejczyk, N., Llovel, W., & Portela, E. (2019). Interannual variability of upper ocean water masses as inferred from Argo array. Journal of Geophysical Research: Oceans, 124(8), 6067–6085. https://doi.org/10.1029/2018JC014866
- Kolodziejczyk, N., Prigent-Mazella, A., & Gaillard, F. (2021). ISAS temperature and salinity gridded fields (version ISAS20) [Dataset]. SEANOE. https://doi.org/10.17882/52367
10.17882/52367 Google Scholar
- Le Cozannet, G., Lawrence, J., Schoeman, D. S., Adelekan, I., Cooley, S. R., Glavovic, B., et al. (2022). Cross-Chapter Box SLR|Sea Level Rise. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, et al. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 477–480). Cambridge University Press. https://doi.org/10.1017/9781009325844.005
- Lellouche, J.-M., Greiner, E., Bourdallé-Badie, R., Garric, G., Melet, A., Drévillon, M., et al. (2021). The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Frontiers in Earth Science, 9, 698876. https://doi.org/10.3389/feart.2021.698876
- Letetrel, C. (2010). Mouvements verticaux à la surface de la Terre par altimétrie radar embarquée sur satellite, marégraphie, et GPS. Un exemple d’application: le Golfe du Mexique (Doctoral dissertation). La Rochelle University. Retrieved from https://theses.hal.science/tel-00555566
- Letetrel, C., Karpytchev, M., Bouin, M.-N., Marcos, M., Santamaría-Gómez, A., & Wöppelmann, G. (2015). Estimation of vertical land movement rates along the coasts of the Gulf of Mexico over the past decades. Continental Shelf Research, 111, 42–51. https://doi.org/10.1016/j.csr.2015.10.018
- Liu, Y., Lee, S.-K., Enfield, D. B., Muhling, B. A., Lamkin, J. T., Muller-Karger, F. E., & Roffer, M. A. (2015). Potential impact of climate change on the Intra-Americas Sea: Part–1. A dynamic downscaling of the CMIP5 model projections. Journal of Marine Systems, 148, 56–69. https://doi.org/10.1016/j.jmarsys.2015.01.007
- Liu, Y., Lee, S.-K., Muhling, B. A., Lamkin, J. T., & Enfield, D. B. (2012). Significant reduction of the Loop Current in the 21st century and its impact on the Gulf of Mexico. Journal of Geophysical Research, 117(C5), C05039. https://doi.org/10.1029/2011JC007555
- Liu, Y., Li, J., Fasullo, J., & Galloway, D. L. (2020). Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Scientific Reports, 10(1), 17905. https://doi.org/10.1038/s41598-020-74696-4
- Llovel, W., Kolodziejczyk, N., Close, S., Penduff, T., Molines, J.-M., & Terray, L. (2022). Imprint of intrinsic ocean variability on decadal trends of regional sea level and ocean heat content using synthetic profiles. Environmental Research Letters, 17(4), 044063. https://doi.org/10.1088/1748-9326/ac5f93
- Llovel, W., Purkey, S., Meyssignac, B., Blazquez, A., Kolodziejczyk, N., & Bamber, J. (2019). Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015. Scientific Reports, 9(1), 17717. https://doi.org/10.1038/s41598-019-54239-2
- Marsooli, R., Lin, N., Emanuel, K., & Feng, K. (2019). Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nature Communications, 10(1), 3785. https://doi.org/10.1038/s41467-019–11755-z
- Mason, E., Pascual, A., & McWilliams, J. C. (2014). A new sea surface height–based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5), 1181–1188. https://doi.org/10.1175/JTECH-D–14-00019.1
- Meunier, T., Pérez-Brunius, P., & Bower, A. (2022). Reconstructing the three-dimensional structure of Loop Current rings from satellite altimetry and in situ data using the gravest empirical modes method. Remote Sensing, 14(17), 4174. https://doi.org/10.3390/rs14174174
- Meunier, T., Sheinbaum, J., Pallàs-Sanz, E., Tenreiro, M., Ochoa, J., Ruiz-Angulo, A., et al. (2020). Heat content anomaly and decay of warm-core rings: The case of the Gulf of Mexico. Geophysical Research Letters, 47(3), e2019GL085600. https://doi.org/10.1029/2019GL085600
- Miller, P. W., & Trepanier, J. C. (2021). Predicting the Gulf of Mexico hurricane season with 500-hPa temperature. Geophysical Research Letters, 48(17), e2021GL094741. https://doi.org/10.1029/2021GL094741
- Oey, L.-Y., Ezer, T., & Lee, H.-C. (2005). Loop Current, rings and related circulation in the Gulf of Mexico: A review of numerical models and future challenges. In W. Sturges & A. Lugo-Fernandez (Eds.), Circulation in the Gulf of Mexico: Observations and models, Geophysical Monograph Series (Vol. 161, pp. 31–56). American Geophysical Union.
10.1029/161GM04 Google Scholar
- Palanisamy, H., Becker, M., Meyssignac, B., Henry, O., & Cazenave, A. (2012). Regional sea level change and variability in the Caribbean Sea since 1950. Journal of Geodetic Science, 2(2), 125–133. https://doi.org/10.2478/v10156-011-0029-4
- Park, J., & Sweet, W. (2015). Accelerated sea level rise and Florida Current transport. Ocean Science, 11(4), 607–615. https://doi.org/10.5194/os–11-607-2015
- Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., & Dibarboure, G. (2022). META3.1exp: A new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 14(3), 1087–1107. https://doi.org/10.5194/essd–14–1087-2022
- Peltier, W. R. (2004). Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE. Annual Review of Earth and Planetary Sciences, 32(1), 111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359
- Penland, S., & Ramsey, K. E. (1990). Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research, 6(2), 323–342.
- Piecuch, C. G., Bittermann, K., Kemp, A. C., Lentz, S. J., Little, C. M., & Engelhart, S. E. (2018). River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proceedings of the National Academy of Sciences, 115(30), 7729–7734. https://doi.org/10.1073/pnas.1805428115
- Portela, E., Tenreiro, M., Pallàs-Sanz, E., Meunier, T., Ruiz-Angulo, A., Sosa-Gutiérrez, R., & Cusí, S. (2018). Hydrography of the central and western Gulf of Mexico. Journal of Geophysical Research: Oceans, 123(8), 5134–5149. https://doi.org/10.1029/2018JC013813
- Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., & Benveniste, J. (2021). Local sea level trends, accelerations and uncertainties over 1993–2019. Scientific Data, 8(1), 1. https://doi.org/10.1038/s41597-020-00786-7
- Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., & Picot, N. (2016). DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12(5), 1067–1090. https://doi.org/10.5194/os–12–1067-2016
- Rivas, D., Badan, A., & Ochoa, J. (2005). The Ventilation of the deep Gulf of Mexico. Journal of Physical Oceanography, 35(10), 1763–1781. https://doi.org/10.1175/JPO2786.1
- Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J., et al. (2019). On the future of Argo: A global, full-depth, multi-disciplinary array. Frontiers in Marine Science, 6, 439. https://doi.org/10.3389/fmars.2019.00439
- Roemmich, D., & Gilson, L. (2009). The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82(2), 81–100. https://doi.org/10.1016/j.pocean.2009.03.004
- Sheinbaum, J., Candela, J., Badan, A., & Ochoa, J. (2002). Flow structure and transport in the Yucatan Channel. Geophysical Research Letters, 29(3). 10-1–10-4. https://doi.org/10.1029/2001GL013990
- Sosa-Gutiérrez, R., Pallàs-Sanz, E., Jouanno, J., Chaigneau, A., Candela, J., & Tenreiro, M. (2020). Erosion of the subsurface salinity maximum of the Loop Current eddies from glider observations and a numerical model. Journal of Geophysical Research: Oceans, 125(7), e2019JC015397. https://doi.org/10.1029/2019JC015397
10.1029/2019JC015397 Google Scholar
- SSALTO/DUACS. (2022). Mesoscale eddy trajectories atlas (META3.2 DT) ALLSAT [Dataset]. AVISO+. https://doi.org/10.24400/527896/a01-2022.005
10.24400/527896/a01?2022.005 Google Scholar
- Steinberg, J. M., Piecuch, C. G., Hamlington, B. D., Thompson, P. R., & Coats, S. (2023). Influence of deep-ocean warming on coastal sea-level trends in the Gulf of Mexico. ESS Open Archive. https://doi.org/10.22541/essoar.167591128.80195286/v1
10.22541/essoar.167591128.80195286/v1 Google Scholar
- Varela, R., Costoya, X., Enriquez, C., Santos, F., & Gómez-Gesteira, M. (2018). Differences in coastal and oceanic SST trends north of Yucatan Peninsula. Journal of Marine Systems, 182, 46–55. https://doi.org/10.1016/j.jmarsys.2018.03.006
- Volkov, D. L., Lee, S., Domingues, R., Zhang, H., & Goes, M. (2019). Interannual sea level variability along the southeastern seaboard of the United States in relation to the gyre-scale heat divergence in the North Atlantic. Geophysical Research Letters, 46(13), 7481–7490. https://doi.org/10.1029/2019gl083596
- Wahl, T., Calafat, F. M., & Luther, M. E. (2014). Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century. Geophysical Research Letters, 41(2), 491–498. https://doi.org/10.1002/2013GL058777
- Wang, C., & Lee, S.-K. (2007). Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophysical Research Letters, 34(2), L02703. https://doi.org/10.1029/2006GL028579
- Wang, H., Han, K., Bao, S., Chen, W., & Ren, K. (2022). Comparative analysis between sea surface salinity derived from SMOS satellite retrievals and in situ measurements. Remote Sensing, 14(21), 5465. https://doi.org/10.3390/rs14215465
- Wang, Z., Boyer, T., Reagan, J., & Hogan, P. (2023). Upper oceanic warming in the Gulf of Mexico between 1950 and 2020. Journal of Climate, 36(8), 2721–2734. [pre-published]. https://doi.org/10.1175/JCLI-D-22-0409.1
- Watson, P. J. (2020). Status of mean sea level rise around the USA (2020). GeoHazards, 2(2), 80–100. https://doi.org/10.3390/geohazards2020005
10.3390/geohazards2020005 Google Scholar
- Wilson, S. G., & Fischetti, T. R. (2010). Coastline population trends in the United States: 1960 to 2008. Current Population Reports. US Census Bureau. Retrieved from https://www.census.gov/content/dam/Census/library/publications/2010/demo/p25–1139.pdf
- Yang, H., Lohmann, G., Wei, W., Dima, M., Ionita, M., & Liu, J. (2016). Intensification and poleward shift of subtropical western boundary currents in a warming climate. Journal of Geophysical Research: Oceans, 121(7), 4928–4945. https://doi.org/10.1002/2015JC011513
- Yang, Z., Wang, T., Leung, R., Hibbard, K., Janetos, T., Kraucunas, I., et al. (2013). A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico. Natural Hazards, 71(3), 1771–1794. https://doi.org/10.1175/2009MWR2906.1
- Zhu, C., & Liu, Z. (2020). Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nature Climate Change, 10(11), 998–1003. https://doi.org/10.1038/s41558-020-0897-7