The Conrad Rise Revisited: Eocene to Miocene Volcanism and Its Implications for Magma Sources and Tectonic Development
Corresponding Author
H. Sato
School of Business Administration, Senshu University, Kawasaki, Japan
Correspondence to:
H. Sato,
Contribution: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition
Search for more papers by this authorS. Machida
Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Japan
Contribution: Methodology, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing
Search for more papers by this authorC. M. Meyzen
Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorO. Ishizuka
Geological Survey of Japan, AIST, Tsukuba, Japan
Contribution: Methodology, Formal analysis, Investigation, Resources, Writing - review & editing
Search for more papers by this authorR. Senda
Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
Contribution: Methodology, Formal analysis, Investigation, Resources
Search for more papers by this authorM. Bizimis
School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA
Contribution: Methodology, Formal analysis, Investigation, Resources, Writing - review & editing
Search for more papers by this authorK. Ashida
Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Japan
Contribution: Formal analysis, Investigation, Resources
Search for more papers by this authorK. Mikuni
Geological Survey of Japan, AIST, Tsukuba, Japan
Graduate School of Science, Tohoku University, Sendai, Japan
Contribution: Methodology, Writing - original draft
Search for more papers by this authorT. Sato
Geological Survey of Japan, AIST, Tsukuba, Japan
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorM. Fujii
National Institute of Polar Research, Tachikawa, Japan
Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorY. Nogi
National Institute of Polar Research, Tachikawa, Japan
Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing, Supervision
Search for more papers by this authorY. Kato
Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Japan
Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Japan
Contribution: Resources
Search for more papers by this authorCorresponding Author
H. Sato
School of Business Administration, Senshu University, Kawasaki, Japan
Correspondence to:
H. Sato,
Contribution: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition
Search for more papers by this authorS. Machida
Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Japan
Contribution: Methodology, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing
Search for more papers by this authorC. M. Meyzen
Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorO. Ishizuka
Geological Survey of Japan, AIST, Tsukuba, Japan
Contribution: Methodology, Formal analysis, Investigation, Resources, Writing - review & editing
Search for more papers by this authorR. Senda
Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
Contribution: Methodology, Formal analysis, Investigation, Resources
Search for more papers by this authorM. Bizimis
School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA
Contribution: Methodology, Formal analysis, Investigation, Resources, Writing - review & editing
Search for more papers by this authorK. Ashida
Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Japan
Contribution: Formal analysis, Investigation, Resources
Search for more papers by this authorK. Mikuni
Geological Survey of Japan, AIST, Tsukuba, Japan
Graduate School of Science, Tohoku University, Sendai, Japan
Contribution: Methodology, Writing - original draft
Search for more papers by this authorT. Sato
Geological Survey of Japan, AIST, Tsukuba, Japan
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorM. Fujii
National Institute of Polar Research, Tachikawa, Japan
Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorY. Nogi
National Institute of Polar Research, Tachikawa, Japan
Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing, Supervision
Search for more papers by this authorY. Kato
Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Japan
Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Japan
Contribution: Resources
Search for more papers by this authorAbstract
The Conrad Rise (CR), located midway between Antarctica and the Southwest Indian Ridge (SWIR), remains one of the least explored submarine large igneous provinces (LIPs) in the Indian Ocean to date. Relying on only seafloor paleomagnetic records, early studies hypothesized that the formation of the CR occurred during the Late Cretaceous. Here, we present new geochemical and geochronological data, including Sr‒Nd‒Pb‒Hf isotopes and 40Ar/39Ar data. Our results indicate that the uppermost part of the CR (Ob and Lena seamounts) unexpectedly formed later than previously predicted, at approximately 40 Ma in an intraplate setting. Another small seamount north of the Ob seamount formed later, at 8.5 Ma. The isotopic composition of lava from the small seamount north of the Ob seamount overlaps with that commonly defined by the Indian plume component. Overall, the isotopic variations defined by the volcanic suite from the CR could be accounted for by a three-component mixing model involving the common component, lower continental crust, and depleted mantle endmembers. The newly obtained 40Ar/39Ar ages imply that the CR volcanism might have been triggered by major regional plate reorganizations during the middle to late Eocene and the late Miocene, inducing the release of a small upwelling rising from the African large low-velocity province.
Key Points
-
This is the first report of geochronological lava data from the Conrad Rise, an aseismic ridge in the southwestern Indian Ocean
-
Contrary to previous hypotheses, late volcanism at the Conrad Rise occurred in the middle to late Eocene and the late Miocene
-
The isotopic features of the Conrad Rise result from a mixture of common Indian Ocean plume components and lower continental crust
Plain Language Summary
The Conrad Rise is a large oceanic volcanic plateau in the Indian Ocean. Previous studies have provided only vague estimates of when it formed because very few direct studies of the area have been performed, and no geochronological studies have been conducted. This study presents new geochemical data for the Conrad Rise, including isotopes and radiometric ages. The results suggest that the uppermost part of the Conrad Rise formed approximately 40 million years ago and that the small seamount in the northern part of the Conrad Rise formed 8.5 million years ago in an intraplate setting. The Sr‒Nd‒Pb‒Hf isotopic signature of lavas from the Conrad Rise might be derived from a ternary mixture between the common mantle component present in other lavas from the Indian Ocean, lower continental crust remnants, and the depleted mantle. The new age data indicate that the late volcanic activity might have been triggered by the release of a small plume from the African superplume caused by regional plate reorganization.
Conflict of Interest
The authors declare no conflicts of interest relevant to this study.
Open Research
Data Availability Statement
The photomicrographs of samples and additional geochemical diagrams (Figures S1–S3 in Supporting Information S1) and tables for locations of sampling, descriptions of samples, and results of geochemical and geochronological analysis (Tables S1–S5) presented in the study are available at Sato et al. (2023), https://doi.org/10.6084/m9.figshare.24500962.
Supporting Information
Filename | Description |
---|---|
2023JB027380-sup-0001-Supporting Information SI-S01.pdf2.7 MB | Supporting Information S1 |
2023JB027380-sup-0002-Table SI-S01.xlsx10.1 KB | Table S1 |
2023JB027380-sup-0003-Table SI-S02.xlsx11.8 KB | Table S2 |
2023JB027380-sup-0004-Table SI-S03.xlsx30 KB | Table S3 |
2023JB027380-sup-0005-Table SI-S04.xlsx29.4 KB | Table S4 |
2023JB027380-sup-0006-Table SI-S05.xlsx20.8 KB | Table S5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Albarède, F., Luais, B., Fitton, G., Semet, M., Kaminski, E., Upton, B. G. J., et al. (1997). The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. Journal of Petrology, 38(2), 171–201. https://doi.org/10.1093/petroj/38.2.171
- Alt, J. C., France-Lanord, C., Floyd, P. A., Castillo, P. R., & Galy, A. (1992). Low-temperature hydrothermal alteration of Jurassic Ocean Crust, site 801. Proceedings of the Ocean Drilling Program Scientific Results, 129, 415–427. https://doi.org/10.2973/odp.proc.sr.129.132.1992
- Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. In NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M
- Anderson, D. L., Tanimoto, T., & Zhang, Y. S. (1992). Plate tectonics and hotspots: The third dimension. Science, 256(5064), 1645–1651. https://doi.org/10.1126/science.256.5064.1645
- Aries, S., Valladon, M., Polvé, M., & Dupré, B. (2000). A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples. Geostandards Newsletter, 24(1), 19–31. https://doi.org/10.1111/j.1751-908X.2000.tb00583.x
- Baker, J., Peate, D., Waight, T., & Meyzen, C. (2004). Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology, 211(3–4), 275–303. https://doi.org/10.1016/j.chemgeo.2004.06.030
- Bardintzeff, J. M., Liégeois, J. P., Bonin, B., Bellon, H., & Rasamimanana, G. (2010). Madagascar volcanic provinces linked to the Gondwana break-up: Geochemical and isotopic evidences for contrasting mantle sources. Gondwana Research, 18(2–3), 295–314. https://doi.org/10.1016/j.gr.2009.11.010
- Béguelin, P., Bizimis, M., McIntosh, E. C., Cousens, B., & Clague, D. A. (2019). Sources vs processes: Unraveling the compositional heterogeneity of rejuvenated-type Hawaiian magmas. Earth and Planetary Science Letters, 514, 119–129. https://doi.org/10.1016/j.epsl.2019.03.011
- Borisova, A. Y., Belyatsky, B. V., Portnyagin, M. V., & Sushchevskaya, N. M. (2001). Petrogenesis of olivine-phyric basalts from the Aphanasey Nikitin Rise: Evidence for contamination by cratonic lower continental crust. Journal of Petrology, 42(2), 277–319. https://doi.org/10.1093/petrology/42.2.277
- Borisova, A. Y., Nikulin, V. V., Belyatskii, B. V., Ovchinikova, G. V., Levskii, L. K., & Sushchevskaya, N. M. (1996). Late alkaline lavas of the Ob and Lena seamounts (Conrad Rise, Indian Ocean): Rock chemistry and characteristics of mantle sources. Geokhimiya, 34(6), 559–574.
- Bosch, D., Blichert-Toft, J., Moynier, F., Nelson, B. K., Telouk, P., Gillot, P. Y., & Albarède, F. (2008). Pb, Hf and Nd isotope compositions of the two Réunion volcanoes (Indian Ocean): A tale of two small-scale mantle “blobs”. Earth and Planetary Science Letters, 265(3), 748–765. https://doi.org/10.1016/j.epsl.2007.11.018
- Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
- Boyet, M., Doucelance, R., Israel, C., Bonnand, P., Auclair, D., Suchorski, K., & Bosq, C. (2019). New constraints on the origin of the EM-1 component revealed by the measurement of the La-Ce isotope systematics in Gough Island Lavas. Geochemistry, Geophysics, Geosystems, 20(5), 2484–2498. https://doi.org/10.1029/2019GC008228
- Breton, T., Nauret, F., Pichat, S., Moine, B., Moreira, M., Rose-Koga, E. F., et al. (2013). Geochemical heterogeneities within the Crozet hotspot. Earth and Planetary Science Letters, 376, 126–136. https://doi.org/10.1016/j.epsl.2013.06.020
- Bruland, K. W., & Lohan, M. C. (2003). Controls of trace metals in seawater. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry (pp. 23–47). Elsevier.
10.1016/B0-08-043751-6/06105-3 Google Scholar
- Bull, J. M., DeMets, C., Krishna, K. S., Sanderson, D. J., & Merkouriev, S. (2010). Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean. Geology, 38(4), 307–310. https://doi.org/10.1130/G30521.1
- Cande, S. C., & Patriat, P. (2015). The anticorrelated velocities of Africa and India in the Late Cretaceous and Early Cenozoic. Geophysical Journal International, 200(1), 227–243. https://doi.org/10.1093/gji/ggu392
- Cande, S. C., & Stegman, D. R. (2011). Indian and African plate motions driven by the push force of the Réunion plume head. Nature, 475(7354), 47–52. https://doi.org/10.1038/nature10174
- Cantagrel, J., Lameyre, J., & Nougier, J. (1980). Volcanologie et géochronologie d’une île volcanique, île de l’Est (archipel de Crozet, océan indien austral) (Vol. 1, p. 27). International Geological Congress, 26th.
- Cao, X., Zahirovic, S., Li, S., Suo, Y., Wang, P., Liu, J., & Müller, R. D. (2022). A deforming plate tectonic model of the South China block since the Jurassic. Gondwana Research, 102, 3–16. https://doi.org/10.1016/j.gr.2020.11.010
- Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T., & Marini, J. C. (2008). Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience, 1(1), 64–67. https://doi.org/10.1038/ngeo.2007.51
- Chen, J. H., Wasserburg, G. J., Von Damm, K. L., & Edmond, J. M. (1986). The U-Th-Pb systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin. Geochimica et Cosmochimica Acta, 50(11), 2467–2479. https://doi.org/10.1016/0016-7037(86)90030-X
- Chester, R. (1990). Marine geochemistry. Springer Dordrecht. https://doi.org/10.1007/978-94-010-9488-7
10.1007/978-94-010-9488-7 Google Scholar
- Chevallier, L., Nougier, J., & Cantagrel, J. M. (1983). Volcanology of possession Island, Crozet Archipelago. In R. Oliver, P. James, & J. Jago (Eds.), Antarctic Earth sciences, proceeding of the 4th symposium (pp. 652–658). Cambridge University Press.
- Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., et al. (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3–4), 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001
- Coffin, M. F., & Eldholm, O. (1994). Large Igneous Provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1), 1–36. https://doi.org/10.1029/93RG02508
- Coffin, M. F., Pringle, M. S., Duncan, R. A., Gladczenko, T. P., Storey, M., Müller, R. D., & Gahagan, L. A. (2002). Kerguelen hotspot magma output since 130 Ma. Journal of Petrology, 43(7), 1120–1140. https://doi.org/10.1093/petrology/43.7.1121
- Cohen, R. S., O’Nions, R. K., & Dawson, J. B. (1984). Isotope geochemistry of xenoliths from East Africa: Implications for development of mantle reservoirs and their interaction. Earth and Planetary Science Letters, 68(2), 209–220. https://doi.org/10.1016/0012-821X(84)90153-5
- Cucciniello, C., Melluso, L., le Roex, A. P., Jourdan, F., Morra, V., de’ Gennaro, R., & Grifa, C. (2017). From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution. Lithos, 274–275, 363–382. https://doi.org/10.1016/j.lithos.2016.12.026
- DeMets, C., Merkouriev, S., & Jade, S. (2020). High-resolution reconstructions and GPS estimates of India-Eurasia and India-Somalia plate motions: 20 Ma to the present. Geophysical Journal International, 220(2), 1149–1171. https://doi.org/10.1093/gji/ggz508
- Desa, M. A., Ramprasad, T., & Raju, K. A. K. (2019). An integrated geophysical study east of the Southern Chagos Laccadive Ridge complex, Central Indian Ocean Basin: Implications for the Rodriguez triple junction dynamics in the Late Cretaceous. Marine Geology, 414, 47–63. https://doi.org/10.1016/j.margeo.2019.05.007
- Diament, M., & Goslin, J. (1986). Emplacement of the Marion Dufresne, Lena and Ob seamounts (South Indian Ocean) from a study of isostasy. Tectonophysics, 121(2), 253–262. https://doi.org/10.1016/0040-1951(86)90046-6
- Ding, L., Kapp, P., Cai, F., Garzione, C. N., Xiong, Z., Wang, H., & Wang, C. (2022). Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10), 652–667. https://doi.org/10.1038/s43017-022-00318-4
- Donnelly, T. W., Thompson, G., & Salisbury, M. H. (1980). The Chemistry of altered basalts at site 417, Deep sea drilling project leg 51. DSDP, LII(Part D) (pp. 1319–1330). https://doi.org/10.2973/dsdp.proc.515253.154.1980
10.2973/dsdp.proc.515253.154.1980 Google Scholar
- Doucet, S., Scoates, J. S., Weis, D., & Giret, A. (2005). Constraining the components of the Kerguelen mantle plume: A Hf-Pb-Sr-Nd isotopic study of picrites and high-MgO basalts from the Kerguelen Archipelago. Geochemistry, Geophysics, Geosystems, 6(4), Q04007. https://doi.org/10.1029/2004GC000806
- Duncan, R. A. (1990). The volcanic record of the Réunion hotspot. Proceedings of the Ocean Drilling Program Scientific Results, 115, 3–10. https://doi.org/10.2973/odp.proc.sr.115.206.1990
10.2973/odp.proc.sr.115.206.1990 Google Scholar
- Duncan, R. A. (2002). A time frame for construction of the Kerguelen Plateau and Broken Ridge. Journal of Petrology, 43(7), 1109–1119. https://doi.org/10.1093/petrology/43.7.1109
- Dyment, J. (1998). Evolution of the Carlsberg Ridge between 60 and 45 Ma: Ridge propagation, spreading asymmetry, and the Deccan-Reunion hotspot. Journal of Geophysical Research, 103(B10), 24067–24084. https://doi.org/10.1029/98JB01759
- Elkins, L. J., Meyzen, C. M., Callegaro, S., Marzoli, A., & Bizimis, M. (2020). Assessing origins of end-Triassic tholeiites from eastern North America using hafnium isotopes. Geochemistry, Geophysics, Geosystems, 21(6), 1–7. https://doi.org/10.1029/2020GC008999
- Ernst, R. E., Bond, D. P. G., Zhang, S. H., Buchan, K. L., Grasby, S. E., Youbi, N., et al. (2021). Large Igneous Province record through time and implications for secular environmental changes and geological time-scale boundaries. In R. E. Ernst, A. J. Dickson, & A. Bekker (Eds.), Large igneous provinces: A driver of global environmental and biotic changes (pp. 1–26). Wiley. https://doi.org/10.1002/9781119507444.ch1
10.1002/9781119507444.ch1 Google Scholar
- Escrig, S., Capmas, F., Dupré, B., & Allègre, C. J. (2004). Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431(7004), 59–63. https://doi.org/10.1038/nature02904
- Falloon, T. J., Hoernle, K., Schaefer, B. F., Bindeman, I. N., Hart, S. R., Garbe-Schonberg, D., & Duncan, R. A. (2022). Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the nature of recycled components in non-plume intraplate settings. Geosciences, 12(3), 118. https://doi.org/10.3390/geosciences12030118
- Fleck, R. J., Sutter, J. F., & Elliot, D. H. (1977). Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta, 41(1), 15–32. https://doi.org/10.1016/0016-7037(77)90184-3
- Fraser, K. J., Hawkesworth, C. J., Erlank, A. J., Mitchell, R. H., & Scott-Smith, B. H. (1985). Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth and Planetary Science Letters, 76(1), 57–70. https://doi.org/10.1016/0012-821X(85)90148-7
- Frey, F. A., Weis, D., Yang, H. J., Nicolaysen, K., Leyrit, H., & Giret, A. (2000). Temporal geochemical trends in Kerguelen Archipelago basalts: Evidence for decreasing magma supply from the Kerguelen plume. Chemical Geology, 164(1), 61–80. https://doi.org/10.1016/S0009-2541(99)00144-8
- Gibbons, A. D., Whittaker, J. M., & Müller, R. D. (2013). The breakup of East Gondwana: Assimilating constraints from Cretaceous Ocean basins around India into a best-fit tectonic model. Journal of Geophysical Research: Solid Earth, 118(3), 808–822. https://doi.org/10.1002/jgrb.50079
- Goslin, J., & Patriat, P. (1984). Absolute and relative plate motions and hypotheses on the origin of five aseismic ridges in the Indian Ocean. Tectonophysics, 101(3), 221–244. https://doi.org/10.1016/0040-1951(84)90115-X
- Graham, D. W., Johnson, K. T. M., Priebe, L. D., & Lupton, J. E. (1999). Hotspot–ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul islands: Helium isotope evidence. Earth and Planetary Science Letters, 167(3), 297–310. https://doi.org/10.1016/S0012-821X(99)00030-8
- Hanan, B. B., Blichert-Toft, J., Pyle, D. G., & Christie, D. M. (2004). Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature, 432(7013), 91–94. https://doi.org/10.1038/nature03026
- Hanan, B. B., & Graham, D. W. (1996). Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272(5264), 991–995. https://doi.org/10.1126/science.272.5264.991
- Hart, S. R. (1969). K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth and Planetary Science Letters, 6(4), 295–303. https://doi.org/10.1016/0012-821X(69)90171-X
- Hart, S. R. (1984). A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971), 753–757. https://doi.org/10.1038/309753a0
- Hart, S. R., Hauri, E. H., Oschmann, L. A., & Whitehead, J. A. (1992). Mantle plumes and entrainment: Isotopic evidence. Science, 256(5056), 517–520. https://doi.org/10.1126/science.256.5056.517
- Hieronymus, C. F., & Bercovici, D. (2001). A theoretical model of hotspot volcanism: Control on volcanic spacing and patterns via magma dynamics and lithospheric stresses. Journal of Geophysical Research, 106(B1), 683–702. https://doi.org/10.1029/2000JB900355
- Hilde, T. W. C., Isezaki, N., & Wageman, J. M. (1976). Mesozoic sea-floor spreading in the North Pacific. In G. H. Sutton, M. H. Manghnani, & R. Moberly (Eds.), The geophysics of the Pacific Ocean Basin and its margin. Geophysical monograph 19 (pp. 205–226). American Geophysical Union.
10.1029/GM019p0205 Google Scholar
- Hoernle, K., Hauff, F., Werner, R., Van Den Bogaard, P., Gibbons, A. D., Conrad, S., & Müller, R. D. (2011). Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nature Geoscience, 4(12), 883–887. https://doi.org/10.1038/ngeo1331
- Homrighausen, S., Hoernle, K., Wartho, J. A., Hauff, F., & Werner, R. (2021). Do the 85°E Ridge and Conrad Rise form a hotspot track crossing the Indian Ocean? Lithos, 398–399, 106234. https://doi.org/10.1016/j.lithos.2021.106234
- Ingle, S., & Coffin, M. F. (2004). Impact origin for the greater Ontong Java Plateau? Earth and Planetary Science Letters, 218(1), 123–134. https://doi.org/10.1016/S0012-821X(03)00629-0
- Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. https://doi.org/10.1139/e71-055
- Ishizuka, O., Hickey-Vargas, R., Arculus, R. J., Yogodzinski, G. M., Savov, I. P., Kusano, Y., et al. (2018). Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 481, 80–90. https://doi.org/10.1016/j.epsl.2017.10.023
- Ishizuka, O., Tani, K., Taylor, R. N., Umino, S., Sakamoto, I., Yokoyama, Y., et al. (2022). Origin and age of magmatism in the northern Philippine Sea Basins. Geochemistry, Geophysics, Geosystems, 23(4). https://doi.org/10.1029/2021GC010242
- Ishizuka, O., Taylor, R. N., Milton, J. A., & Nesbitt, R. W. (2003). Fluid-mantle interaction in an intra-oceanic arc: Constraints from high-precision Pb isotopes. Earth and Planetary Science Letters, 211(3–4), 221–236. https://doi.org/10.1016/S0012-821X(03)00201-2
- Ishizuka, O., Yuasa, M., Taylor, R. N., & Sakamoto, I. (2009). Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chemical Geology, 266(3), 274–296. https://doi.org/10.1016/j.chemgeo.2009.06.014
- Janin, M., Hémond, C., Guillou, H., Maia, M., Johnson, K. T. M., Bollinger, C., et al. (2011). Hot spot activity and tectonic settings near Amsterdam–St. Paul plateau (Indian Ocean). Journal of Geophysical Research, 116(B5), B05206. https://doi.org/10.1029/2010JB007800
10.1029/2010JB007800 Google Scholar
- Janin, M., Hémond, C., Maia, M., Nonnotte, P., Ponzevera, E., & Johnson, K. T. M. (2012). The Amsterdam–St. Paul Plateau: A complex hot spot/DUPAL-flavored MORB interaction. Geochemistry, Geophysics, Geosystems, 13(9), Q09016. https://doi.org/10.1029/2012GC004165
- Janney, P. E., Le Roex, A. P., & Carlson, R. W. (2005). Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13°E to 47°E). Journal of Petrology, 46(12), 2427–2464. https://doi.org/10.1093/petrology/egi060
- Kamenetsky, V. S., Maas, R., Sushchevskaya, N. M., Norman, M. D., Cartwright, I., & Peyve, A. A. (2001). Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 29(3), 243–246. https://doi.org/10.1130/0091-7613(2001)029<0243:ROGCLI>2.0.CO;2
- Kapp, P., & DeCelles, P. G. (2019). Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319(3), 159–254. https://doi.org/10.2475/03.2019.01
- Kempton, P. D., & Hunter, A. G. (1997). A Sr-Nd-Pb-O-isotope study of plutonic rocks from MARK, Leg 153: Implications for mantle heterogeneity and magma chamber processes. Proceedings of the Ocean Drilling Program Scientific Results, 153, 305–319. https://doi.org/10.2973/odp.proc.sr.153.020.1997
- Kempton, P. D., & Stephens, C. J. (1997). Petrology and geochemistry of nodular websterite inclusions in harzburgite, Hole 920D. Proceedings of the Ocean Drilling Program Scientific Results, 153, 321–331. https://doi.org/10.2973/odp.proc.sr.153.022.1997
- Krishna, K. S., Bull, J. M., & Scrutton, R. A. (2001). Evidence for multiphase folding of the central Indian Ocean lithosphere. Geology, 29(8), 715–718. https://doi.org/10.1130/0091-7613(2001)029<0715:EFMFOT>2.0.CO;2
- Krishna, K. S., Bull, J. M., & Scrutton, R. A. (2009). Early (pre-8 Ma) fault activity and temporal strain accumulation in the central India Ocean. Geology, 37(3), 227–230. https://doi.org/10.1130/G25265A.1
- Lameyre, J., Marot, A., Zimine, S., Cantagrel, J. M., Dosso, L., & Vidal, P. (1976). Chronological evolution of the Kerguelen Islands syenite–granite ring complex. Nature, 263(5575), 306–307. https://doi.org/10.1038/263306a0
- Lee, T.-Y., & Lawver, L. A. (1995). Cenozoic plate reconstruction of southeast Asia. Tectonophysics, 251(1–4), 85–138. https://doi.org/10.1016/0040-1951(95)00023-2
- Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous rocks: A classification and glossary of terms. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581
10.1017/CBO9780511535581 Google Scholar
- Le Roex, A. P., Chevallier, L., Verwoerd, W. J., & Barends, R. (2012). Petrology and geochemistry of Marion and Prince Edward Islands, Southern Ocean: Magma chamber processes and source region characteristics. Journal of Volcanology and Geothermal Research, 223–224, 11–28. https://doi.org/10.1016/j.jvolgeores.2012.01.009
- Le Roex, A. P., Dick, H. J. B., & Fisher, R. L. (1989). Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: Evidence for contrasting styles of mantle enrichment. Journal of Petrology, 30(4), 947–986. https://doi.org/10.1093/petrology/30.4.947
- Machida, S., Hirano, N., & Kimura, J. I. (2009). Evidence for recycled plate material in Pacific upper mantle unrelated to plumes. Geochimica et Cosmochimica Acta, 73(10), 3028–3037. https://doi.org/10.1016/j.gca.2009.01.026
- Machida, S., Hirano, N., Sumino, H., Hirata, T., Yoneda, S., & Kato, Y. (2015). Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere. Earth and Planetary Science Letters, 426, 267–279. https://doi.org/10.1016/j.epsl.2015.06.018
- Machida, S., Ishii, T., Kimura, J. I., Awaji, S., & Kato, Y. (2008). Petrology and geochemistry of cross-chains in the Izu-Bonin back arc: Three mantle components with contributions of hydrous liquids from a deeply subducted slab. Geochemistry, Geophysics, Geosystems, 9(5), Q05002. https://doi.org/10.1029/2007GC001641
- Mahoney, J., Le Roex, A. P., Peng, Z., Fisher, R. L., & Natland, J. H. (1992). Southwestern limits of Indian Ocean Ridge Mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: Isotope systematics of the central Southwest Indian Ridge (17°–50°E). Journal of Geophysical Research, 97(B13), 19771–19790. https://doi.org/10.1029/92JB01424
- Mahoney, J. J., Frei, R., Tejada, M. L. G., Mo, X. X., Leat, P. T., & Nägler, T. F. (1998). Tracing the Indian Ocean mantle domain through time: Isotopic results from old West Indian, east Tethyan, and South Pacific seafloor. Journal of Petrology, 39(7), 1285–1306. https://doi.org/10.1093/petroj/39.7.1285
- Mahoney, J. J., Jones, W. B., Frey, F. A., Salters, V. J. M., Pyle, D. G., & Davies, H. L. (1995). Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous Plateau volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3), 315–345. https://doi.org/10.1016/0009-2541(94)00144-W
- Mahoney, J. J., White, W. M., Upton, B. G. J., Neal, C. R., & Scrutton, R. A. (1996). Beyond EM-1: Lavas from Afanasy-Nikitin Rise and the Crozet Archipelago, Indian Ocean. Geology, 24(7), 615–618. https://doi.org/10.1130/0091-7613(1996)024<0615:BELFAN>2.3.CO;2
- Martin, A. K., & Hartnady, C. J. H. (1986). Plate tectonic development of the Southwest Indian Ocean: A revised reconstruction of East Antarctica and Africa. Journal of Geophysical Research, 91(B5), 4767–4786. https://doi.org/10.1029/JB091iB05p04767
- McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
- McDougall, I., & Chamalaun, F. H. (1969). Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. GSA Bulletin, 80, 1419–1442. https://doi.org/10.1130/0016-7606(1969)80[1419:IDAGPS]2.0.CO;2
- Mellor, S. H. (1998). The geochemistry and petrology of the Rodrigues Ridge (western Indian Ocean). PhD thesis. University of Greenwich.
- Meyzen, C. M., Blichert-Toft, J., Ludden, J. N., Humler, E., Mével, C., & Albarède, F. (2007). Isotopic portrayal of the Earth’s upper mantle flow field. Nature, 447(7148), 1069–1074. https://doi.org/10.1038/nature05920
- Meyzen, C. M., Ludden, J. N., Humler, E., Luais, B., Toplis, M. J., Mével, C., & Storey, M. (2005). New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 6(11), Q11K11. https://doi.org/10.1029/2005GC000979
10.1029/2005GC000979 Google Scholar
- Meyzen, C. M., Marzoli, A., Bellieni, G., & Levresse, G. (2016). Magmatic activity on a motionless plate: The case of East Island, Crozet Archipelago (Indian Ocean). Journal of Petrology, 57(7), 1409–1436. https://doi.org/10.1093/petrology/egw045
- Meyzen, C. M., & Schwarz-Schampera, U. (2023). The complex Indian triple junction migration since ∼8 Ma: A response to episodic Amsterdam-St Paul hotspot tail capture by the Southeast Indian Ridge. Geology, 51(9), 823–828. https://doi.org/10.1130/G51131.1
- Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11), Q11007. https://doi.org/10.1029/2006GC001248
- Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R., & Hung, S. H. (2004). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656), 338–343. https://doi.org/10.1126/science.1092485
- Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., et al. (2018). GPlates: Building a virtual Earth through deep time. Geochemistry, Geophysics, Geosystems, 19(7), 2243–2261. https://doi.org/10.1029/2018GC007584
- Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., et al. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018TC005462
- Müller, R. D., Royer, J. Y., & Lawver, L. A. (1993). Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology, 21(3), 275–278. https://doi.org/10.1130/0091-7613(1993)021<0275:RPMRTT>2.3.CO;2
- Neal, C. R., Mahoney, J. J., & Chazey, W. J. (2002). Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and broken ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7), 1177–1205. https://doi.org/10.1093/petrology/43.7.1177
- Nicolaysen, K. P., Frey, F. A., Mahoney, J. J., Johnson, K. T. M., & Graham, D. W. (2007). Influence of the Amsterdam/St. Paul hot spot along the Southeast Indian Ridge between 77° and 88°E: Correlations of Sr, Nd, Pb, and He isotopic variations with ridge segmentation. Geochemistry, Geophysics, Geosystems, 8(9), Q09007. https://doi.org/10.1029/2006GC001540
- Nogi, Y., Nishi, K., Seama, N., & Fukuda, Y. (2004). An interpretation of the seafloor spreading history of the West Enderby Basin between initial breakup of Gondwana and Anomaly C34. Marine Geophysical Researches, 25(3), 221–231. https://doi.org/10.1007/s11001-005-1317-0
- Nougier, J. (1972). Geochronology of the volcanic activity in Iles Kerguelen. In R. J. Adie (Ed.), Antarctic geology and geophysics (pp. 803–808). International Union of Geological Sciences.
- Ogg, J. G. (2020). Geomagnetic polarity time scale. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geologic time scale 2020 (pp. 159–192). Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00005-X
10.1016/B978-0-12-824360-2.00005-X Google Scholar
- Olierook, H. K. H., Jiang, Q., Jourdan, F., & Chiaradia, M. (2019). Greater Kerguelen large igneous province reveals no role for Kerguelen mantle plume in the continental breakup of eastern Gondwana. Earth and Planetary Science Letters, 511, 244–255. https://doi.org/10.1016/j.epsl.2019.01.037
- Olierook, H. K. H., Merle, R. E., & Jourdan, F. (2017). Toward a Greater Kerguelen large igneous province: Evolving mantle source contributions in and around the Indian Ocean. Lithos, 282–283, 163–172. https://doi.org/10.1016/j.lithos.2017.03.007
- O’Neill, C., Müller, D., & Steinberger, B. (2003). Geodynamic implications of moving Indian Ocean hotspots. Earth and Planetary Science Letters, 215(1), 151–168. https://doi.org/10.1016/S0012-821X(03)00368-6
- O'Neill, C., Müller, D., & Steinberger, B. (2005). On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochemistry, Geophysics, Geosystems, 6(4), Q04003. https://doi.org/10.1029/2004GC000784
- Patriat, P., & Achache, J. (1984). India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311(5987), 615–621. https://doi.org/10.1038/311615a0
- Patriat, P., Sauter, D., Munschy, M., & Parson, L. (1997). A survey of the Southwest Indian Ridge axis between Atlantis II fracture zone and the Indian Ocean triple junction: Regional setting and large scale segmentation. Marine Geophysical Researches, 19(6), 457–480. https://doi.org/10.1023/A:1004312623534
- Patriat, P., Segoufin, J., Goslin, J., & Beuzart, P. (1985). Relative positions of Africa and Antarctica in the Upper Cretaceous: Evidence for non-stationary behaviour of fracture zones. Earth and Planetary Science Letters, 75(2), 204–214. https://doi.org/10.1016/0012-821X(85)90102-5
- Ponthus, L., de Saint Blanquat, M., Guillaume, D., Le Romancer, M., Pearson, N., O’Reilly, S., & Grégoire, M. (2020). Plutonic processes in transitional oceanic plateau crust: Structure, age and emplacement of the South Rallier du Baty laccolith, Kerguelen Islands. Terra Nova, 32(6), 408–414. https://doi.org/10.1111/ter.12471
- Révillon, S., Teagle, D. A. H., Boulvais, P., Shafer, J., & Neal, C. R. (2007). Geochemical fluxes related to alteration of a subaerially exposed seamount: Nintoku seamount, ODP Leg 197, site 1205. Geochemistry, Geophysics, Geosystems, 8(2), Q02014. https://doi.org/10.1029/2006GC001400
- Richards, M. A., Duncan, R. A., & Courtillot, V. E. (1989). Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246(4926), 103–107. https://doi.org/10.1126/science.246.4926.103
- Rogers, G. C. (1982). Oceanic plateaus as meteorite impact signatures. Nature, 299(5881), 341–342. https://doi.org/10.1038/299341a0
- Royer, J. Y., & Coffin, M. F. (1992). Jurassic to Eocene plate tectonic reconstructions in the Kerguelen Plateau region. Proceedings of the Ocean Drilling Program Scientific Results, 120, 917–928. https://doi.org/10.2973/odp.proc.sr.120.200.1992
10.2973/odp.proc.sr.120.200.1992 Google Scholar
- Royer, J. Y., Patriat, P., Bergh, H. W., & Scotese, C. R. (1988). Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly 34) to the Middle Eocene (anomaly 20). Tectonophysics, 155(1), 235–260. https://doi.org/10.1016/0040-1951(88)90268-5
- Royer, J. Y., & Sandwell, D. T. (1989). Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry. Journal of Geophysical Research, 94(10), 13755–13782. https://doi.org/10.1029/JB094iB10p13755
- Royer, J. Y., Sclater, J. G., Sandwell, D. T., Cande, S. C., Schlich, R., Munschy, M., et al. (1992). Appendix 1: Indian Ocean plate reconstructions since the Late Jurassic. In R. A. Duncan, D. K. Rea, R. B. Kidd, U. Rad, & J. K. Weissel (Eds.), Synthesis of results from scientific drilling in the Indian Ocean. Geophysical monograph 70 (pp. 471–475). AGU. https://doi.org/10.1029/GM070p0471
10.1029/GM070p0471 Google Scholar
- Salters, V. J. M., & White, W. M. (1998). Hf isotope constraints on mantle evolution. Chemical Geology, 145(3), 447–460. https://doi.org/10.1016/S0009-2541(97)00154-X
- Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213
- Sato, H. (2010). Quantitative analyses with X-ray fluorescence analyzer of major elements for rock samples. Bulletin of the Institute of Natural Sciences, Senshu University, 41, 15–23.
- Sato, H., Machida, S., Meyzen, C. M., Ishizuka, O., Senda, R., Bizimis, M., et al. (2023). The Conrad Rise revisited: Eocene to Miocene volcanism, and its implications for magma sources and tectonic development [Dataset]. Figshare. https://doi.org/10.6084/m9.figshare.24500962
10.6084/m9.figshare.24500962 Google Scholar
- Schandl, E. S., Gorton, M. P., & Wicks, F. J. (1990). Mineralogy and geochemistry of alkali basalts from Maud Rise, Weddell Sea, Antarctica. Proceedings of Ocean Drilling Program Scientific Results, 113, 5–14. https://doi.org/10.2973/odp.proc.sr.113.184.1990
10.2973/odp.proc.sr.113.184.1990 Google Scholar
- Schlich, R. (1982). The Indian Ocean: Aseismic ridges, spreading centers, and oceanic basins. In A. E. M. Nairn, & F. G. Stehli (Eds.), The ocean basins and margins: The Indian Ocean (pp. 51–147). Springer.
- Ségoufin, J., Munschy, M., Bouysse, P., & Mendel, V. (2004). Map of the Indian Ocean, sheet 1: Physiography, sheet 2: Structural map, scale 1:20.000.00. Commission for the Geological Map of the World.
- Senda, R., Kimura, J. I., & Chang, Q. (2014). Evaluation of a rapid, effective sample digestion method for trace element analysis of granitoid samples containing acid-resistant minerals: Alkali fusion after acid digestion. Geochemical Journal, 48(1), 99–103. https://doi.org/10.2343/geochemj.2.0280
- Smart, K. A., Tappe, S., Ishikawa, A., Pfänder, J. A., & Stracke, A. (2019). K-rich hydrous mantle lithosphere beneath the Ontong Java Plateau: Significance for the genesis of oceanic basalts and Archean continents. Geochimica et Cosmochimica Acta, 248, 311–342. https://doi.org/10.1016/j.gca.2019.01.013
- Smellie, J. L., & Collerson, K. D. (2021). Gaussberg: Volcanology and petrology. In J. L. Smellie, K. S. Panter, & A. Geyer (Eds.), Volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up, Geological Society, Memoirs, 55 (pp. 615–628). Geological Society of London. https://doi.org/10.1144/M55-2018-85
- Snow, J. E., Hart, S. R., & Dick, H. J. B. (1994). Nd and Sr isotope evidence linking mid-ocean-ridge basalts and abyssal peridotites. Nature, 371(6492), 57–60. https://doi.org/10.1038/371057a0
- Stracke, A. (2012). Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330–331, 274–299. https://doi.org/10.1016/j.chemgeo.2012.08.007
- Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6(5), Q05007. https://doi.org/10.1029/2004GC000824
- Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders, & M. J. Norry (Eds.), Magmatism in the ocean basins, geological society special publication (pp. 313–345). Geological Society of London. https://doi.org/10.1144/GSL.SP.1989.042.01.19
10.1144/GSL.SP.1989.042.01.19 Google Scholar
- Tanimizu, M., & Ishikawa, T. (2006). Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochemical Journal, 40(2), 121–133. https://doi.org/10.2343/geochemj.40.121
- Tejada, M. L. G., Sano, T., Hanyu, T., Koppers, A. A. P., Nakanishi, M., Miyazaki, T., et al. (2023). New evidence for the Ontong Java Nui hypothesis. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-33724-9
- Torsvik, T. H., Steinberger, B., Shephard, G. E., Doubrovine, P. V., Gaina, C., Domeier, M., et al. (2019). Pacific-panthalassic reconstructions: Overview, errata and the way forward. Geochemistry, Geophysics, Geosystems, 20(7), 3659–3689. https://doi.org/10.1029/2019GC008402
- Tsekhmistrenko, M., Sigloch, K., Hosseini, K., & Barruol, G. (2021). A tree of Indo-African mantle plumes imaged by seismic tomography. Nature Geoscience, 14(8), 612–619. https://doi.org/10.1038/s41561-021-00762-9
- Uchiumi, S., & Shibata, K. (1980). Errors in K-Ar age determination. Bulletin of the Geological Survey of Japan, 31, 267–273.
- Wakaki, S., Shibata, S. N., & Tanaka, T. (2007). Isotope ratio measurements of trace Nd by the total evaporation normalization (TEN) method in thermal ionization mass spectrometry. International Journal of Mass Spectrometry, 264(2), 157–163. https://doi.org/10.1016/j.ijms.2007.04.006
- Weis, D., & Frey, F. A. (2002). Submarine basalts of the northern Kerguelen Plateau: Interaction between the Kerguelen plume and the Southeast Indian Ridge revealed at ODP site 1140. Journal of Petrology, 43(7), 1287–1309. https://doi.org/10.1093/petrology/43.7.1287
- Weis, D., Frey, F. A., Giret, A., & Cantagrel, J. M. (1998). Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguelen Archipelago: Inferences for magma flux, lithosphere assimilation and composition of the Kerguelen plume. Journal of Petrology, 39(5), 973–994. https://doi.org/10.1093/petroj/39.5.973
- Weis, D., Frey, F. A., Leyrit, H., & Gautier, I. (1993). Kerguelen Archipelago revisited: Geochemical and isotopic study of the Southeast Province lavas. Earth and Planetary Science Letters, 118(1), 101–119. https://doi.org/10.1016/0012-821X(93)90162-3
- Weis, D., Kieffer, B., Hanano, D., Silva, I. N., Barling, J., Pretorius, W., et al. (2007). Hf isotope compositions of U.S. geological survey reference materials. Geochemistry, Geophysics, Geosystems, 8(6), Q06006. https://doi.org/10.1029/2006GC001473
- Weis, D., Kieffer, B., Maerschalk, C., Barling, J., De Jong, J., Williams, G. A., et al. (2006). High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8), Q08006. https://doi.org/10.1029/2006GC001283
- Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., & Barling, J. (2005). High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochemistry, Geophysics, Geosystems, 6(2), Q02002. https://doi.org/10.1029/2004GC000852
- Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
- Wheat, C. G., Feely, R. A., & Mottl, M. J. (1996). Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans. Geochimica et Cosmochimica Acta, 60(19), 3593–3608. https://doi.org/10.1016/0016-7037(96)00189-5
- Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., Wessel, P., Williams, S. E., & Seton, M. (2015). Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6), 479–483. https://doi.org/10.1038/ngeo2437
- Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
- Yatheesh, V., Dyment, J., Bhattacharya, G. C., Royer, J. Y., Kamesh Raju, K. A., Ramprasad, T., et al. (2019). Detailed structure and plate reconstructions of the central Indian Ocean between 83.0 and 42.5 Ma (Chrons 34 and 20). Journal of Geophysical Research: Solid Earth, 124(5), 4305–4322. https://doi.org/10.1029/2018JB016812
- York, D. (1969). Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320–324. https://doi.org/10.1016/S0012-821X(68)80059-7
- Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S., & Müller, R. D. (2019). Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers, 10(3), 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011
References From the Supporting Information
- Frey, F. A., Coffin, M. F., Wallace, P. J., Weis, D., Zhao, X., Wise, S. W., et al. (2000). Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Science Letters, 176(1), 73–89. https://doi.org/10.1016/S0012-821X(99)00315-5
- Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7
- Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19