Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations
Corresponding Author
Benjamin Gaubert
Atmospheric Chemistry Observations & Modeling Laboratory (ACOM), NSF National Center for Atmospheric Research (NSF NCAR), Boulder, CO, USA
Correspondence to:
B. Gaubert,
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorBritton B. Stephens
Earth Observing Laboratory (EOL), NSF National Center for Atmospheric Research (NSF NCAR), Boulder, CO, USA
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorDavid F. Baker
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorSourish Basu
Global Modeling and Assimilation Office, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorMichael Bertolacci
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorKevin W. Bowman
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorRebecca Buchholz
Atmospheric Chemistry Observations & Modeling Laboratory (ACOM), NSF National Center for Atmospheric Research (NSF NCAR), Boulder, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorAbhishek Chatterjee
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation
Search for more papers by this authorFrédéric Chevallier
Laboratoire des Sciences du Climat et de L’Environnement, Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, CEDEX, France
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorRóisín Commane
Department of Earth & Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorNoel Cressie
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorFeng Deng
Department of Physics, University of Toronto, Toronto, ON, Canada
Contribution: Data curation
Search for more papers by this authorNicole Jacobs
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Visualization
Search for more papers by this authorMatthew S. Johnson
Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorShamil S. Maksyutov
National Institute for Environmental Studies, Tsukuba, Japan
Contribution: Data curation
Search for more papers by this authorKathryn McKain
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
NOAA Global Monitoring Laboratory, Boulder, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorJunjie Liu
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorZhiqiang Liu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Contribution: Data curation
Search for more papers by this authorEric Morgan
Scripps Institution of Oceanography, University of California, San Diego, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorChris O’Dell
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorSajeev Philip
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorEric Ray
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorDavid Schimel
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Writing - review & editing, Project administration, Funding acquisition
Search for more papers by this authorAndrew Schuh
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorThomas E. Taylor
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Writing - review & editing
Search for more papers by this authorBrad Weir
Universities Space Research Association, Columbia, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorDave van Wees
BeZero Carbon Ltd, Gorsuch Place, Senna Building, E2 8JF London, UK
Department of Earth Sciences, Vrije Universiteit, Amsterdam, 1081 HV The Netherlands
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorSteven C. Wofsy
School of Engineering and Applied Science and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorAndrew Zammit-Mangion
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
Contribution: Data curation
Search for more papers by this authorNing Zeng
Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Benjamin Gaubert
Atmospheric Chemistry Observations & Modeling Laboratory (ACOM), NSF National Center for Atmospheric Research (NSF NCAR), Boulder, CO, USA
Correspondence to:
B. Gaubert,
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorBritton B. Stephens
Earth Observing Laboratory (EOL), NSF National Center for Atmospheric Research (NSF NCAR), Boulder, CO, USA
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorDavid F. Baker
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorSourish Basu
Global Modeling and Assimilation Office, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorMichael Bertolacci
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorKevin W. Bowman
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorRebecca Buchholz
Atmospheric Chemistry Observations & Modeling Laboratory (ACOM), NSF National Center for Atmospheric Research (NSF NCAR), Boulder, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorAbhishek Chatterjee
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation
Search for more papers by this authorFrédéric Chevallier
Laboratoire des Sciences du Climat et de L’Environnement, Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, CEDEX, France
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorRóisín Commane
Department of Earth & Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorNoel Cressie
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorFeng Deng
Department of Physics, University of Toronto, Toronto, ON, Canada
Contribution: Data curation
Search for more papers by this authorNicole Jacobs
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Visualization
Search for more papers by this authorMatthew S. Johnson
Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorShamil S. Maksyutov
National Institute for Environmental Studies, Tsukuba, Japan
Contribution: Data curation
Search for more papers by this authorKathryn McKain
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
NOAA Global Monitoring Laboratory, Boulder, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorJunjie Liu
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorZhiqiang Liu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Contribution: Data curation
Search for more papers by this authorEric Morgan
Scripps Institution of Oceanography, University of California, San Diego, CA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorChris O’Dell
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorSajeev Philip
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorEric Ray
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorDavid Schimel
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Contribution: Writing - review & editing, Project administration, Funding acquisition
Search for more papers by this authorAndrew Schuh
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorThomas E. Taylor
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Contribution: Writing - review & editing
Search for more papers by this authorBrad Weir
Universities Space Research Association, Columbia, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorDave van Wees
BeZero Carbon Ltd, Gorsuch Place, Senna Building, E2 8JF London, UK
Department of Earth Sciences, Vrije Universiteit, Amsterdam, 1081 HV The Netherlands
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorSteven C. Wofsy
School of Engineering and Applied Science and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorAndrew Zammit-Mangion
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
Contribution: Data curation
Search for more papers by this authorNing Zeng
Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Contribution: Data curation, Writing - review & editing
Search for more papers by this authorAbstract
Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern tropical Africa (NTA), spanning 0–24°N, remains large. Satellite-based estimates of an annual source of 0.8–1.45 PgC yr−1 challenge our understanding of tropical and global carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic Ocean by the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints on tropical African CO2 fluxes using flux-concentration relationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1 (mean and standard deviation) for NTA, 2016–2018. The satellite-based flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.
Key Points
-
Emergent constraints derived from aircraft carbon dioxide (CO2) measurements and inversions estimate a near neutral northern tropical African CO2 budget
-
Inversions using satellite observations overestimate annual emissions from northern tropical Africa (NTA) by approximately 1 PgC yr−1
-
Satellite CO2 observations imply a strong sink during the wet season over NTA
Plain Language Summary
Satellite carbon dioxide (CO2) observations over land imply a major revision to our understanding of the global carbon cycle linked to large emissions from northern tropical Africa (NTA) during the dry season, from October to May. We use aircraft observations made over the Atlantic Ocean in four seasons to evaluate flux models driven by a range of ground and satellite observations. Our results show that models using satellite observations over land overestimate annual emissions from NTA by approximately 1 PgC yr−1, concentrated in the dry season. At other times of year, satellite CO2 observations provide improved estimates of NTA exchange, with a stronger CO2 uptake during the wet season.
Open Research
Data Availability Statement
The ATom data (Wofsy et al., 2021) is available as 10-s, NOAA PFP, and Medusa merge products. The OCO-2 v10 MIP model results are publicly available (Baker et al., 2023). The NOAA Greenhouse Gas Marine Boundary Layer Reference (Dlugokencky et al., 2019) is publicly available, last accessed 17 August 2023).
Supporting Information
Filename | Description |
---|---|
2023GB007804-sup-0001-Supporting Information SI-S01.pdf2.6 MB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Adams, A. M., Prospero, J. M., & Zhang, C. (2012). CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents. Journal of Climate, 25(19), 6862–6879. https://doi.org/10.1175/jcli-d-11-00672.1
- Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., et al. (2020). Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17(16), 4173–4222. https://doi.org/10.5194/bg-17-4173-2020
- Baker, D. F., Basu, S., Bertolacci, F., Chevallier, M., Cressie, N., Crowell, S., et al. (2023). v10 Orbiting Carbon Observatory-2 model intercomparison project. [dataset]. https://gml.noaa.gov/ccgg/OCO2_v10mip/
- Barkhordarian, A., Bowman, K. W., Cressie, N., Jewell, J., & Liu, J. (2021). Emergent constraints on tropical atmospheric aridity-carbon feedbacks and the future of carbon sequestration. Environmental Research Letters, 16(11), 114008. https://doi.org/10.1088/1748-9326/ac2ce8
- Barkley, A. E., Prospero, J. M., Mahowald, N., Hamilton, D. S., Popendorf, K. J., Oehlert, A. M., et al. (2019). African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16216–16221. https://doi.org/10.1073/pnas.1906091116
- Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., & Miller, J. B. (2018). The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2. Atmospheric Chemistry and Physics, 18(10), 7189–7215. https://doi.org/10.5194/acp-18-7189-2018
- Bennett, A. C., Dargie, G. C., Cuni-Sanchez, A., Mukendi, J. T., Hubau, W., Mukinzi, J. M., et al. (2021). Resistance of african tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences, 118(21), e2003169118. https://doi.org/10.1073/pnas.2003169118
- Bian, C., Xia, J., Zhang, X., Huang, K., Cui, E., Zhou, J., et al. (2023). Uncertainty and emergent constraints on enhanced ecosystem carbon stock by land greening. Journal of Advances in Modeling Earth Systems, 15(5). https://doi.org/10.1029/2022ms003397
- Boggs, P. T., & Rogers, J. E. (1990). Orthogonal distance regression. Contemporary Mathematics, 112, 183–194.
10.1090/conm/112/1087109 Google Scholar
- Bowman, K. P. (1993). Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. Journal of Geophysical Research, 98(D12), 23013–23027. https://doi.org/10.1029/93jd02599
- Bowman, K. P., & Carrie, G. D. (2002). The mean-meridional transport circulation of the troposphere in an idealized GCM. Journal of the Atmospheric Sciences, 59(9), 1502–1514. https://doi.org/10.1175/1520-0469(2002)059〈1502:tmmtco〉2.0.co;2
- Bowman, K. W., Cressie, N., Qu, X., & Hall, A. (2018). A hierarchical statistical framework for emergent constraints: Application to Snow-Albedo feedback. Geophysical Research Letters, 45(23). https://doi.org/10.1029/2018gl080082
- Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N. C., Lee, M., Jiang, Z., et al. (2017). Global and brazilian carbon response to el niño modoki 2011-2010. Earth and Space Science, 4(10), 637–660. https://doi.org/10.1002/2016EA000204
- Byrne, B., Baker, D. F., Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., et al. (2023). National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth System Science Data, 15(2), 963–1004. https://doi.org/10.5194/essd-15-963-2023
- Chevallier, F., Bréon, F.-M., & Rayner, P. J. (2007). Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. Journal of Geophysical Research, 112(D9). https://doi.org/10.1029/2006jd007375
- Ciais, P., Piao, S.-L., Cadule, P., Friedlingstein, P., & Chédin, A. (2009). Variability and recent trends in the African terrestrial carbon balance. Biogeosciences, 6(9), 1935–1948. https://doi.org/10.5194/bg-6-1935-2009
- Connor, B. J., Boesch, H., Toon, G., Sen, B., Miller, C., & Crisp, D. (2008). Orbiting Carbon Observatory: Inverse method and prospective error analysis. Journal of Geophysical Research, 113(D5). https://doi.org/10.1029/2006jd008336
- Cox, P. M. (2019). Emergent constraints on climate-carbon cycle feedbacks. Current Climate Change Reports, 5(4), 275–281. https://doi.org/10.1007/s40641-019-00141-y
- Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494(7437), 341–344. https://doi.org/10.1038/nature11882
- Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A., et al. (2022). How well do we understand the land-ocean-atmosphere carbon cycle? Reviews of Geophysics, 60(2). https://doi.org/10.1029/2021rg000736
- Crounse, J. D., DeCarlo, P. F., Blake, D. R., Emmons, L. K., Campos, T. L., Apel, E. C., et al. (2009). Biomass burning and urban air pollution over the central mexican plateau. Atmospheric Chemistry and Physics, 9(14), 4929–4944. https://doi.org/10.5194/acp-9-4929-2009
- Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., et al. (2019). The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics, 19(15), 9797–9831. https://doi.org/10.5194/acp-19-9797-2019
- Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361(6407), 1108–1111. https://doi.org/10.1126/science.aau3445
- Deeter, M. N., Francis, G., Gille, J., Mao, D., Martínez-Alonso, S., Worden, H., et al. (2022). The MOPITT Version 9 CO product: Sampling enhancements and validation. Atmospheric Measurement Techniques, 15(8), 2325–2344. https://doi.org/10.5194/amt-15-2325-2022
- Dlugokencky, E., Thoning, K. W., Lan, X., & Tans, P. P. (2019). NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA GML carbon cycle cooperative global air sampling network (Tech. Rep.). National oceanic and atmospheric administration. [Dataset]. https://gml.noaa.gov/ccgg/mbl/data.php
- Edwards, D. P., Emmons, L. K., Gille, J. C., Chu, A., Attié, J.-L., Giglio, L., et al. (2006). Satellite-observed pollution from Southern Hemisphere biomass burning. Journal of Geophysical Research, 111(D14). https://doi.org/10.1029/2005jd006655
- Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D. S., Gunson, M. R., Chatterjee, A., et al. (2017). The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358(6360), eaam5745. https://doi.org/10.1126/science.aam5745
- Evan, A. T., Heidinger, A. K., & Knippertz, P. (2006). Analysis of winter dust activity off the coast of west africa using a new 24-year over-water advanced very high resolution radiometer satellite dust climatology. Journal of Geophysical Research, 111(D12). https://doi.org/10.1029/2005jd006336
- Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., et al. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9(2), 102–110. https://doi.org/10.1038/s41558-018-0355-y
- Friedlingstein, P., Cadule, P., Piao, S. L., Ciais, P., & Sitch, S. (2010). The african contribution to the global climate-carbon cycle feedback of the 21st century. Biogeosciences, 7(2), 513–519. https://doi.org/10.5194/bg-7-513-2010
- Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., et al. (2006). Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19(14), 3337–3353. https://doi.org/10.1175/jcli3800.1
- Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. (2022). Global carbon budget. Earth System Science Data, 14(4), 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
- Gaubert, B., Emmons, L. K., Raeder, K., Tilmes, S., Miyazaki, K., Jr., Arellano, A. F., et al. (2020). Correcting model biases of CO in East Asia: Impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 20(23), 14617–14647. https://doi.org/10.5194/acp-20-14617-2020
- Gaubert, B., Stephens, B. B., Basu, S., Chevallier, F., Deng, F., Kort, E. A., et al. (2019). Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences, 16(1), 117–134. https://doi.org/10.5194/bg-16-117-2019
- Gonzalez, Y., Commane, R., Manninen, E., Daube, B. C., Schiferl, L. D., McManus, J. B., et al. (2021). Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 21(14), 11113–11132. https://doi.org/10.5194/acp-21-11113-2021
- Gurney, K., & Denning, A. (2008). TransCom 3: Annual mean CO2 flux estimates from atmospheric inversions (Level 1). ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/895
- Gurney, K., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., et al. (2002). Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872), 626–630. https://doi.org/10.1038/415626a
- Hall, A., Cox, P., Huntingford, C., & Klein, S. (2019). Progressing emergent constraints on future climate change. Nature Climate Change, 9(4), 269–278. https://doi.org/10.1038/s41558-019-0436-6
- Hong, C., Burney, J. A., Pongratz, J., Nabel, J. E. M. S., Mueller, N. D., Jackson, R. B., & Davis, S. J. (2021). Global and regional drivers of land-use emissions in 1961-2017. Nature, 589(7843), 554–561. https://doi.org/10.1038/s41586-020-03138-y
- Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F., et al. (2015). An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. Journal of Geophysical Research: Atmospheres, 120(10), 5253–5266. https://doi.org/10.1002/2014jd022962
- Ichoku, C., Ellison, L. T., Yue, Y., Wang, J., & Kaiser, J. W. (2016). Fire and smoke remote sensing and modeling uncertainties. In Natural hazard uncertainty assessment (pp. 215–230). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119028116.ch14
10.1002/9781119028116.ch14 Google Scholar
- Kaminski, T., Scholze, M., Vossbeck, M., Knorr, W., Buchwitz, M., & Reuter, M. (2017). Constraining a terrestrial biosphere model with remotely sensed atmospheric carbon dioxide. Remote Sensing of Environment, 203, 109–124. https://doi.org/10.1016/j.rse.2017.08.017
- Keenan, T. F., Luo, X., Stocker, B. D., Kauwe, M. G. D., Medlyn, B. E., Prentice, I. C., et al. (2023). A constraint on historic growth in global photosynthesis due to rising CO2. Nature Climate Change, 13(12), 1376–1381. https://doi.org/10.1038/s41558-023-01867-2
- Kiel, M., O’Dell, C. W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C. G., & Wennberg, P. O. (2019). How bias correction goes wrong: Measurement of affected by erroneous surface pressure estimates. Atmospheric Measurement Techniques, 12(4), 2241–2259. https://doi.org/10.5194/amt-12-2241-2019
- Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., et al. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006. https://doi.org/10.1038/nature07771
- Li, Q., Jacob, D. J., Yantosca, R. M., Heald, C. L., Singh, H. B., Koike, M., et al. (2003). A global three-dimensional model analysis of the atmospheric budgets of HCN and CH3CN: Constraints from aircraft and ground measurements. Journal of Geophysical Research, 108(D21). https://doi.org/10.1029/2002jd003075
- Li, W., Ciais, P., Peng, S., Yue, C., Wang, Y., Thurner, M., et al. (2017). Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 14(22), 5053–5067. https://doi.org/10.5194/bg-14-5053-2017
- Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 el niño. Science, 358(6360), eaam5690. https://doi.org/10.1126/science.aam5690
- Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M. F., Latif, M. T., & Karambelas, A. (2020). Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote Sensing of Environment, 237, 111557. https://doi.org/10.1016/j.rse.2019.111557
- Loechli, M., Stephens, B. B., Commane, R., Chevallier, F., McKain, K., Keeling, R. F., et al. (2023). Evaluating northern hemisphere growing season net carbon flux in climate models using aircraft observations. Global Biogeochemical Cycles, 37(2). https://doi.org/10.1029/2022gb007520
- Long, M. C., Stephens, B. B., McKain, K., Sweeney, C., Keeling, R. F., Kort, E. A., et al. (2021). Strong Southern Ocean carbon uptake evident in airborne observations. Science, 374(6572), 1275–1280. https://doi.org/10.1126/science.abi4355
- Masarie, K. A., Peters, W., Jacobson, A. R., & Tans, P. P. (2014). ObsPack: A framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth System Science Data, 6(2), 375–384. https://doi.org/10.5194/essd-6-375-2014
- Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., & Sudo, K. (2020). Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric chemical reanalysis. Atmospheric Chemistry and Physics, 20(2), 931–967. https://doi.org/10.5194/acp-20-931-2020
- Nelson, R. R., & O’Dell, C. W. (2019). The impact of improved aerosol priors on near-infrared measurements of carbon dioxide. Atmospheric Measurement Techniques, 12(3), 1495–1512. https://doi.org/10.5194/amt-12-1495-2019
- Nguyen, H. M., & Wooster, M. J. (2020). Advances in the estimation of high spatio-temporal resolution pan-african top-down biomass burning emissions made using geostationary fire radiative power (FRP) and MAIAC aerosol optical depth (AOD) data. Remote Sensing of Environment, 248, 111971. https://doi.org/10.1016/j.rse.2020.111971
- O’Dell, C. W., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., et al. (2012). The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5(1), 99–121. https://doi.org/10.5194/amt-5-99-2012
- O’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., et al. (2018). Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 11(12), 6539–6576. https://doi.org/10.5194/amt-11-6539-2018
- Ott, L., Pawson, S., & Bacmeister, J. (2011). An analysis of the impact of convective parameter sensitivity on simulated global atmospheric CO distributions. Journal of Geophysical Research, 116(D21). https://doi.org/10.1029/2011jd016077
10.1029/2011JD016077 Google Scholar
- Palmer, P. I., Feng, L., Baker, D., Chevallier, F., Bösch, H., & Somkuti, P. (2019). Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nature Communications, 10(1), 3344. https://doi.org/10.1038/s41467-019-11097-w
- Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609
- Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L., Lintner, B. R., et al. (2014). Observational evidence for interhemispheric hydroxyl-radical parity. Nature, 513(7517), 219–223. https://doi.org/10.1038/nature13721
- Peiro, H., Crowell, S., Schuh, A., Baker, D. F., O’Dell, C., Jacobson, A. R., et al. (2022). Four years of global carbon cycle observed from the orbiting carbon observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7. Atmospheric Chemistry and Physics, 22(2), 1097–1130. https://doi.org/10.5194/acp-22-1097-2022
- Philip, S., Johnson, M. S., Baker, D. F., Basu, S., Tiwari, Y. K., Indira, N. K., et al. (2022). OCO-2 satellite-imposed constraints on terrestrial biospheric CO2 fluxes over South Asia. Journal of Geophysical Research: Atmospheres, 127(3). https://doi.org/10.1029/2021jd035035
- Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F., Haynes, K. D., et al. (2019). Prior biosphere model impact on global terrestrial CO2 fluxes estimated from OCO-2 retrievals. Atmospheric Chemistry and Physics, 19(20), 13267–13287. https://doi.org/10.5194/acp-19-13267-2019
- Prospero, J. M. (1999). Long-range transport of mineral dust in the global atmosphere: Impact of african dust on the environment of the southeastern United States. Proceedings of the National Academy of Sciences, 96(7), 3396–3403. https://doi.org/10.1073/pnas.96.7.3396
- Ramo, R., Roteta, E., Bistinas, I., van Wees, D., Bastarrika, A., Chuvieco, E., & van der Werf, G. R. (2021). African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proceedings of the National Academy of Sciences, 118(9), e2011160118. https://doi.org/10.1073/pnas.2011160118
- Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 117(G4). https://doi.org/10.1029/2012jg002128
- Ray, E. (2022). ATom: Back trajectories and influences of air parcels along flight track, 2016-2018. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1889
- Renoult, M., Annan, J. D., Hargreaves, J. C., Sagoo, N., Flynn, C., Kapsch, M.-L., et al. (2020). A Bayesian framework for emergent constraints: Case studies of climate sensitivity with PMIP. Climate of the Past, 16(5), 1715–1735. https://doi.org/10.5194/cp-16-1715-2020
- Resplandy, L., Keeling, R. F., Stephens, B. B., Bent, J. D., Jacobson, A., Rödenbeck, C., & Khatiwala, S. (2016). Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon. Climate Dynamics, 47(9–10), 3335–3357. https://doi.org/10.1007/s00382-016-3029-3
- Roberts, G., Wooster, M. J., & Lagoudakis, E. (2009). Annual and diurnal african biomass burning temporal dynamics. Biogeosciences, 6(5), 849–866. https://doi.org/10.5194/bg-6-849-2009
- Rodríguez, S., Cuevas, E., Prospero, J. M., Alastuey, A., Querol, X., López-Solano, J., et al. (2015). Modulation of saharan dust export by the north african dipole. Atmospheric Chemistry and Physics, 15(13), 7471–7486. https://doi.org/10.5194/acp-15-7471-2015
- Roteta, E., Bastarrika, A., Padilla, M., Storm, T., & Chuvieco, E. (2019). Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 222, 1–17. https://doi.org/10.1016/j.rse.2018.12.011
- Sanderson, B. M., Pendergrass, A. G., Koven, C. D., Brient, F., Booth, B. B. B., Fisher, R. A., & Knutti, R. (2021). The potential for structural errors in emergent constraints. Earth System Dynamics, 12(3), 899–918. https://doi.org/10.5194/esd-12-899-2021
- Santoni, G. W., Daube, B. C., Kort, E. A., Jiménez, R., Park, S., Pittman, J. V., et al. (2014). Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite – CO2, CH4, N2O, and CO – During the CalNex and HIPPO campaigns. Atmospheric Measurement Techniques, 7(6), 1509–1526. https://doi.org/10.5194/amt-7-1509-2014
- Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436–441. https://doi.org/10.1073/pnas.1407302112
- Schuh, A. E., Byrne, B., Jacobson, A. R., Crowell, S. M. R., Deng, F., Baker, D. F., et al. (2022). On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink. Nature, 603(7901), E13–E14. https://doi.org/10.1038/s41586-021-04258-9
- Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., et al. (2019). Quantifying the impact of atmospheric transport uncertainty on CO2 surface flux estimates. Global Biogeochemical Cycles, 33(4), 484–500. https://doi.org/10.1029/2018gb006086
- Simpson, I. R., McKinnon, K. A., Davenport, F. V., Tingley, M., Lehner, F., Fahad, A. A., & Chen, D. (2021). Emergent constraints on the large scale atmospheric circulation and regional hydroclimate: Do they still work in CMIP6 and how much can they actually constrain the future? Journal of Climate, 34(15), 6355–6377. https://doi.org/10.1175/jcli-d-21-0055.1
- Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., et al. (2007). Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316(5832), 1732–1735. https://doi.org/10.1126/science.1137004
- Stephens, B. B., Morgan, E. J., Bent, J. D., Keeling, R. F., Watt, A. S., Shertz, S. R., & Daube, B. C. (2021). Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole. Atmospheric Measurement Techniques, 14(3), 2543–2574. https://doi.org/10.5194/amt-14-2543-2021
- Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., et al. (2015). Seasonal climatology of CO2 across north America from aircraft measurements in the NOAA/ESRL global greenhouse gas reference network. Journal of Geophysical Research: Atmospheres, 120(10), 5155–5190. https://doi.org/10.1002/2014jd022591
- Taylor, T. E., O’Dell, C. W., Baker, D., Bruegge, C., Chang, A., Chapsky, L., et al. (2023). Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm. Atmospheric Measurement Techniques, 16(12), 3173–3209. https://doi.org/10.5194/amt-16-3173-2023
- Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F., Ryerson, T. B., et al. (2022). The NASA atmospheric Tomography (ATom) mission: Imaging the chemistry of the global atmosphere. Bulletin of the American Meteorological Society, 103(3), E761–E790. https://doi.org/10.1175/bams-d-20-0315.1
- Thoning, K. W., Tans, P. P., & Komhyr, W. D. (1989). Atmospheric carbon dioxide at Mauna Loa observatory: 2. Analysis of the NOAA GMCC data, 1974-1985. Journal of Geophysical Research, 94(D6), 8549–8565. https://doi.org/10.1029/jd094id06p08549
- Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Gatti, R. C., Chevallier, F., et al. (2014). A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences, 11(2), 381–407. https://doi.org/10.5194/bg-11-381-2014
- van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., et al. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9(2), 697–720. https://doi.org/10.5194/essd-9-697-2017
- van Wees, D., & van der Werf, G. R. (2019). Modelling biomass burning emissions and the effect of spatial resolution: A case study for Africa based on the global fire emissions database (GFED). Geoscientific Model Development, 12(11), 4681–4703. https://doi.org/10.5194/gmd-12-4681-2019
- Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P., et al. (2014). A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 506(7487), 212–215. https://doi.org/10.1038/nature12915
- Wigneron, J.-P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J., et al. (2020). Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, 6(6). https://doi.org/10.1126/sciadv.aay4603
- Williamson, D. B., & Sansom, P. G. (2019). How are emergent constraints quantifying uncertainty and what do they leave behind? Bulletin of the American Meteorological Society, 100(12), 2571–2588. https://doi.org/10.1175/bams-d-19-0131.1
- Williamson, M. S., Thackeray, C. W., Cox, P. M., Hall, A., Huntingford, C., & Nijsse, F. J. (2021). Emergent constraints on climate sensitivities. Reviews of Modern Physics, 93(2), 025004. https://doi.org/10.1103/revmodphys.93.025004
- Wofsy, S., Afshar, S., Allen, H., Apel, E., Asher, E., Barletta, B., et al. (2021). Atom: Merged atmospheric chemistry, trace gases, and aerosols, version 2 [Dataset]. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1925
10.3334/ORNLDAAC/1925 Google Scholar
- Yevich, R., & Logan, J. A. (2003). An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles, 17(4). https://doi.org/10.1029/2002gb001952
- Zheng, B., Chevallier, F., Ciais, P., Yin, Y., Deeter, M. N., Worden, H. M., et al. (2018). Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13(4), 044007. https://doi.org/10.1088/1748-9326/aab2b3
- Zheng, B., Ciais, P., Chevallier, F., Chuvieco, E., Chen, Y., & Yang, H. (2021). Increasing forest fire emissions despite the decline in global burned area. Science Advances, 7(39). https://doi.org/10.1126/sciadv.abh2646