Deep Structure of Siletzia in the Puget Lowland: Imaging an Obducted Plateau and Accretionary Thrust Belt With Potential Fields
Corresponding Author
M. L. Anderson
Washington Geological Survey, Olympia, WA, USA
Correspondence to:
M. L. Anderson,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition
Search for more papers by this authorR. J. Blakely
U.S. Geological Survey, East Hall, Portland State University, Portland, OR, USA
Contribution: Methodology, Software, Resources, Writing - review & editing, Supervision, Funding acquisition
Search for more papers by this authorR. E. Wells
U.S. Geological Survey, East Hall, Portland State University, Portland, OR, USA
Contribution: Resources, Writing - review & editing, Supervision
Search for more papers by this authorJ. D. Dragovich
Dragovich Geo-Consulting, Lacey, WA, USA
Contribution: Methodology, Validation, Resources, Writing - review & editing
Search for more papers by this authorCorresponding Author
M. L. Anderson
Washington Geological Survey, Olympia, WA, USA
Correspondence to:
M. L. Anderson,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition
Search for more papers by this authorR. J. Blakely
U.S. Geological Survey, East Hall, Portland State University, Portland, OR, USA
Contribution: Methodology, Software, Resources, Writing - review & editing, Supervision, Funding acquisition
Search for more papers by this authorR. E. Wells
U.S. Geological Survey, East Hall, Portland State University, Portland, OR, USA
Contribution: Resources, Writing - review & editing, Supervision
Search for more papers by this authorJ. D. Dragovich
Dragovich Geo-Consulting, Lacey, WA, USA
Contribution: Methodology, Validation, Resources, Writing - review & editing
Search for more papers by this authorThe copyright line for this article was changed on 12 FEB 2024 after original online publication.
Abstract
Detailed understanding of crustal components and tectonic history of forearcs is important due to their geological complexity and high seismic hazard. The principal component of the Cascadia forearc is Siletzia, a composite basaltic terrane of oceanic origin. Much is known about the lithology and age of the province. However, glacial sediments blanketing the Puget Lowland obscure its lateral extent and internal structure, hindering our ability to fully understand its tectonic history and its influence on modern deformation. In this study, we apply map-view interpretation and two-dimensional modeling of aeromagnetic and gravity data to the magnetically stratified Siletzia terrane revealing its internal structure and characterizing its eastern boundary. These analyses suggest the contact between Siletzia (Crescent Formation) and the Eocene accretionary prism trends northward under Lake Washington. North of Seattle, this boundary dips east where it crosses the Kingston arch, whereas south of Seattle the contact dips west where it crosses the Seattle uplift (SU). This westward dip is opposite the dip of the Eocene subduction interface, implying obduction of Siletzia upper crust at this southern location. Elongate pairs of high and low magnetic anomalies over the SU suggest imbrication of steeply-dipping, deeply rooted slices of Crescent Formation within Siletzia. We hypothesize these features result from duplication of Crescent Formation in an accretionary fold-thrust belt during the Eocene. The active Seattle fault divides this Eocene fold-thrust belt into two zones with different structural trends and opposite frontal ramp dips, suggesting the Seattle fault may have originated as a tear fault during accretion.
Key Points
-
Includes map interpretation and models of the upper crust utilizing constraints from gravity, aeromagnetics, seismology and geology
-
Modeled structures show an accretionary fold and thrust belt, wrapping around the northern edge of an obducted northern margin of Siletzia
-
Interpreted structures suggest the Seattle fault could have an earliest Eocene history as a tear fault within the fold and thrust belt
Plain Language Summary
The Puget Lowland of Washington State contains several potentially dangerous seismic faults, including the Seattle fault, which runs south of downtown Seattle. To accurately assess the earthquake hazard in this region, we need to understand the architecture and geologic history of the rocks that host these faults, deep below the Puget Lowland. We do this by using small changes in Earth's gravity and magnetic fields to create images of the Earth's subsurface. These rocks formed in a subduction zone 50 million years ago when a set of volcanic islands, similar to modern day Iceland, collided with the edge of North America. This added a layer of rock, called Siletzia, to the continent. We show that as the islands piled up, they broke and folded into mountain ranges. South of Seattle, Siletzia was pushed up and over ancient North America, whereas to the north Siletzia was pulled down and under the continent. We argue that a tear in Siletzia between these two zones eventually became the proto-Seattle fault, which provides a story for the Seattle fault's origin and earliest history. Our images also provide information that can improve models of ground shaking from future earthquakes affecting the greater Seattle urban area.
Open Research
Data Availability Statement
Gravity data used for mapping and analysis that are not cited in text and hand sample/outcrop physical property measurements used as a basis for developing model physical properties are publicly available online at the Washington Geological Survey (Anderson et al., 2023). Oasis Montaj (Geosoft Inc., 2016) used for potential fields data gridding and filtering as well as forward model construction is available via subscription from Geosoft, Inc.
Supporting Information
Filename | Description |
---|---|
2022TC007720-sup-0001-Supporting Information SI-S01.docx2.3 MB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Allen, M. D., Mavor, S. P., Tepper, J. H., Nesbitt, E. A., Mahan, S. A., Cakir, R., et al. (2017). Geologic map of the Maltby 7.5-minute quadrangle, Snohomish and King Counties, Washington (Map 2017-02, 42 p., 1 sheet, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Anderson, M. L., Blakely, R. J., Wells, R. E., & Dragovich, J. (2011). Eastern boundary of the Siletz terrane in the Puget Lowland from gravity and magnetic modeling with implications for seismic hazard analysis. In Paper presented at AGU fall meeting, San Francisco, CA, December 5–9. American Geophysical Union. Abstract GP33B-06.
- Anderson, M. L., Blakely, R. J., Wells, R. E., & Dragovich, J. (2023). Gravity and rock physical property data for the Puget Lowland 2006-2012 [Dataset]. Washington Geological Survey. https://wgsgeophysics.s3.us-west-2.amazonaws.com/Anderson_Tectonics_2023.zip
- Babcock, R., Burmester, R., Engebretson, D., Warnock, A., & Clark, K. (1992). A rifted margin origin for the Crescent Basalts and related rocks in the northern Coast Range volcanic province, Washington and British-Columbia. Journal of Geophysical Research, 97(B5), 6799–6821. https://doi.org/10.1029/91JB02926
- Beck, M. E., Jr., & Engebretson, D. C. (1982). Paleomagnetism of small basalt exposures in the West Puget Sound area, Washington, and speculations on the accretionary origin of the Olympic Mountains. Journal of Geophysical Research, 87(B5), 3755–3760. https://doi.org/10.1029/JB087iB05p03755
- Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge University Press.
10.1017/CBO9780511549816 Google Scholar
- Blakely, R. J., John, D. A., Box, S. E., Berger, B. R., Fleck, R. J., Ashley, R. P., et al. (2007). Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada. Geosphere, 3(2), 91–107. https://doi.org/10.1130/GES00071.1
- Blakely, R. J., Sherrod, B. L., Hughes, J. F., Anderson, M. L., Wells, R. E., & Weaver, C. S. (2009). Saddle Mountain fault deformation zone, Olympic Peninsula, Washington: Western boundary of the Seattle uplift. Geosphere, 5(2), 105–125. https://doi.org/10.1130/GES00196.1
- Blakely, R. J., Wells, R. E., & Weaver, C. S. (1999). Puget sound aeromagnetic maps and data (Open-File Report 99-0514). U.S. Geological Survey.
- Blakely, R. J., Wells, R. E., Weaver, C. S., & Johnson, S. Y. (2002). Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data. Geological Society of America Bulletin, 114(2), 169–177. https://doi.org/10.1130/0016-7606(2002)1142.0.CO;2
- Brocher, T. A. (2005). Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092. https://doi.org/10.1785/0120050077
- Brocher, T. M., Blakely, R. J., & Wells, R. E. (2004). Interpretation of the Seattle Uplift, Washington, as a passive-roof duplex. Bulletin of the Seismological Society of America, 94(4), 1379–1401. https://doi.org/10.1785/012003190
- Brocher, T. M., & Christensen, N. I. (2001). Density and velocity relationships for digital sonic and density logs from coastal Washington and laboratory measurements of Olympic Peninsula mafic rocks and greywackes (Open-File Report 01-264). U.S. Geological Survey.
- Brocher, T. M., Parsons, T., Blakely, R. J., Christensen, N. I., Fisher, M. A., Wells, R. E., et al. (2001). Upper crustal structure in Puget Lowland, Washington: Results from the 1998 Seismic Hazards Investigation in Puget Sound. Journal of Geophysical Research, 106(B7), 13541–13564. https://doi.org/10.1029/2001JB000154
- Brocher, T. M., Parsons, T., Creager, K. C., Crosson, R. S., Symons, N. P., Spence, G. D., et al. (1999). Wide-angle seismic recordings from the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS), western Washington and British Columbia (Open-File Report 99-314). U.S. Geological Survey.
- Brocher, T. M., & Ruebel, A. L. (1998). Compilation of 29 sonic and density logs from 23 oil test wells in western Washington State (Open-File Report 98-249). U.S. Geological Survey.
- Calvert, A. J., Preston, L. A., & Farahbod, A. M. (2011). Sedimentary underplating at the Cascadia mantle-wedge corner revealed by seismic imaging. Nature Geoscience, 4(8), 545–548. https://doi.org/10.1038/NGEO1195
- Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust; a global view. Journal of Geophysical Research, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259
- Clowes, R., Brandon, M., Green, A., Yorath, C., Brown, A., Kanasewich, E., & Spencer, C. (1987). Lithoprobe - Southern Vancouver-Island - Cenozoic subduction complex imaged by deep seismic reflections. Canadian Journal of Earth Sciences, 24(1), 31–51. https://doi.org/10.1139/e87-004
- Czajkowski, J. L., & Bowman, J. D. (2014). Faults and earthquakes in Washington State (Open-File Report 2014-05). Washington State Division of Geology and Earth Resources.
- Dehler, S. A., & Clowes, R. M. (1992). Integrated geophysical modelling of terranes and other structural features along the western Canadian margin. Canadian Journal of Earth Sciences, 29(7), 1492–1508. https://doi.org/10.1139/e92-119
- Denton, K. M., Ponce, D. A., Peacock, J. R., & Miller, D. M. (2020). Geophysical characterization of a Proterozoic REE terrane at Mountain Pass, eastern Mojave Desert, California. Geosphere, 16(1), 456–471. https://doi.org/10.1130/GES02066.1
- Dragovich, J. D., Anderson, M. L., MacDonald, J. H., Jr., Mahan, S. A., DuFrane, S. A., Littke, H. A., et al. (2010a). Supplement to the geologic map of the Carnation 7.5-minute quadrangle, King County, Washington: Geochronologic, geochemical, point count, geophysical, earthquake, fault, and neotectonic data (Open File Report 2010-2). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Anderson, M. L., Mahan, S. A., Koger, C. J., Saltonstall, J. H., MacDonald, J. H., Jr., et al. (2011a). Geologic map of the Monroe 7.5-minute quadrange, King and Snohomish Counties, Washington (Open-File Report 2011-1). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Anderson, M. L., Mahan, S. A., MacDonald, J. H., Jr., McCabe, C. P., Cakir, R., et al. (2012). Geologic map of the Lake Joy 7.5-minute quadrangle, King County, Washington (Map 2012-01, 83 p., 1 plate, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Anderson, M. L., Walsh, T. J., Johnson, B. L., & Adams, T. L. (2007). Geologic map of the Fall City 7.5-minute quadrangle, King County, Washington (Map GM-67, 16 p., 1 plate, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Frattali, C. L., Anderson, M. L., Mahan, S. A., MacDonald, J. H., Jr., Stoker, B. A., et al. (2014). Geologic map of the Lake Chaplain 7.5-minute quadrangle, Snohomish County, Washington (Map 2014-01, 51 p., 1 plate, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Littke, H. A., Anderson, M. L., Wessel, G. R., Koger, C. J., Saltonstall, J. H., et al. (2010b). Geologic map of the Carnation 7.5-minute quadrangle, King County, Washington (Open File Report 2010-1). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Littke, H. A., Anderson, M. L., Hartog, R., Wessel, G. R., DuFrane, S. A., et al. (2009). Geologic map of the Snoqualmie 7.5-minute quadrangle, King County, Washington (Map GM-75, 2 sheets, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Littke, H. A., Mahan, S. A., Anderson, M. L., MacDonald, J. H., Jr., Cakir, R., et al. (2013). Geologic map of the Sultan 7.5-minute quadrangle, King and Snohomish Counties, Washington (Map 2013-01, 57 p., 1 plate, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Logan, R. L., Schasse, H. W., Walsh, T. J., Lingley, W. S. J., Norman, D. K., et al. (2002). Geologic map of Washington State - Northwest quadrant (Map GM-50, scale 1:250,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Mahan, S. A., Anderson, M. L., MacDonald, J. H., Jr., Wessel, G. R., DuFrane, S. A., et al. (2011b). Analytical data from the Monroe 7.5-minute quadrangle, King and Snohomish Counties, Washington: Supplement to Open File Report 2011-1 (Open File Report 2011-2). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Mavor, S. P., Anderson, M. L., Mahan, S. A., MacDonald, J. H., Jr., Tepper, J. H., et al. (2016). Geologic map of the Granite Falls 7.5-minute quadrangle, Snohomish County, Washington (Map 2016-03, 63 p., 1 sheet, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Dragovich, J. D., Walsh, T. J., Anderson, M. L., Hartog, R., DuFrane, S. A., Vervoot, J., et al. (2008). Geologic map of the North Bend 7.5-minute quadrangle, King County, Washington (Map GM-73, 39 p., 1 plate, scale 1:24,000). Washington State Division of Geology and Earth Resources.
- Duncan, R. (1982). A captured island chain in the coast range of Oregon and Washington. Journal of Geophysical Research, 87(B13), 10827–10837. https://doi.org/10.1029/JB087iB13p10827
- Eddy, M. P., Bowring, S. A., Umhoefer, P. J., Miller, R. B., McLean, N. M., & Donaghy, E. E. (2015). High-resolution temporal and stratigraphic record of Siletzia's accretion and triple junction migration from nonmarine sedimentary basins in central and western Washington. Geological Society of America Bulletin, 128(3–4), 425–441. https://doi.org/10.1130/B31335.1
- Eddy, M. P., Clark, K. P., & Polenz, M. (2017). Age and volcanic stratigraphy of the Eocene Siletzia oceanic plateau in Washington and on Vancouver Island. Lithosphere, 9(4), 652–664. https://doi.org/10.1130/L650.1
- Finn, C. (1990). Geophysical constraints on Washington Convergent Margin Structure. Journal of Geophysical Research, 95(B12), 19533–19546. https://doi.org/10.1029/JB095iB12p19533
- Finn, C., Phillips, W. M., & Williams, D. L. (1991). Gravity anomaly and terrain maps of Washington (Geophysical Investigations Map GP-988, scale 1:500,000 and 1:1,000,000). U.S. Geological Survey.
- Fleming, S., & Trehu, A. (1999). Crustal structure beneath the central Oregon convergent margin from potential-field modeling: Evidence for a buried basement ridge in local contact with a seaward dipping backstop. Journal of Geophysical Research, 104(B9), 20431–20447. https://doi.org/10.1029/1999JB900159
- Frankel, A., & Stephenson, W. (2000). Three-dimensional simulations of ground motions in the Seattle region for earthquakes in the Seattle fault zone. Bulletin of the Seismological Society of America, 90(5), 1251–1267. https://doi.org/10.1785/0119990159
- Gans, C. R., Beck, S. L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., & Linkimer, L. (2011). Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: New high-resolution results. Geophysical Journal International, 186(1), 45–58. https://doi.org/10.1111/j.1365-246X.2011.05023.x
- Gao, H., Humphreys, E. D., Yao, H., & van der Hilst, R. D. (2011). Crust and lithosphere structure of the northwestern US with ambient noise tomography: Terrane accretion and Cascade arc development. Earth and Planetary Science Letters, 304(1–2), 202–211. https://doi.org/10.1016/j.epsl.2011.01.033
- Gardner, G., Gardner, L., & Gregory, A. (1974). Formation velocity and density - Diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780. https://doi.org/10.1190/1.1440465
- Geosoft Inc. (2014). Oasis Montaj gridding: A how-to guide. Geosoft Inc. Retrieved from http://updates.geosoft.com/downloads/files/how-to-guides/Oasis_montaj_Gridding.pdf
- Geosoft Inc. (2016). Oasis Montaj (Ver. 9.0): Data processing and analysis systems for earth science applications [Software]. Geosoft Inc. Retrieved from https://seequent.com/products-solutions/geosoft-software/
- Glassley, W. (1974). Geochemistry and tectonics of crescent volcanic-rocks, Olympic peninsula, Washington. Geological Society of America Bulletin, 85(5), 785–794. https://doi.org/10.1130/0016-7606(1974)852.0.CO;2
- Globerman, B. R., Beck, M. E., Jr., & Duncan, R. A. (1982). Paleomagnetism and tectonic significance of Eocene basalts from the Black Hills, Washington Coast Range. Geological Society of America Bulletin, 93(11), 1151–1159. https://doi.org/10.1130/0016-7606(1982)93<1151:patsoe>2.0.co;2
- Groome, W. G., Thorkelson, D. J., Friedman, R. M., Mortensen, J. K., Massey, N. W. D., Marshall, D. D., & Layer, P. W. (2003). Magmatic and tectonic history of the Leech River Complex, Vancouver Island, British Columbia: Evidence for ridge-trench intersection and accretion of the Crescent Terrane. In V. B. Sisson, S. M. Roeske, & T. L. Pavlis (Eds.), Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific Margin, Geological Society of America special paper (Vol. 371, pp. 327–353). Geological Society of America.
10.1130/0-8137-2371-X.327 Google Scholar
- Gutscher, M., Spakman, W., Bijwaard, H., & Engdahl, E. R. (2000). Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19(5), 814–833. https://doi.org/10.1029/1999TC001152
- Haeussler, P. J., & Clark, K. P. (2000). Geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties Washington (Open-File Report 00-356). U.S. Geological Survey.
- Hagstrum, J., Booth, D., Troost, K., & Blakely, R. (2002). Magnetostratigraphy, paleomagnetic correlation, and deformation of Pleistocene deposits in the south central Puget Lowland, Washington. Journal of Geophysical Research, 107(B4), 2079. https://doi.org/10.1029/2001JB000557
- Hirsch, D. M., & Babcock, R. S. (2009). Spatially heterogeneous burial and high-P/T metamorphism in the Crescent Formation, Olympic Peninsula, Washington. American Mineralogist, 94(8–9), 1103–1110. https://doi.org/10.2138/am.2009.3187
- Hyndman, R. D. (1995). The Lithoprobe corridor across the Vancouver Island continental margin: The structural and tectonic consequences of subduction. Canadian Journal of Earth Sciences, 32(10), 1777–1802. https://doi.org/10.1139/e95-138
- Hyndman, R. D., Mazzotti, S., Weichert, D., & Rogers, G. C. (2003). Frequency of large crustal earthquakes in Puget Sound--Southern Georgia Strait predicted from geodetic and geological deformation rates. Journal of Geophysical Research, 108(B1), 2033. https://doi.org/10.1029/2001JB001710
- Johnson, S. (1984). Evidence for a margin-truncating transcurrent fault (pre-late Eocene) in western Washington. Geology, 12(9), 538–541. https://doi.org/10.1130/0091-7613(1984)122.0.CO;2
- Johnson, S., Potter, C., & Armentrout, J. (1994). Origin and evolution of the Seattle fault and Seattle basin, Washington. Geology, 22(1), 71–74. https://doi.org/10.1130/0091-7613(1994)0222.3.CO;2
- Lamb, A. P., Liberty, L. M., Blakely, R. J., Pratt, T. L., Sherrod, B. L., & van Wijk, K. (2012). Western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington. Geosphere, 8(4), 915–930. https://doi.org/10.1130/GES00780.1
- Langenheim, V. E., Vasquez, J. A., Schmidt, K. M., Guglielmo, G., Jr., & Sweetkind, D. S. (2021). Influence of pre-existing structure on pluton emplacement and geomorphology: The Merrimac plutons, northern Sierra Nevada, California (USA). Geosphere, 17(2), 455–478. https://doi.org/10.1130/GES02281.1
- MacDonald, J. H., Jr., Dragovich, J. D., Littke, H. A., Anderson, M., & DuFrane, S. A. (2013). The volcanic rocks of Mount Persis: An Eocene continental arc that contains adakitic magmas. Geological Society of America Abstracts with Programs, 45(7), 392.
- Mace, C. G., & Keranen, K. M. (2012). Oblique fault systems crossing the Seattle Basin: Geophysical evidence for additional shallow fault systems in the central Puget Lowland. Journal of Geophysical Research, 117(B3), B03105. https://doi.org/10.1029/2011JB008722
10.1029/2011JB008722 Google Scholar
- Marshak, S. (2004). Salients, recesses, arcs, oroclines, and syntaxes -- A review of ideas concerning the formation of map-view curves in fold-thrust belts. In K. R. McClay (Ed.), Thrust tectonics and hydrocarbon systems, AAPG memoir (Vol. 82, pp. 131–156). American Association of Petroleum Geologists.
- Massey, N. (1986). Metchosin igneous complex, southern Vancouver Island - Ophiolite stratigraphy developed in an emergent island setting. Geology, 14(7), 602–605. https://doi.org/10.1130/0091-7613(1986)142.0.CO;2
- McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. Journal of Geophysical Research: Solid Earth, 118(2), 709–723. https://doi.org/10.1029/2012JB009473
- McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., et al. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315–1340. https://doi.org/10.1111/j.1365-246x.2007.03371.x
- McCrory, P. A., & Wilson, D. S. (2013). A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates. Tectonics, 32(3), 718–736. https://doi.org/10.1002/tect.20045
- Merrill, R., Bostock, M. G., Peacock, S. M., Calvert, A. J., & Christensen, N. I. (2020). A double difference tomography study of the Washington forearc: Does Siletzia control crustal seismicity? Journal of Geophysical Research: Solid Earth, 125(10), e2020JB019750. https://doi.org/10.1029/2020JB019750
- Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201), 419–426. https://doi.org/10.1126/science.189.4201.419
- Muller, J. (1980). Chemistry and origin of the Eocene metchosin volcanics, Vancouver Island, British-Columbia. Canadian Journal of Earth Sciences, 17(2), 199–209. https://doi.org/10.1139/e80-016
- Nelson, A., Johnson, S., Kelsey, H., Wells, R., Sherrod, B., Pezzopane, S., et al. (2003). Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington. Geological Society of America Bulletin, 115(11), 1388–1403. https://doi.org/10.1130/B25262.1
- Parsons, T., Trehu, A., Luetgert, J., Miller, K., Kilbride, F., Wells, R., et al. (1998). A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin. Geology, 26(3), 199–202. https://doi.org/10.1130/0091-7613(1998)0262.3.CO;2
- Parsons, T., Wells, R., Fisher, M., Flueh, E., & ten Brink, U. (1999). Three-dimensional velocity structure of Siletzia and other accreted terranes in the Cascadia forearc of Washington. Journal of Geophysical Research, 104(B8), 18015–18039. https://doi.org/10.1029/1999JB900106
- Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T. L., et al. (1997). Structure and deformation of north and central Malaita, Solomon Islands: Tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283(1–4), 1–33. https://doi.org/10.1016/s0040-1951(97)00206-0
- Pratt, T. L., Brocher, T. M., Weaver, C. S., Creager, K. C., Snelson, C. M., Crosson, R. S., et al. (2003). Amplification of seismic waves by the Seattle basin, Washington State. Bulletin of the Seismological Society of America, 93(2), 533–545. https://doi.org/10.1785/0120010292
- Pratt, T. L., Johnson, S. Y., Potter, C. J., Stephenson, W. J., & Finn, C. A. (1997). Seismic reflection images beneath Puget Sound, western Washington State: The Puget Lowland thrust sheet hypothesis. Journal of Geophysical Research, 102(B12), 27469–27489. https://doi.org/10.1029/97JB01830
- Ramachandran, K., Hyndman, R. D., & Brocher, T. M. (2006). Regional P wave velocity structure of the Northern Cascadia Subduction Zone. Journal of Geophysical Research, 111(B12), B12301. https://doi.org/10.1029/2005JB004108
- Reiter, K., Kukowski, N., & Ratschbacher, L. (2011). The interaction of two indenters in analogue experiments and implications for curved fold-and-thrust belts. Earth and Planetary Science Letters, 302(1–2), 132–146. https://doi.org/10.1016/j.epsl.2010.12.002
- Saltus, R. W., & Blakely, R. J. (2011). Unique geologic insights from ‘non-unique’ gravity and magnetic interpretation. Geological Society of America Today, 21(12), 4–11. https://doi.org/10.1130/G136A.1
10.1130/G136A.1 Google Scholar
- Schmandt, B., & Humphreys, E. (2011). Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology, 39(2), 175–178. https://doi.org/10.1130/G31558.1
- Sherrod, B. L., Blakely, R. J., Weaver, C. S., Kelsey, H. M., Barnett, E., Liberty, L., et al. (2008). Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington. Journal of Geophysical Research, 113(B5), B05313. https://doi.org/10.1029/2007JB005060
- Simpson, R., & Cox, A. (1977). Paleomagnetic evidence for tectonic rotation of Oregon Coast Range. Geology, 5(10), 585–589. https://doi.org/10.1130/0091-7613(1977)52.0.CO;2
- Snavely, P., MacLeod, N., & Wagner, H. (1968). Tholeiitic and alkalic basalts of the Eocene Siletz River volcanics, Oregon Coast Range. American Journal of Science, 266(6), 454–481. https://doi.org/10.2475/ajs.266.6.454
- Snavely, P., Wells, R., & Minasian, D. (1993). The Cenozoic geology of the Oregon and Washington coast range (Open-File Report 93-18). U.S. Geological Survey.
- Snelson, C. M. (2001). Investigating crustal structure in western Washington and in the Rocky Mountains: Implications for seismic hazards and crustal growth (Doctoral dissertation). University of Texas at El Paso.
- Snelson, C. M., Brocher, T. M., Miller, K. C., Pratt, T. L., & Trehu, A. M. (2007). Seismic amplification within the Seattle basin, Washington State: Insights from SHIPS seismic tomography experiments. Bulletin of the Seismological Society of America, 97(5), 1432–1448. https://doi.org/10.1785/0120050204
- Squires, R. L., Goedert, J. L., & Kaler, K. L. (1992). Paleontology and stratigraphy of Eocene rocks at Pulali Point, Jefferson County, eastern Olympic Peninsula, Washington (Report of Investigations 31, 27 p.). Washington State Department of Natural Resources.
- Tabor, R. W., & Cady, W. M. (1978a). Geologic map of the Olympic Peninsula (Map I-994, scale 1:125,000). U.S. Geological Survey.
- Tabor, R. W., & Cady, W. M. (1978b). The structure of the Olympic Mountains, Washington: Analysis of a subduction zone (Professional Paper 1033). U.S. Geological Survey.
- Tabor, R. W., Haugerud, R. A., Haeussler, P. J., & Clark, K. P. (2011). Lidar-revised geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Scientific Investigations Map 3187, 12 p., scale 1:24,000). U.S. Geological Survey. Retrieved from https://pubs.usgs.gov/sim/3187/
10.3133/sim3187 Google Scholar
- ten Brink, U., Molzer, P., Fisher, M., Blakely, R., Bucknam, R., Parsons, T., et al. (2002). Subsurface geometry and evolution of the Seattle fault zone and the Seattle basin, Washington. Bulletin of the Seismological Society of America, 92(5), 1737–1753. https://doi.org/10.1785/0120010229
- Timpa, S., Gillis, K., & Canil, D. (2005). Accretion-related metamorphism of the Metchosin Igneous Complex, southern Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 42(8), 1467–1479. https://doi.org/10.1139/E05-043
- Trehu, A., Asudeh, I., Brocher, T., Luetgert, J., Mooney, W., Nabelek, J., & Nakamura, Y. (1994). Crustal architecture of the Cascadia fore-arc. Science, 266(5183), 237–243. https://doi.org/10.1126/science.266.5183.237
- U.S. Geological Survey. (1996). Aeromagnetic map of the Roseburg area on parts of the Roseburg, Coos Bay, Medford, and Cape Blanco 1° by 2° quadrangles, Oregon (Open-File Report 96-695, 2 sheets, scale 1:100,000) U.S. Geological Survey.
- U.S. Geological Survey. (2006). Quaternary fault and fold database for the United States. Retrieved from https://earthquakes.usgs.gov/hazards/qfaults
- Van Wagoner, T., Crosson, R., Creager, K., Medema, G., Preston, L., Symons, N., & Brocher, T. (2002). Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography. Journal of Geophysical Research, 107(B12), 2381. https://doi.org/10.1029/2001JB000710
- Walsh, T. J. (1984). Geology and coal resources of central King County, Washington (Open-File Report 84-3). Washington State Department of Natural Resources.
- Walsh, T. J., Korosec, M. A., Phillips, W. M., Logan, R. L., & Schasse, H. W. (1987). Geologic map of Washington - Southwest quadrant (Map GM-34, 35 p., 2 sheets, scale 1:250,000). Washington State Division of Geology and Earth Resources.
- Warnock, A., Burmester, R., & Engebretson, D. (1993). Paleomagnetism and tectonics of the Crescent formation, northern Olympic Mountains, Washington. Journal of Geophysical Research, 98(B7), 11729–11741. https://doi.org/10.1029/93JB00709
- Watt, J., Ponce, D., Parsons, T., & Hart, P. (2016). Missing link between the Hayward and Rodgers Creek Faults. Science Advances, 2(10), e1601441. https://doi.org/10.1126/sciadv.1601441
- Wells, R. E., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range - Correlation to the geomagnetic polarity timescale and implications for a long-lived Yellowstone hotspot. Geosphere, 10(4), 692–719. https://doi.org/10.1130/GES01018.1
- Wells, R. E., & Coe, R. S. (1985). Paleomagnetism and geology of Eocene volcanic-rocks of southwest Washington, implications for mechanisms of tectonic rotation. Journal of Geophysical Research, 90(NB2), 1925–1947. https://doi.org/10.1029/JB090iB02p01925
- Wells, R. E., Engebretson, D. C., Snavely, P. D., & Coe, R. S. (1984). Cenozoic plate motions and the volcano tectonic evolution of western Oregon and Washington. Tectonics, 3(2), 275–294. https://doi.org/10.1029/TC003i002p00275
- Wells, R. E., & Heller, P. L. (1988). The relative contribution of accretion, shear, and extension to Cenozoic tectonic rotation in the Pacific Northwest. Geological Society of America Bulletin, 100(3), 325–338. https://doi.org/10.1130/0016-7606(1988)1002.3.CO;2
- Wells, R. E., Jayko, A. S., Niem, A. R., Black, G., Wiley, T., Baldwin, E., et al. (2000). Geologic map and database of the Roseburg 30 x 60' quadrangle, Douglas and Coos Counties, Oregon (Open-File Report 00-376). U.S. Geological Survey.
- Wells, R. E., & McCaffrey, R. (2013). Steady rotation of the Cascade arc. Geology, 41(9), 1027–1030. https://doi.org/10.1130/G34514.1
- Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26(8), 759–762. https://doi.org/10.1130/0091-7613(1998)0262.3.CO;2
- Wirth, E. A., Vidale, J. E., Frankel, A. D., Pratt, T. L., Marafi, N. A., Thompson, M., & Stephenson, W. J. (2019). Source-dependent amplification of earthquake ground motions in deep sedimentary basins. Geophysical Research Letters, 46(12), 6443–6450. https://doi.org/10.1029/2019GL082474
References From the Supporting Information
- Barnes, D. F., Oliver, H. W., & Robbins, S. L. (1969). Standardization of gravimeter calibrations in the Geological Survey. Eos Transactions, American Geophysical Union, 50(10), 626–627. https://doi.org/10.1029/eo050i010p00526
10.1029/EO050i010p00526 Google Scholar
- Heiskanen, W. A., & Vening-Meinesz, F. A. (1958). The Earth and its gravity field. McGraw-Hill Book Company, Inc.
- International Union of Geodesy and Geophysics. (1971). Geodetic reference system 1967 (Special Publication 3). International Union of Geodesy and Geophysics.
- Jachens, R. C., & Roberts, C. R. (1981). Documentation of a FORTRAN program, ‘isocomp’, for computing isostatic residual gravity (Open-File Report 81-574). U.S. Geological Survey.
- C. Morelli (Ed.). (1974). The international gravity standardization net, 1971 (Special Publication 4). International Union of Geodesy and Geophysics.
- Phillips, J. D., Hansen, R. O., & Blakely, R. J. (2007). The use of curvature in potential-field interpretation. Exploration Geophysics, 38(2), 111–119. https://doi.org/10.1071/EG07014
- Plouff, D. (1977). Preliminary documentation for a FORTRAN program to compute gravity terrain corrections based on topography digitized on a geographic grid (Open-File Report 77-535). U.S. Geological Survey.
- Plouff, D. (2000). Field estimates of gravity terrain corrections and Y2K-compatible method to convert from gravity readings with multiple base stations to tide-and long-term drift-corrected observations (Open-File Report OF-00-140). U.S. Geological Survey.
- Swick, C. A. (1942). Pendulum gravity measurements and isostatic reductions (Special Publication 232). U.S. Coast and Geodetic Survey.
- Telford, W. M., Geldart, L. O., & Sheriff, R. E. (1990). Applied geophysics. Cambridge University Press.
10.1017/CBO9781139167932 Google Scholar