Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Corresponding Author
M. Hasan Barbhuiya
Department of Physics and Astronomy and the Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV, USA
Correspondence to:
M. H. Barbhuiya,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorP. A. Cassak
Department of Physics and Astronomy and the Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV, USA
Contribution: Formal analysis, Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorM. A. Shay
Department of Physics and Astronomy and the Bartol Research Center, University of Delaware, Newark, DE, USA
Contribution: Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorVadim Roytershteyn
Space Science Institute, Boulder, CO, USA
Contribution: Formal analysis, Writing - review & editing, Funding acquisition
Search for more papers by this authorM. Swisdak
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA
Contribution: Formal analysis, Software, Writing - review & editing
Search for more papers by this authorAmir Caspi
Southwest Research Institute, Boulder, CO, USA
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorAndrei Runov
Department of Earth and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorHaoming Liang
Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL, USA
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorCorresponding Author
M. Hasan Barbhuiya
Department of Physics and Astronomy and the Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV, USA
Correspondence to:
M. H. Barbhuiya,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorP. A. Cassak
Department of Physics and Astronomy and the Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV, USA
Contribution: Formal analysis, Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorM. A. Shay
Department of Physics and Astronomy and the Bartol Research Center, University of Delaware, Newark, DE, USA
Contribution: Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorVadim Roytershteyn
Space Science Institute, Boulder, CO, USA
Contribution: Formal analysis, Writing - review & editing, Funding acquisition
Search for more papers by this authorM. Swisdak
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA
Contribution: Formal analysis, Software, Writing - review & editing
Search for more papers by this authorAmir Caspi
Southwest Research Institute, Boulder, CO, USA
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorAndrei Runov
Department of Earth and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorHaoming Liang
Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL, USA
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorAbstract
Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields (Shuster et al., 2014, https://doi.org/10.1002/2014GL060608). We present a theory of the dependence of the major and minor radii of the ring distributions solely in terms of upstream (lobe) plasma conditions, thereby allowing a prediction of the associated temperature and temperature anisotropy of the rings in terms of upstream parameters. We test the validity of the prediction using 2.5-dimensional particle-in-cell (PIC) simulations with varying upstream plasma density and temperature, finding excellent agreement between the predicted and simulated values. We confirm the Shuster et al. suggestion for the cause of the ring distributions, and also find that the ring distributions are located in a region marked by a plateau, or shoulder, in the reconnected magnetic field profile. The predictions of the temperature are consistent with observed electron temperatures in dipolarization fronts, and may provide an explanation for the generation of plasma with temperatures in the 10s of MK in super-hot solar flares. A possible extension of the model to dayside reconnection is discussed. Since ring distributions are known to excite whistler waves, the present results should be useful for quantifying the generation of whistler waves in reconnection exhausts.
Key Points
-
We predict major and minor radii of ring distributions during reconnection in terms of upstream parameters and confirm with particle-in-cell simulations
-
We find that ring distributions occur at a shoulder (plateau) in the reconnected magnetic field in the simulations
-
The predicted temperatures are comparable to observed values in dipolarization fronts in Earth's magnetotail and in super-hot solar flares
Plain Language Summary
Solar flares and geomagnetic substorms are naturally occurring eruptions in space that can impact humans on Earth due to space weather. Both are caused by magnetic reconnection, during which magnetic field lines break and release energy into the surrounding ionized gas (plasma). From past research, we know that electrons near the reconnection site get magnetized in the strong magnetic fields that have already undergone reconnection, leading to a characteristic ring distribution of their velocities where all particles have similar speed in the plane perpendicular to the magnetic field. We predict the speed of the particles in terms of the ambient properties of the easily measured surrounding plasma, and we confirm the prediction with numerical simulations. We show that the rings are located in a region where there is a leveling off of the magnetic field strength, which is a signature that can be used to identify ring distributions in future satellite measurements. We then use the result to predict temperatures in geomagnetic substorms and solar flares, finding that there is reasonable agreement. This suggests that we can understand the observed temperatures in terms of the ambient plasma properties, which will make it easier to predict these temperatures going forward.
Open Research
Data Availability Statement
Simulation data used in this manuscript are available on Zenodo (https://doi.org/10.5281/zenodo.6383101).
References
- Allred, J. C., Alaoui, M., Kowalski, A. F., & Kerr, G. S. (2020). Modeling the transport of nonthermal particles in flares using Fokker–Planck kinetic theory. The Astrophysical Journal, 902, 16. https://doi.org/10.3847/1538-4357/abb239
- Angelopoulos, V. (2009). The THEMIS mission. In J. L. Burch & V. Angelopoulos (Eds.), The THEMIS mission (pp. 5–34). Springer New York. https://doi.org/10.1007/978-0-387-89820-9_2
- Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., et al. (1992). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97(A4), 4027–4039. https://doi.org/10.1029/91JA02701
- Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., et al. (2008). Tail reconnection triggering substorm onset. Science, 321(5891), 931–935. https://doi.org/10.1126/science.1160495
- Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li, S.-S., & Shinohara, I. (2013). Electromagnetic energy conversion at reconnection fronts. Science, 341(6153), 1478–1482. https://doi.org/10.1126/science.1236992
- Asai, A., Nakajima, H., Shimojo, M., White, S. M., Hudson, H. S., & Lin, R. P. (2006). Preflare nonthermal emission observed in microwaves and hard X-rays. In Publ Astron Soc Jpn (Vol. 58, pp. L1–L5). Publications of the Astronomical Society of Japan. https://doi.org/10.1093/pasj/58.1.L1
- Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., et al. (2011). Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nature Physics, 7(4), 360–365. https://doi.org/10.1038/nphys1903
- Aurass, H., Mann, G., Rausche, G., & Warmuth, A. (2006). The GLE on Oct. 28, 2003 – Radio diagnostics of relativistic electron and proton injection. Astronomy & Astrophysics, 457(2), 681–692. https://doi.org/10.1051/0004-6361:20065238
- Bessho, N., Chen, L.-J., Shuster, J. R., & Wang, S. (2014). Electron distribution functions in the electron diffusion region of magnetic reconnection: Physics behind the fine structures. Geophysical Research Letters, 41, 8688–8695. https://doi.org/10.1002/2014gl062034
- Birdsall, C. K., & Langdon, A. B. (1991). Plasma physics via computer simulation. Institute of Physics Publishing. chap. 15.
- Birn, J., Hesse, M., Nakamura, R., & Zaharia, S. (2013). Particle acceleration in dipolarization events. Journal of Geophysical Research: Space Physics, 118(5), 1960–1971. https://doi.org/10.1002/jgra.50132
- J. Birn, & E. Priest (Eds.), (2007). Reconnection of magnetic fields. Cambridge University Press.
- Büchner, J., & Zelenyi, L. M. (1989). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. Journal of Geophysical Research, 94(A9), 11821–11842. https://doi.org/10.1029/JA094iA09p11821
- Caspi, A. (2010). Super-hot (T > 30 MK) thermal plasma in solar flares (Unpublished doctoral dissertation). University of California, Berkeley.
- Caspi, A., Krucker, S., & Lin, R. P. (2014). Statistical properties of super-hot solar flares. The Astrophysical Journal, 781, 43. https://doi.org/10.1088/0004-637x/781/1/43
- Caspi, A., & Lin, R. P. (2010). RHESSI line and continuum observations of super-hot flare plasma. The Astrophysical Journal Letters, 725, L161–L166. https://doi.org/10.1088/2041-8205/725/2/l161
- Caspi, A., Shih, A. Y., McTiernan, J. M., & Krucker, S. (2015). Hard x-ray imaging of individual spectral components in solar flares. The Astrophysical Journal Letters, 811, L1. https://doi.org/10.1088/2041-8205/811/1/l1
- Cassak, P. A., & Shay, M. A. (2007). Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Physics of Plasmas, 14, 102114. https://doi.org/10.1063/1.2795630
- Cassak, P. A., & Shay, M. A. (2008). Scaling of asymmetric Hall reconnection. Geophysical Research Letters, 35, L19102. https://doi.org/10.1029/2008gl035268
- Cheung, M. C. M., Rempel, M., Chintzoglou, G., Chen, F., Testa, P., Martínez-Sykora, J., et al. (2019). A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare. Nature Astronomy, 3, 160–166. https://doi.org/10.1038/s41550-018-0629-3
- Choi, S., Bessho, N., Wang, S., Chen, L.-J., & Hesse, M. (2022). Whistler waves generated by nongyrotropic and gyrotropic electron beams during asymmetric guide field reconnection. Physics of Plasmas, 29(1), 012903. https://doi.org/10.1063/5.0059884
- Deng, X., Ashour-Abdalla, M., Zhou, M., Walker, R., El-Alaoui, M., Angelopoulos, V., et al. (2010). Wave and particle characteristics of earthward electron injections associated with dipolarization fronts. Journal of Geophysical Research, 115(A9), A09225. https://doi.org/10.1029/2009JA015107
- Divin, A. V., Sitnov, M. I., Swisdak, M., & Drake, J. F. (2007). Reconnection onset in the magnetotail: Particle simulations with open boundary conditions. Geophysical Research Letters, 34(9), 09109. https://doi.org/10.1029/2007GL029292
- Egedal, J., Wetherton, B., Daughton, W., & Le, A. (2016). Processes setting the structure of the electron distribution function within the exhausts of anti-parallel reconnection. Physics of Plasmas, 23(12), 122904. https://doi.org/10.1063/1.4972135
- Fletcher, L., Dennis, B. R., Hudson, H. S., Krucker, S., Phillips, K., Veronig, A., et al. (2011). An observational overview of solar flares. Space Science Reviews, 159(1–4), 19–106. https://doi.org/10.1007/s11214-010-9701-8
- Fu, H., Grigorenko, E. E., Gabrielse, C., Liu, C., Lu, S., Hwang, K. J., et al. (2020). Magnetotail dipolarization fronts and particle acceleration: A review. Science China Earth Sciences, 63, 235–256. https://doi.org/10.1007/s11430-019-9551-y
- Fu, H. S., Cao, J. B., Khotyaintsev, Y. V., Sitnov, M. I., Runov, A., Fu, S. Y., et al. (2013). Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophysical Research Letters, 40(23), 6023–6027. https://doi.org/10.1002/2013GL058620
- Fu, H. S., Khotyaintsev, Y. V., André, M., & Vaivads, A. (2011). Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 38(16), L16104. https://doi.org/10.1029/2011GL048528
- Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., & Huang, S. Y. (2012). Occurrence rate of earthward-propagating dipolarization fronts. Geophysical Research Letters, 39(10), L10101. https://doi.org/10.1029/2012GL051784
- Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., Sergeev, V. A., Huang, S. Y., et al. (2012). Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. Journal of Geophysical Research, 117(A12), A12221. https://doi.org/10.1029/2012JA018141
- Fujimoto, K., & Sydora, R. D. (2008). Whistler waves associated with magnetic reconnection. Geophysical Research Letters, 35(19). https://doi.org/10.1029/2008GL035201
- Gary, S. P., & Madland, C. D. (1985). Electromagnetic electron temperature anisotropy instabilities. Journal of Geophysical Research, 90(A8), 7607–7610. https://doi.org/10.1029/JA090iA08p07607
- Gonzalez, W., & Parker, E. (2016). Magnetic reconnection. Springer.
- Grigorenko, E. E., Malykhin, A. Y., Shklyar, D. R., Fadanelli, S., Lavraud, B., Panov, E. V., et al. (2020). Investigation of electron distribution functions associated with whistler waves at dipolarization fronts in the earth’s magnetotail: MMS observations. Journal of Geophysical Research: Space Physics, 125(9), e2020JA028268. https://doi.org/10.1029/2020JA028268
- Guzdar, P. N., Drake, J. F., McCarthy, D., Hassam, A. B., & Liu, C. S. (1993). Three-dimensional fluid simulations of the nonlinear drift-resistive ballooning modes in tokamak edge plasmas. Physics of Fluids B, 5(10), 3712–3727. https://doi.org/10.1063/1.860842
- Hesse, M., & Birn, J. (1991). On dipolarization and its relation to the substorm current wedge. Journal of Geophysical Research, 96(A11), 19417–19426. https://doi.org/10.1029/91JA01953
- Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontar, E. P., et al. (2011). Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Science Reviews, 159(1–4), 107–166. https://doi.org/10.1007/s11214-010-9680-9
- Hoshino, M., Mukai, T., Terasawa, T., & Shinohara, I. (2001). Suprathermal electron acceleration in magnetic reconnection. Journal of Geophysical Research, 106(A11), 979–997. https://doi.org/10.1029/2001ja900052
- Huang, K., Lu, Q., Lu, S., Wang, R., & Wang, S. (2021). Formation of pancake, rolling pin, and cigar distributions of energetic electrons at the dipolarization fronts (DFs) driven by magnetic reconnection: A two-dimensional particle-in-cell simulation. Journal of Geophysical Research: Space Physics, 126(10), e2021JA029939. https://doi.org/10.1029/2021JA029939
- Hwang, K.-J., Goldstein, M. L., Lee, E., & Pickett, J. S. (2011). Cluster observations of multiple dipolarization fronts. Journal of Geophysical Research, 116(A5). https://doi.org/10.1029/2010JA015742
- Krucker, S., Hudson, H. S., Glesener, L., White, S. M., Masuda, S., Wuelser, J.-P., & Lin, R. P. (2010). Measurements of the coronal acceleration region of a solar flare. The Astrophysical Journal, 714, 1108–1119. https://doi.org/10.1088/0004-637X/714/2/1108
- Le Contel, O., Roux, A., Jacquey, C., Robert, P., Berthomier, M., Chust, T., et al. (2009). Quasi-parallel whistler mode waves observed by themis during near-earth dipolarizations. Annales Geophysicae, 27(6), 2259–2275. https://doi.org/10.5194/angeo-27-2259-2009
- Lembege, B., & Pellat, R. (1982). Stability of a thick two-dimensional quasineutral sheet. Physics of Fluids, 25, 1995–2004. https://doi.org/10.1063/1.863677
- Li, H., Zhou, M., Deng, X., Yuan, Z., Guo, L., Yu, X., et al. (2015). A statistical study on the whistler waves behind dipolarization fronts. Journal of Geophysical Research: Space Physics, 120(2), 1086–1095. https://doi.org/10.1002/2014JA020474
- Liu, C. M., & Fu, F. S. (2019). Anchor point of electron acceleration around dipolarization fronts in space plasmas. The Astrophysical Journal Letters, 873, L2. https://doi.org/10.3847/2041-8213/ab06cb
- Liu, C. M., Fu, H. S., Cao, J. B., Xu, Y., Yu, Y. Q., Kronberg, E. A., & Daly, P. W. (2017). Rapid pitch angle evolution of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 44(20), 10,116–10,124. https://doi.org/10.1002/2017GL075007
- Liu, C. M., Fu, H. S., Xu, Y., Cao, J. B., & Liu, W. L. (2017). Explaining the rolling-pin distribution of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 44(13), 6492–6499. https://doi.org/10.1002/2017GL074029
- Liu, C. M., Fu, H. S., Xu, Y., Khotyaintsev, Y. V., Burch, J. L., Ergun, R. E., et al. (2018). Electron-scale measurements of dipolarization front. Geophysical Research Letters, 45(10), 4628–4638. https://doi.org/10.1029/2018GL077928
- Liu, Y.-H., Cassak, P., Li, X., Hesse, M., Lin, S.-C., & Genestreti, K. (2022). First-principles theory of the rate of magnetic reconnection in magnetospheric and solar plasmas. Communications Physics, 5(1), 1–9. https://doi.org/10.1038/s42005-022-00854-x
- Longcope, D. W., & Guidoni, S. (2011). A model for the origin of high density in looptop X-ray source. The Astrophysical Journal, 740, 73. https://doi.org/10.1088/0004-637x/740/2/73
- Longcope, D. W., Jardins, A. C. D., Carranza-Fulmer, T., & Qiu, J. (2010). A quantitative model of energy release and heating by time-dependent, localized reconnection in a flare with thermal loop-top X-ray source. Solar Physics, 267, 107–139. https://doi.org/10.1007/s11207-010-9635-z
- Longcope, D. W., Qiu, J., & Brewer, J. (2016). A reconnection-driven model of the hard X-ray loop-top source from flare 2004 February 26. The Astrophysical Journal, 833, 211. https://doi.org/10.3847/1538-4357/833/2/211
- Lu, S., Angelopoulos, V., & Fu, H. (2016). Suprathermal particle energization in dipolarization fronts: Particle-in-cell simulations. Journal of Geophysical Research: Space Physics, 121(10), 9483–9500. https://doi.org/10.1002/2016JA022815
- Ma, W., Zhou, M., Zhong, Z., & Deng, X. (2020). Electron acceleration rate at dipolarization fronts. The Astrophysical Journal, 903, 84. https://doi.org/10.3847/1538-4357/abb8cc
- McPherron, R. L. (1979). Magnetospheric substorms. Reviews of Geophysics, 17(4), 657–681. https://doi.org/10.1029/RG017i004p00657
- Min, K., & Liu, K. (2016). Proton velocity ring-driven instabilities in the inner magnetosphere: Linear theory and particle-in-cell simulations. Journal of Geophysical Research: Space Physics, 121, 475–491. https://doi.org/10.1002/2015ja022042
- Ohtani, S.-i., Shay, M. A., & Mukai, T. (2004). Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations. Journal of Geophysical Research, 109(A3). https://doi.org/10.1029/2003JA010002
- Pan, Q., Ashour-Abdalla, M., El-Alaoui, M., Walker, R. J., & Goldstein, M. L. (2012). Adiabatic acceleration of suprathermal electrons associated with dipolarization fronts. Journal of Geophysical Research, 117(A12), A12224. https://doi.org/10.1029/2012JA018156
- Priest, E. R., & Forbes, T. R. (2002). The magnetic nature of solar flares. Astron. Astrophs. Rev., 10, 313–377. https://doi.org/10.1007/s001590100013
- Pritchett, P. L. (2013). The onset of magnetic reconnection in three dimensions. Physics of Plasmas, 20, 080703. https://doi.org/10.1063/1.4817961
- Pulkkinen, T. (2007). Space weather: Terrestrial perspective. Living Reviews in Solar Physics, 4, 1. https://doi.org/10.12942/lrsp-2007-1
- Qiu, J., Longcope, D. W., Cassak, P. A., & Priest, E. R. (2017). Elongation of flare ribbons. The Astrophysical Journal, 838, 17. https://doi.org/10.3847/1538-4357/aa6341
- Reeves, K. K., Guild, T. B., Hughes, W. J., Korreck, K. E., Lin, J., Raymond, J., et al. (2008). Posteruptive phenomena in coronal mass ejections and substorms: Indicators of a universal process? Journal of Geophysical Research, 113, A00B02. https://doi.org/10.1029/2008ja013049
- Roytershteyn, V., & Delzanno, G. L. (2018). Spectral approach to plasma kinetic simulations based on Hermite decomposition in the velocity space. Frontiers in Astronomy and Space Sciences, 5. https://doi.org/10.3389/fspas.2018.00027
- Runov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D. L., & Zhou, X.-Z. (2015). Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 120, 4369–4383. https://doi.org/10.1002/2015JA021166
- Runov, A., Angelopoulos, V., Gabrielse, C., Zhou, X.-Z., Turner, D., & Plaschke, F. (2013). Electron fluxes and pitch-angle distributions at dipolarization fronts: THEMIS multipoint observations. Journal of Geophysical Research: Space Physics, 118, 744–755. https://doi.org/10.1002/jgra.50121
- Runov, A., Angelopoulos, V., Sitnov, M., Sergeev, V. A., Nakamura, R., Nishimura, Y., et al. (2010). Dipolarization fronts in the magnetotail plasma sheet. Planetary and Space Science, 59(7), 517–525. https://doi.org/10.1016/j.pss.2010.06.006
- Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., et al. (2009). THEMIS observations of an earthward-propagating dipolarization front. Geophysical Research Letters, 36(14). https://doi.org/10.1029/2009GL038980
- Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.-J., Li, S., Plaschke, F., & Bonnell, J. (2011). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116(A5). https://doi.org/10.1029/2010JA016316
- Schmid, D., Nakamura, R., Volwerk, M., Plaschke, F., Narita, Y., Baumjohann, W., et al. (2016). A comparative study of dipolarization fronts at MMS and Cluster. Geophysical Research Letters, 43(12), 6012–6019. https://doi.org/10.1002/2016GL069520
- Schmid, D., Volwerk, M., Nakamura, R., Baumjohann, W., & Heyn, M. (2011). A statistical and event study of magnetotail dipolarization fronts. Annales Geophysicae, 29(9), 1537–1547. https://doi.org/10.5194/angeo-29-1537-2011
- Sharma Pyakurel, P., Shay, M. A., Phan, T. D., Matthaeus, W. H., Drake, J. F., TenBarge, J. M., et al. (2019). Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence. Physics of Plasmas, 26(8), 082307. https://doi.org/10.1063/1.5090403
- Shay, M. A., Drake, J. F., Rogers, B. N., & Denton, R. E. (2001). Alfvénic collisionless reconnection and the Hall term. Journal of Geophysical Research, 106, 3751. https://doi.org/10.1029/1999ja001007
- Shay, M. A., Haggerty, C. C., Phan, T. D., Drake, J. F., Cassak, P. A., Wu, P., et al. (2014). Electron heating during magnetic reconnection: A simulation scaling study. Physics of Plasmas, 21, 122902. https://doi.org/10.1063/1.4904203
- Shuster, J. R., Chen, L.-J., Daughton, W. S., Lee, L. C., Lee, K. H., Bessho, N., et al. (2014). Highly structured electron anisotropy in collisionless reconnection exhausts. Geophysical Research Letters, 41, 5389–5395. https://doi.org/10.1002/2014gl060608
- Shuster, J. R., Chen, L.-J., Hesse, M., Argall, M. R., Daughton, W., Torbert, R. B., & Bessho, N. (2015). Spatiotemporal evolution of electron characteristics in the electron diffusion region of magnetic reconnection: Implications for acceleration and heating. Geophysical Research Letters, 42, 2586–2593. https://doi.org/10.1002/2015gl063601
- Sitnov, M. I., Buzulukova, N., Swisdak, M., Merkin, V. G., & Moore, T. E. (2013). Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophysical Research Letters, 40(1), 22–27. https://doi.org/10.1029/2012GL054701
- Sitnov, M. I., Merkin, V. G., Swisdak, M., Motoba, T., Buzulukova, N., Moore, T. E., et al. (2014). Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions. Journal of Geophysical Research: Space Physics, 119(9), 7151–7168. https://doi.org/10.1002/2014JA020205
- Sitnov, M. I., & Swisdak, M. (2011). Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. Journal of Geophysical Research, 116(A), 12216. https://doi.org/10.1029/2011JA016920
- Sitnov, M. I., Swisdak, M., & Divin, A. V. (2009). Dipolarization fronts as a signature of transient reconnection in the magnetotail. Journal of Geophysical Research, 114(A4). https://doi.org/10.1029/2008JA013980
- Smith, A. W., Jackman, C. M., Thomsen, M. F., Sergis, N., Mitchell, D. G., & Roussos, E. (2018). Dipolarization fronts with associated energized electrons in saturn’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 2714–2735. https://doi.org/10.1002/2017JA024904
- Tang, C. L., Wang, X., & Zhou, M. (2021). Electron pitch angle distributions around dipolarization fronts at the off magnetic equator. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028787. https://doi.org/10.1029/2020JA028787
- Trottenberg, U., Oosterlee, C. W., & Schuller, A. (2000). Multigrid. Academic Press.
- Umeda, T., Ashour-Abdalla, M., Schriver, D., Richard, R. L., & Coroniti, F. V. (2007). Particle-in-cell simulation of Maxwellian ring velocity distribution. Journal of Geophysical Research, 112(A4). https://doi.org/10.1029/2006JA012124
- Viberg, H., Khotyaintsev, Y. V., Vaivads, A., André, M., Fu, H. S., & Cornilleau-Wehrlin, N. (2014). Whistler mode waves at magnetotail dipolarization fronts. Journal of Geophysical Research: Space Physics, 119(4), 2605–2611. https://doi.org/10.1002/2014JA019892
- Vocks, C., & Mann, G. (2006). Whistler wave excitation by relativistic electrons in coronal loops during solar flares. Astronomy & Astrophysics, 452(1), 331–337. https://doi.org/10.1051/0004-6361:20054042
- Wang, K., Lin, C.-H., Wang, L.-Y., Hada, T., Nishimura, Y., Turner, D. L., & Angelopoulos, V. (2014). Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations. Journal of Geophysical Research: Space Physics, 119(12), 9747–9760. https://doi.org/10.1002/2014JA020176
- Wang, S., Chen, L., Bessho, N., Kistler, L. M., Shuster, J. R., & Guo, R. (2016). Electron heating in the exhaust of magnetic reconnection with negligible guide field. Journal of Geophysical Research: Space Physics, 121, 2104–2130. https://doi.org/10.1002/2015ja021892
- Warmuth, A., & Mann, G. (2016). Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. I. Physical parameters and scalings. Astronomy and Astrophysics, 588, A115. https://doi.org/10.1051/0004-6361/201527474
- Winske, D., & Daughton, W. (2012). Generation of lower hybrid and whistler waves by an ion velocity ring distribution. Physics of Plasmas, 19(7), 072109. https://doi.org/10.1063/1.4736983
- Wu, C. S., Yoon, P. H., & Freund, H. P. (1989). A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities. Geophysical Research Letters, 16, 1461–1464. https://doi.org/10.1029/gl016i012p01461
- Wu, M., Lu, Q., Volwerk, M., Vörös, Z., Zhang, T., Shan, L., & Huang, C. (2013). A statistical study of electron acceleration behind the dipolarization fronts in the magnetotail. Journal of Geophysical Research: Space Physics, 118(8), 4804–4810. https://doi.org/10.1002/jgra.50456
- Wu, P., Fritz, T. A., Larvaud, B., & Lucek, E. (2006). Substorm associated magnetotail energetic electrons pitch angle evolutions and flow reversals: Cluster observation. Geophysical Research Letters, 33(17), L17101. https://doi.org/10.1029/2006GL026595
- Xu, S. B., Huang, S. Y., Yuan, Z. G., Deng, X. H., Jiang, K., Wei, Y. Y., et al. (2021). Global spatial distribution of dipolarization fronts in the saturn’s magnetosphere: Cassini observations. Geophysical Research Letters, 48(17), e2021GL092701. https://doi.org/10.1029/2021GL092701
- Xu, Y., Fu, H. S., Liu, C. M., & Wang, T. Y. (2018). Electron acceleration by dipolarization fronts and magnetic reconnection: A quantitative comparison. The Astrophysical Journal, 853, 11. https://doi.org/10.3847/1538-4357/aa9f2f
- Yoo, J., Wang, S., Yerger, E., Jara-Almonte, J., Ji, H., Yamada, M., et al. (2019). Whistler wave generation by electron temperature anisotropy during magnetic reconnection at the magnetopause. Physics of Plasmas, 26(5), 052902. https://doi.org/10.1063/1.5094636
- Zeiler, A., Biskamp, D., Drake, J., Rogers, B., Shay, M., & Scholer, M. (2002). Three-dimensional particle simulations of collisionless magnetic reconnection. Journal of Geophysical Research, 107, 1230. https://doi.org/10.1029/2001ja000287
- Zhao, M. J., Fu, H. S., Liu, C. M., Chen, Z. Z., Xu, Y., Giles, B. L., & Burch, J. L. (2019). Energy range of electron rolling pin distribution behind dipolarization front. Geophysical Research Letters, 46(5), 2390–2398. https://doi.org/10.1029/2019GL082100