Hydrologic and Landscape Controls on Dissolved Organic Matter Composition Across Western North American Arctic Lakes
Corresponding Author
Martin R. Kurek
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
National High Magnetic Field Laboratory Geochemistry Group, Tallahassee, FL, USA
Correspondence to:
M. R. Kurek,
Search for more papers by this authorFenix Garcia-Tigreros
School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorKimberly P. Wickland
United States Geological Survey, Water Resources Mission Area, Boulder, CO, USA
Search for more papers by this authorKaren E. Frey
Graduate School of Geography, Clark University, Worcester, MA, USA
Search for more papers by this authorMark M. Dornblaser
United States Geological Survey, Water Resources Mission Area, Boulder, CO, USA
Search for more papers by this authorRobert G. Striegl
United States Geological Survey, Water Resources Mission Area, Boulder, CO, USA
Search for more papers by this authorSydney F. Niles
National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, Tallahassee, FL, USA
Search for more papers by this authorAmy M. McKenna
National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, Tallahassee, FL, USA
Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO, USA
Search for more papers by this authorPieter J. K. Aukes
Department of Earth & Environmental Studies, University of Waterloo, Waterloo, ON, Canada
Geography & Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada
Search for more papers by this authorEthan D. Kyzivat
Department of Earth, Environmental & Planetary Sciences, Institute at Brown for Environment & Society, Brown University, Providence, RI, USA
Search for more papers by this authorChao Wang
Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorTamlin M. Pavelsky
Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorLaurence C. Smith
Department of Earth, Environmental & Planetary Sciences, Institute at Brown for Environment & Society, Brown University, Providence, RI, USA
Search for more papers by this authorSherry L. Schiff
Department of Earth & Environmental Studies, University of Waterloo, Waterloo, ON, Canada
Search for more papers by this authorDavid Butman
School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorRobert G. M. Spencer
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
National High Magnetic Field Laboratory Geochemistry Group, Tallahassee, FL, USA
Search for more papers by this authorCorresponding Author
Martin R. Kurek
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
National High Magnetic Field Laboratory Geochemistry Group, Tallahassee, FL, USA
Correspondence to:
M. R. Kurek,
Search for more papers by this authorFenix Garcia-Tigreros
School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorKimberly P. Wickland
United States Geological Survey, Water Resources Mission Area, Boulder, CO, USA
Search for more papers by this authorKaren E. Frey
Graduate School of Geography, Clark University, Worcester, MA, USA
Search for more papers by this authorMark M. Dornblaser
United States Geological Survey, Water Resources Mission Area, Boulder, CO, USA
Search for more papers by this authorRobert G. Striegl
United States Geological Survey, Water Resources Mission Area, Boulder, CO, USA
Search for more papers by this authorSydney F. Niles
National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, Tallahassee, FL, USA
Search for more papers by this authorAmy M. McKenna
National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, Tallahassee, FL, USA
Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO, USA
Search for more papers by this authorPieter J. K. Aukes
Department of Earth & Environmental Studies, University of Waterloo, Waterloo, ON, Canada
Geography & Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada
Search for more papers by this authorEthan D. Kyzivat
Department of Earth, Environmental & Planetary Sciences, Institute at Brown for Environment & Society, Brown University, Providence, RI, USA
Search for more papers by this authorChao Wang
Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorTamlin M. Pavelsky
Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorLaurence C. Smith
Department of Earth, Environmental & Planetary Sciences, Institute at Brown for Environment & Society, Brown University, Providence, RI, USA
Search for more papers by this authorSherry L. Schiff
Department of Earth & Environmental Studies, University of Waterloo, Waterloo, ON, Canada
Search for more papers by this authorDavid Butman
School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorRobert G. M. Spencer
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
National High Magnetic Field Laboratory Geochemistry Group, Tallahassee, FL, USA
Search for more papers by this authorAbstract
Northern high-latitude lakes are hotspots for cycling dissolved organic carbon (DOC) inputs from allochthonous sources to the atmosphere. However, the spatial distribution of lake dissolved organic matter (DOM) is largely unknown across Arctic-boreal regions with respect to the surrounding landscape. We expand on regional studies of northern high-latitude DOM composition by integrating DOC concentrations, optical properties, and molecular-level characterization from lakes spanning the Canadian Taiga to the Alaskan Tundra. Lakes were sampled during the summer from July to early September to capture the growing season. DOM became more optically processed and molecular-level aromaticity increased northward across the Canadian Shield to the southern Arctic and from interior Alaska to the Tundra, suggesting relatively greater DOM incorporation from allochthonous sources. Using water isotopes (δ18O-H2O), we report a weak overall trend of increasing DOC and decreasing aromaticity in lakes that were hydrologically isolated from the landscape and enriched in δ18O-H2O, while within-region trends were stronger and varied depending on the landscape. Finally, DOC correlated weakly with chromophoric dissolved organic matter (CDOM) across the study sites, suggesting that autochthonous and photobleached DOM were a major component of the DOC in these regions; however, some of the northernmost and wetland-dominated lakes followed pan-Arctic riverine DOC-CDOM relationships, indicating strong contributions from allochthonous inputs. As many lakes across the North American Arctic are experiencing changes in temperature and precipitation, we expect the proportions of allochthonous and autochthonous DOM to respond with aquatic optical browning with greater landscape connectivity and more internally produced DOM in hydrologically isolated lakes.
Key Points
-
Dissolved organic matter in high-latitude Canadian lakes increases in aromaticity northward as forests transition to shrublands
-
High-latitude lakes that are hydrologically connected to the landscape have lower dissolved organic carbon (DOC) and are more allochthonous than isolated lakes
-
DOC in many northern high-latitude lakes was influenced by autochthonous production and correlated weakly with absorbance
Plain Language Summary
As the Arctic responds to warming, permafrost thaw, and variations in precipitation, the distribution of carbon pools within northern high-latitude lakes will also change. Specifically, the composition of dissolved organic matter (DOM) and how it is altered and moved from the landscape to the atmosphere will be highly dependent on local precipitation patterns and hydrology, but these relationships are not well constrained across large regions. We sampled over 70 individual lakes during the summer spanning various ecoregions from interior Canada to the Alaskan Tundra and characterized their dissolved organic carbon (DOC) concentrations and DOM composition using bulk and molecular-level analysis. Overall, DOM from these lakes was highly influenced by aquatic primary production but increased in the relative proportion of terrestrially derived organic matter as lake setting transitioned from forests to shrublands above the tree line. We also report a weak relationship between increasing DOC and decreasing terrestrial DOM as lakes become more hydrologically isolated across the pan-Arctic; however, regional trends were stronger within forested sampling areas and weaker in shrublands. With the hydrologic setting of many northern high-latitude lakes predicted to change in the coming decades, we expect the proportions of land- and aquatic-derived DOM to respond as well.
Conflict of Interest
The authors declare no conflicts of interest relevant to this study.
Open Research
Data Availability Statement
The authors declare that all data supporting the results of this study are archived in the Open Science Framework (https://doi.org/10.17605/OSF.IO/CT3EU).
Supporting Information
Filename | Description |
---|---|
2022GB007495-sup-0001-Supporting Information SI-S01.pdf801.5 KB | Supporting Information S1 |
2022GB007495-sup-0002-Table SI-S01.pdf220.2 KB | Table S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ågren, A., Buffam, I., Berggren, M., Bishop, K., Jansson, M., & Laudon, H. (2008). Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. Journal of Geophysical Research, 113(G3), G03031. https://doi.org/10.1029/2007jg000674
- Ala-Aho, P., Soulsby, C., Pokrovsky, O. S., Kirpotin, S. N., Karlsson, J., Serikova, S., et al. (2018). Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. Journal of Hydrology, 556, 279–293. https://doi.org/10.1016/j.jhydrol.2017.11.024
- Anderson, L., Birks, J., Rover, J., & Guldager, N. (2013). Controls on recent Alaskan lake changes identified from water isotopes and remote sensing. Geophysical Research Letters, 40(13), 3413–3418. https://doi.org/10.1002/grl.50672
- Aukes, P. J., & Schiff, S. L. (2021). Composition Wheels: Visualizing dissolved organic matter using common composition metrics across a variety of Canadian ecozones. PLoS One, 16(7), e0253972. https://doi.org/10.1371/journal.pone.0253972
- Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., & Tranvik, L. J. (2009). The boundless carbon cycle. Nature Geoscience, 2(9), 598–600. https://doi.org/10.1038/ngeo618
- Behnke, M. I., McClelland, J. W., Tank, S. E., Kellerman, A. M., Holmes, R. M., Haghipour, N., et al. (2021). Pan-Arctic riverine dissolved organic matter: Synchronous molecular stability, shifting sources and subsidies. Global Biogeochemical Cycles, 35(4), e2020GB006871. https://doi.org/10.1029/2020gb006871
- Bell, M. A., Overy, D. P., & Blais, J. M. (2020). A continental scale spatial investigation of lake sediment organic compositions using sedimentomics. Science of the Total Environment, 719, 137746. https://doi.org/10.1016/j.scitotenv.2020.137746
- Berner, L. T., & Goetz, S. J. (2022). Satellite observations document trends consistent with a boreal forest biome shift. Global Change Biology, 28(10), 3275–3292. https://doi.org/10.1111/gcb.16121
- Bintanja, R., & Andry, O. (2017). Towards a rain-dominated Arctic. Nature Climate Change, 7(4), 263–267. https://doi.org/10.1038/nclimate3240
- Blakney, G. T., Hendrickson, C. L., & Marshall, A. G. (2011). Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. International Journal of Mass Spectrometry, 306(2–3), 246–252. https://doi.org/10.1016/j.ijms.2011.03.009
- Bogard, M. J., Kuhn, C. D., Johnston, S. E., Striegl, R. G., Holtgrieve, G. W., Dornblaser, M. M., et al. (2019). Negligible cycling of terrestrial carbon in manyf lakes of the arid circumpolar landscape. Nature Geoscience, 12(3), 180–185. https://doi.org/10.1038/s41561-019-0299-5
- Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S. H., et al. (2016). Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. Journal of Geophysical Research: Biogeosciences, 121(3), 621–649. https://doi.org/10.1002/2015jg003131
- Catalán, N., Pastor, A., Borrego, C. M., Casas-Ruiz, J. P., Hawkes, J. A., Gutiérrez, C., et al. (2021). The relevance of environment vs. composition on dissolved organic matter degradation in freshwaters. Limnology & Oceanography, 66(2), 306–320. https://doi.org/10.1002/lno.11606
- Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107(2), 402–418. https://doi.org/10.1021/cr050350
- Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 172–185. https://doi.org/10.1007/s10021-006-9013-8
- Corilo, Y. E. (2014). PetroOrg software. Florida State University; All Rights reserved. Retrieved from http://www.petroorg.com
- Cory, R. M., & McKnight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 39(21), 8142–8149. https://doi.org/10.1021/es0506962
- Cory, R. M., McKnight, D. M., Chin, Y. P., Miller, P., & Jaros, C. L. (2007). Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. Journal of Geophysical Research, 112(G4), G04S51. https://doi.org/10.1029/2006jg000343
- Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., & Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods, 8(2), 67–78. https://doi.org/10.4319/lom.2010.8.67
- DeBeer, C. M., Wheater, H. S., Carey, S. K., & Chun, K. P. (2016). Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis. Hydrology and Earth System Sciences, 20(4), 1573–1598. https://doi.org/10.5194/hess-20-1573-2016
- del Giorgio, P. A., & Peters, R. H. (1994). Patterns in planktonic P: R ratios in lakes: Influence of Lake Trophy and dissolved organic carbon. Limnology & Oceanography, 39(4), 772–787. https://doi.org/10.4319/lo.1994.39.4.0772
- Dittmar, T., Koch, B., Hertkorn, N., & Kattner, G. (2008). A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography: Methods, 6(6), 230–235. https://doi.org/10.4319/lom.2008.6.230
- Dornblaser, M. M., & Striegl, R. G. (2015). Switching predominance of organic versus inorganic carbon exports from an intermediate-size subarctic watershed. Geophysical Research Letters, 42(2), 386–394. https://doi.org/10.1002/2014gl062349
- Drake, T. W., Raymond, P. A., & Spencer, R. G. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3(3), 132–142. https://doi.org/10.1002/lol2.10055
- Ecosystem Classification Group. (2008). Ecological regions of the northwest Territories—Taiga Shield. Department of Environment and Natural Resources, Government of the Northwest Territories.
- Ecosystem Classification Group. (2012). Ecological regions of the northwest Territories—southern Arctic. Department of Environment and Natural Resources, Government of the Northwest Territories.
- Fellman, J. B., Hood, E., & Spencer, R. G. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology & Oceanography, 55(6), 2452–2462. https://doi.org/10.4319/lo.2010.55.6.2452
- Frey, K. E., Sobczak, W. V., Mann, P. J., & Holmes, R. M. (2016). Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia. Biogeosciences, 13(8), 2279–2290. https://doi.org/10.5194/bg-13-2279-2016
- Gonsior, M., Peake, B. M., Cooper, W. T., Podgorski, D. C., D'Andrilli, J., Dittmar, T., & Cooper, W. J. (2011). Characterization of dissolved organic matter across the Subtropical Convergence off the South Island, New Zealand. Marine Chemistry, 123(1–4), 99–110. https://doi.org/10.1016/j.marchem.2010.10.004
- Guillemette, F., McCallister, S. L., & del Giorgio, P. A. (2013). Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. Journal of Geophysical Research: Biogeosciences, 118(3), 963–973. https://doi.org/10.1002/jgrg.20077
- Hansen, A. M., Kraus, T. E., Pellerin, B. A., Fleck, J. A., Downing, B. D., & Bergamaschi, B. A. (2016). Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology & Oceanography, 61(3), 1015–1032. https://doi.org/10.1002/lno.10270
- Hastie, A., Lauerwald, R., Weyhenmeyer, G., Sobek, S., Verpoorter, C., & Regnier, P. (2018). CO 2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections. Global Change Biology, 24(2), 711–728. https://doi.org/10.1111/gcb.13902
- Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology & Oceanography, 53(3), 955–969. https://doi.org/10.4319/lo.2008.53.3.0955
- Hinkel, K. M., Frohn, R. C., Nelson, F. E., Eisner, W. R., & Beck, R. A. (2005). Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafrost and Periglacial Processes, 16(4), 327–341. https://doi.org/10.1002/ppp.532
- IAEA/WMO. (2021). Global network of isotopes in precipitation. In The GNIP database. Retrieved from https://nucleus.iaea.org/wiser
- Ireson, A. M., Barr, A. G., Johnstone, J. F., Mamet, S. D., Van der Kamp, G., Whitfield, C. J., et al. (2015). The changing water cycle: The boreal plains ecozone of Western Canada. Wiley Interdisciplinary Reviews: Water, 2(5), 505–521. https://doi.org/10.1002/wat2.1098
- Jansson, M., Persson, L., De Roos, A. M., Jones, R. I., & Tranvik, L. J. (2007). Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology & Evolution, 22(6), 316–322. https://doi.org/10.1016/j.tree.2007.02.015
- Johnston, S. E., Bogard, M. J., Rogers, J. A., Butman, D., Striegl, R. G., Dornblaser, M., & Spencer, R. G. (2019). Constraining dissolved organic matter sources and temporal variability in a model sub-Arctic lake. Biogeochemistry, 146(3), 271–292. https://doi.org/10.1007/s10533-019-00619-9
- Johnston, S. E., Carey, J. C., Kellerman, A., Podgorski, D. C., Gewirtzman, J., & Spencer, R. G. (2021). Controls on riverine dissolved organic matter composition across an Arctic-Boreal latitudinal gradient. Journal of Geophysical Research: Biogeosciences, 126(9), e2020JG005988. https://doi.org/10.1029/2020jg005988
- Johnston, S. E., Finlay, K., Spencer, R. G., Butman, D. E., Metz, M., Striegl, R., & Bogard, M. J. (2022). Zooplankton release complex dissolved organic matter to aquatic environments. Biogeochemistry, 157(3), 313–325. https://doi.org/10.1007/s10533-021-00876-7
- Johnston, S. E., Striegl, R. G., Bogard, M. J., Dornblaser, M. M., Butman, D. E., Kellerman, A. M., et al. (2020). Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes. Limnology & Oceanography, 65(8), 1764–1780. https://doi.org/10.1002/lno.11417
- Jones, B. M., Grosse, G. D. A. C., Arp, C. D., Jones, M. C., Anthony, K. W., & Romanovsky, V. E. (2011). Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research, 116(G2), G00M03. https://doi.org/10.1029/2011jg001666
- Kaiser, N. K., Quinn, J. P., Blakney, G. T., Hendrickson, C. L., & Marshall, A. G. (2011). A novel 9.4 Tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range. Journal of the American Society for Mass Spectrometry, 22(8), 1343–1351. https://doi.org/10.1007/s13361-011-0141-9
- Kassambara, A., & Mundt, F. (2017). Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version, 1(4), 337–354.
- Kellerman, A. M., Dittmar, T., Kothawala, D. N., & Tranvik, L. J. (2014). Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nature Communications, 5(1), 1–8. https://doi.org/10.1038/ncomms4804
- Kellerman, A. M., Guillemette, F., Podgorski, D. C., Aiken, G. R., Butler, K. D., & Spencer, R. G. (2018). Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems. Environmental Science & Technology, 52(5), 2538–2548. https://doi.org/10.1021/acs.est.7b05513
- Kellerman, A. M., Hawkings, J. R., Wadham, J. L., Kohler, T. J., Stibal, M., Grater, E., et al. (2020). Glacier outflow dissolved organic matter as a window into seasonally changing carbon sources: Leverett Glacier, Greenland. Journal of Geophysical Research: Biogeosciences, 125(4), e2019JG005161. https://doi.org/10.1029/2019jg005161
- Kellerman, A. M., Kothawala, D. N., Dittmar, T., & Tranvik, L. J. (2015). Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nature Geoscience, 8(6), 454–457. https://doi.org/10.1038/ngeo2440
- Kling, G. W., Kipphut, G. W., & Miller, M. C. (1991). Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets. Science, 251(4991), 298–301. https://doi.org/10.1126/science.251.4991.298
- Koch, B. P., & Dittmar, T. (2006). From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Communications in Mass Spectrometry, 20(5), 926–932. https://doi.org/10.1002/rcm.2386
- Koch, B. P., & Dittmar, T. (2016). From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Communications in Mass Spectrometry, 30(5), 250–932. https://doi.org/10.1002/rcm.2386
- Koehler, B., Von Wachenfeldt, E., Kothawala, D., & Tranvik, L. J. (2012). Reactivity continuum of dissolved organic carbon decomposition in lake water. Journal of Geophysical Research, 117(G1), G01024. https://doi.org/10.1029/2011jg001793
- Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., & Tranvik, L. J. (2013). Inner filter correction of dissolved organic matter fluorescence. Limnology and Oceanography: Methods, 11(12), 616–630. https://doi.org/10.4319/lom.2013.11.616
- Kothawala, D. N., Stedmon, C. A., Müller, R. A., Weyhenmeyer, G. A., Köhler, S. J., & Tranvik, L. J. (2014). Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey. Global Change Biology, 20(4), 1101–1114. https://doi.org/10.1111/gcb.12488
- Kuhn, C., Bogard, M., Johnston, S. E., John, A., Vermote, E., Spencer, R., et al. (2020). Satellite and airborne remote sensing of gross primary productivity in boreal Alaskan lakes. Environmental Research Letters, 15(10), 105001. https://doi.org/10.1088/1748-9326/aba46f
- Kuhn, C., & Butman, D. (2021). Declining greenness in Arctic-boreal lakes. Proceedings of the National Academy of Sciences of the United States of America, 118(15). https://doi.org/10.1073/pnas.2021219118
- Kurek, M. R., Frey, K. E., Guillemette, F., Podgorski, D. C., Townsend-Small, A., Arp, C. D., et al. (2022). Trapped under ice: Spatial and seasonal dynamics of dissolved organic matter composition in tundra lakes. Journal of Geophysical Research: Biogeosciences, 127(4), e2021JG006578. https://doi.org/10.1029/2021jg006578
- Kurek, M. R., Poulin, B. A., McKenna, A. M., & Spencer, R. G. (2020). Deciphering dissolved organic matter: Ionization, dopant, and fragmentation insights via Fourier transform-ion cyclotron resonance mass spectrometry. Environmental Science & Technology, 54(24), 16249–16259. https://doi.org/10.1021/acs.est.0c05206
- Lapierre, J. F., & Del Giorgio, P. A. (2014). Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks. Biogeosciences, 11(20), 5969–5985. https://doi.org/10.5194/bg-11-5969-2014
- Lapierre, J. F., Guillemette, F., Berggren, M., & Del Giorgio, P. A. (2013). Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nature Communications, 4(1), 1–7. https://doi.org/10.1038/ncomms3972
- Lara, M. J., Nitze, I., Grosse, G., Martin, P., & McGuire, A. D. (2018). Reduced arctic tundra productivity linked with landform and climate change interactions. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-20692-8
- Larsen, S., Andersen, T. O. M., & Hessen, D. O. (2011). Climate change predicted to cause severe increase of organic carbon in lakes. Global Change Biology, 17(2), 1186–1192. https://doi.org/10.1111/j.1365-2486.2010.02257.x
- Li, Y., Harir, M., Uhl, J., Kanawati, B., Lucio, M., Smirnov, K. S., et al. (2017). How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Research, 116, 316–323. https://doi.org/10.1016/j.watres.2017.03.038
- Liljedahl, A. K., Timling, I., Frost, G. V., & Daanen, R. P. (2020). Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Communications Earth & Environment, 1(1), 1–9. https://doi.org/10.1038/s43247-020-00050-1
10.1038/s43247-020-00050-1 Google Scholar
- Loboda, T. V., Hoy, E., & Carroll, M. L. (2017). ABoVE: Study domain and standard reference grids. ORNL DAAC.
- MacDonald, E. N., Tank, S. E., Kokelj, S. V., Froese, D. G., & Hutchins, R. H. (2021). Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic. Environmental Research Letters, 16(2), 024036. https://doi.org/10.1088/1748-9326/abd971
- MacDonald, L. A., Turner, K. W., McDonald, I., Kay, M. L., Hall, R. I., & Wolfe, B. B. (2021). Isotopic evidence of increasing water abundance and lake hydrological change in old crow flats, Yukon, Canada. Environmental Research Letters, 16(12), 124024. https://doi.org/10.1088/1748-9326/ac3533
- Mann, B. F., Chen, H., Herndon, E. M., Chu, R. K., Tolic, N., Portier, E. F., et al. (2015). Indexing permafrost soil organic matter degradation using high-resolution mass spectrometry. PLoS One, 10(6), e0130557. https://doi.org/10.1371/journal.pone.0130557
- Mann, P. J., Spencer, R. G., Hernes, P. J., Six, J., Aiken, G. R., Tank, S. E., et al. (2016). Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements. Frontiers of Earth Science, 4, 25. https://doi.org/10.3389/feart.2016.00025
- McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., et al. (2009). Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 523–555. https://doi.org/10.1890/08-2025.1
- McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., et al. (2018). Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 115(15), 3882–3887. https://doi.org/10.1073/pnas.1719903115
- McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology & Oceanography, 46(1), 38–48. https://doi.org/10.4319/lo.2001.46.1.0038
- Mentges, A., Feenders, C., Seibt, M., Blasius, B., & Dittmar, T. (2017). Functional molecular diversity of marine dissolved organic matter is reduced during degradation. Frontiers in Marine Science, 4, 194. https://doi.org/10.3389/fmars.2017.00194
- Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J., McGuire, A. D., et al. (2022). Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 3(1), 55–67. https://doi.org/10.1038/s43017-021-00230-3
- Mostovaya, A., Hawkes, J. A., Dittmar, T., & Tranvik, L. J. (2017). Molecular determinants of dissolved organic matter reactivity in lake water. Frontiers of Earth Science, 5, 106. https://doi.org/10.3389/feart.2017.00106
- Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., et al. (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change, 10(2), 106–117. https://doi.org/10.1038/s41558-019-0688-1
- O'Donnell, J. A., Aiken, G. R., Kane, E. S., & Jones, J. B. (2010). Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska. Journal of Geophysical Research, 115(G3), G03025. https://doi.org/10.1029/2009jg001153
- Omernik, J. M. (1995). Ecoregions: A spatial framework for environmental management. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making, 49, 62.
- Perdue, E. M., & Ritchie, J. D. (2014). Dissolved organic matter in freshwaters. Treatise on Geochemistry, 7, 237–272. https://doi.org/10.1016/b978-0-08-095975-7.00509-x
- Peuravuori, J., & Pihlaja, K. (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 337(2), 133–149. https://doi.org/10.1016/s0003-2670(96)00412-6
- Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings, J. A., et al. (2019). Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nature Geoscience, 12(8), 627–631. https://doi.org/10.1038/s41561-019-0387-6
- Poulin, B. A., Ryan, J. N., Nagy, K. L., Stubbins, A., Dittmar, T., Orem, W., et al. (2017). Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment. Environmental Science & Technology, 51(7), 3630–3639. https://doi.org/10.1021/acs.est.6b04142
- Pugh, E. A., Olefeldt, D., Leader, S. N., Hokanson, K. J., & Devito, K. J. (2021). Characteristics of dissolved organic carbon in Boreal Lakes: High spatial and inter-annual variability controlled by landscape attributes and wet-dry periods. Water Resources Research, 57(11), e2021WR030021. https://doi.org/10.1029/2021wr030021
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
- Šantl-Temkiv, T., Finster, K., Dittmar, T., Hansen, B. M., Thyrhaug, R., Nielsen, N. W., & Karlson, U. G. (2013). Hailstones: A window into the microbial and chemical inventory of a storm cloud. PLoS One, 8(1), e53550. https://doi.org/10.1371/journal.pone.0053550
- Savory, J. J., Kaiser, N. K., McKenna, A. M., Xian, F., Blakney, G. T., Rodgers, R. P., et al. (2011). Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a “walking” calibration equation. Analytical Chemistry, 83(5), 1732–1736. https://doi.org/10.1021/ac102943z
- Schauer, A. J., Schoenemann, S. W., & Steig, E. J. (2016). Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy. Rapid Communications in Mass Spectrometry, 30(18), 2059–2069. https://doi.org/10.1002/rcm.7682
- Schiff, S., Aravena, R., Mewhinney, E., Elgood, R., Warner, B., Dillon, P., & Trumbore, S. (1998). Precambrian shield wetlands: Hydrologic control of the sources and export of dissolved organic matter. Climatic Change, 40(2), 167–188. https://doi.org/10.1023/a:1005496331593
- Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., et al. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–179. https://doi.org/10.1038/nature14338
- Smith, L. C., Sheng, Y., MacDonald, G. M., & Hinzman, L. D. (2005). Disappearing arctic lakes. Science, 308(5727), 1429. https://doi.org/10.1126/science.1108142
- Sobek, S., Tranvik, L. J., & Cole, J. J. (2005). Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles, 19(2). https://doi.org/10.1029/2004gb002264
- Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., et al. (2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems, 18(3), 376–389. https://doi.org/10.1007/s10021-015-9848-y
- Spencer, R. G., Aiken, G. R., Butler, K. D., Dornblaser, M. M., Striegl, R. G., & Hernes, P. J. (2009). Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic ocean: A case study of the Yukon river, Alaska. Geophysical Research Letters, 36(6), L06401. https://doi.org/10.1029/2008gl036831
- Spencer, R. G., Aiken, G. R., Wickland, K. P., Striegl, R. G., & Hernes, P. J. (2008). Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Global Biogeochemical Cycles, 22(4), GB4002. https://doi.org/10.1029/2008gb003231
- Spencer, R. G., Butler, K. D., & Aiken, G. R. (2012). Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. Journal of Geophysical Research, 117(G3), G03001. https://doi.org/10.1029/2011jg001928
- Spencer, R. G., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C., Holmes, R. M., et al. (2015). Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research Letters, 42(8), 2830–2835. https://doi.org/10.1002/2015gl063498
- Stackpoole, S. M., Butman, D. E., Clow, D. W., Verdin, K. L., Gaglioti, B. V., Genet, H., & Striegl, R. G. (2017). Inland waters and their role in the carbon cycle of Alaska. Ecological Applications, 27(5), 1403–1420. https://doi.org/10.1002/eap.1552
- Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4), 239–254. https://doi.org/10.1016/s0304-4203(03)00072-0
- Stolpmann, L., Coch, C., Morgenstern, A., Boike, J., Fritz, M., Herzschuh, U., et al. (2021). First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region. Biogeosciences, 18(12), 3917–3936. https://doi.org/10.5194/bg-18-3917-2021
- Stubbins, A., Spencer, R. G., Chen, H., Hatcher, P. G., Mopper, K., Hernes, P. J., et al. (2010). Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnology & Oceanography, 55(4), 1467–1477. https://doi.org/10.4319/lo.2010.55.4.1467
- Tank, S. E., Lesack, L. F., Gareis, J. A., Osburn, C. L., & Hesslein, R. H. (2011). Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnology & Oceanography, 56(4), 1297–1309. https://doi.org/10.4319/lo.2011.56.4.1297
- Tank, S. E., Lesack, L. F., & Hesslein, R. H. (2009). Northern delta lakes as summertime CO2 absorbers within the arctic landscape. Ecosystems, 12(1), 144–157. https://doi.org/10.1007/s10021-008-9213-5
- Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2013). Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 17(11), 4713–4728. https://doi.org/10.5194/hess-17-4713-2013
- Textor, S. R., Wickland, K. P., Podgorski, D. C., Johnston, S. E., & Spencer, R. G. (2019). Dissolved organic carbon turnover in permafrost-influenced watersheds of interior Alaska: Molecular insights and the priming effect. Frontiers of Earth Science, 7, 275. https://doi.org/10.3389/feart.2019.00275
- Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology & Oceanography, 54(6), 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
- Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396–6402. https://doi.org/10.1002/2014gl060641
- Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G., Treat, C. C., Striegl, R. G., et al. (2015). Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: A meta-analysis. Biogeosciences, 12(23), 6915–6930. https://doi.org/10.5194/bg-12-6915-2015
- Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen, R., et al. (2018). 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-05738-9
- Walvoord, M. A., Voss, C. I., & Wellman, T. P. (2012). Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 48(7), W07524. https://doi.org/10.1029/2011wr011595
- Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20), 4702–4708. https://doi.org/10.1021/es030360x
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.
10.1007/978-3-319-24277-4 Google Scholar
- Wickland, K. P., Aiken, G. R., Butler, K., Dornblaser, M. M., Spencer, R. G. M., & Striegl, R. G. (2012). Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen. Global Biogeochemical Cycles, 26(4), GB004342. https://doi.org/10.1029/2012gb004342
- Wickland, K. P., Jorgenson, M. T., Koch, J. C., Kanevskiy, M., & Striegl, R. G. (2020). Carbon dioxide and methane flux in a dynamic Arctic tundra landscape: Decadal-scale impacts of ice wedge degradation and stabilization. Geophysical Research Letters, 47(22), e2020GL089894. https://doi.org/10.1029/2020gl089894
- Wickland, K. P., Neff, J. C., & Aiken, G. R. (2007). Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability. Ecosystems, 10(8), 1323–1340. https://doi.org/10.1007/s10021-007-9101-4
- Wologo, E., Shakil, S., Zolkos, S., Textor, S., Ewing, S., Klassen, J., et al. (2021). Stream dissolved organic matter in permafrost regions shows surprising compositional similarities but negative priming and nutrient effects. Global Biogeochemical Cycles, 35(1), e2020GB006719. https://doi.org/10.1029/2020gb006719
- Zherebker, A., Kim, S., Schmitt-Kopplin, P., Spencer, R. G., Lechtenfeld, O., Podgorski, D. C., et al. (2020). Interlaboratory comparison of humic substances compositional space as measured by Fourier transform ion cyclotron resonance mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 1(9), 1447–1467. https://doi.org/10.1515/pac-2019-0809
References From the Supporting Information
- Brown, J., Ferrians, Jr. O. J., Heginbottom, J. A., & Melnikov, E. S. (1997). Circum-arctic map of permafrost and ground ice conditions. National Snow and Ice Data Center. https://doi.org/10.7265/skbg-kf16
- Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M., Townsend-Small, A., et al. (2018). Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 8(2), 166–171. https://doi.org/10.1038/s41558-017-0066-9
- Hinkel, K. M., Eisner, W. R., Bockheim, J. G., Nelson, F. E., Peterson, K. M., & Dai, X. (2003). Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula. Alaska. Arctic, Antarctic, and Alpine Research, 35(3), 291–300. https://doi.org/10.1657/1523-0430(2003)035[0291:SEAACS]2.0.CO;2
- Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G., et al. (2021). ESA permafrost climate change initiative (permafrost_cci): Permafrost extent for the Northern Hemisphere, v3. 0’. CEDA. Retrieved from https://catalogue.ceda.ac.uk/uuid/6e2091cb0c8b4106921b63cd5357c97c
- Peters, D. L., Prowse, T. D., Marsh, P., Lafleur, P. M., & Buttle, J. M. (2006). Persistence of water within perched basins of the Peace-Athabasca delta, northern Canada. In Wetlands ecology and management (Vol. 14, pp. 221–243).