Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric Forcing and Strait Geometry
Corresponding Author
Yurui Zhang
State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
Correspondence to:
Y. Zhang,
Search for more papers by this authorAgatha M. de Boer
Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Search for more papers by this authorDaniel J. Lunt
School of Geographical Sciences, University of Bristol, Bristol, UK
Search for more papers by this authorDavid K. Hutchinson
Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Climate Change Research Centre, University of New South Wales, Sydney, Australia
Search for more papers by this authorPhoebe Ross
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, UK
Search for more papers by this authorTina van de Flierdt
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, UK
Search for more papers by this authorPhilip Sexton
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
Search for more papers by this authorHelen K. Coxall
Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Search for more papers by this authorSebastian Steinig
School of Geographical Sciences, University of Bristol, Bristol, UK
Search for more papers by this authorJean-Baptiste Ladant
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Search for more papers by this authorJiang Zhu
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Search for more papers by this authorYannick Donnadieu
Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
Search for more papers by this authorZhongshi Zhang
Department of Atmosphere Science, China University of Geoscience, Wuhan, China
Search for more papers by this authorIgor Niezgodzki
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
INGPAN – Institute of Geological Sciences, Polish Academy of Sciences, Research Center in Kraków, Kraków, Poland
Search for more papers by this authorGerrit Lohmann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Search for more papers by this authorGregor Knorr
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Search for more papers by this authorChristopher J. Poulsen
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Search for more papers by this authorMatt Huber
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
Search for more papers by this authorCorresponding Author
Yurui Zhang
State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
Correspondence to:
Y. Zhang,
Search for more papers by this authorAgatha M. de Boer
Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Search for more papers by this authorDaniel J. Lunt
School of Geographical Sciences, University of Bristol, Bristol, UK
Search for more papers by this authorDavid K. Hutchinson
Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Climate Change Research Centre, University of New South Wales, Sydney, Australia
Search for more papers by this authorPhoebe Ross
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, UK
Search for more papers by this authorTina van de Flierdt
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, UK
Search for more papers by this authorPhilip Sexton
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
Search for more papers by this authorHelen K. Coxall
Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Search for more papers by this authorSebastian Steinig
School of Geographical Sciences, University of Bristol, Bristol, UK
Search for more papers by this authorJean-Baptiste Ladant
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Search for more papers by this authorJiang Zhu
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Search for more papers by this authorYannick Donnadieu
Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
Search for more papers by this authorZhongshi Zhang
Department of Atmosphere Science, China University of Geoscience, Wuhan, China
Search for more papers by this authorIgor Niezgodzki
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
INGPAN – Institute of Geological Sciences, Polish Academy of Sciences, Research Center in Kraków, Kraków, Poland
Search for more papers by this authorGerrit Lohmann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Search for more papers by this authorGregor Knorr
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Search for more papers by this authorChristopher J. Poulsen
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Search for more papers by this authorMatt Huber
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
Search for more papers by this authorAbstract
Here, we compare the ocean overturning circulation of the early Eocene (47–56 Ma) in eight coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP) and investigate the causes of the observed inter-model spread. The most common global meridional overturning circulation (MOC) feature of these simulations is the anticlockwise bottom cell, fed by sinking in the Southern Ocean. In the North Pacific, one model (GFDL) displays strong deepwater formation and one model (CESM) shows weak deepwater formation, while in the Atlantic two models show signs of weak intermediate water formation (MIROC and NorESM). The location of the Southern Ocean deepwater formation sites varies among models and relates to small differences in model geometry of the Southern Ocean gateways. Globally, convection occurs in the basins with smallest local freshwater gain from the atmosphere. The global MOC is insensitive to atmospheric CO2 concentrations from 1× (i.e., 280 ppm) to 3× (840 ppm) pre-industrial levels. Only two models have simulations with higher CO2 (i.e., CESM and GFDL) and these show divergent responses, with a collapsed and active MOC, respectively, possibly due to differences in spin-up conditions. Combining the multiple model results with available proxy data on abyssal ocean circulation highlights that strong Southern Hemisphere-driven overturning is the most likely feature of the early Eocene. In the North Atlantic, unlike the present day, neither model results nor proxy data suggest deepwater formation in the open ocean during the early Eocene, while the evidence for deepwater formation in the North Pacific remains inconclusive.
Key Points
-
This study evaluates the ocean's meridional overturning circulation during the early Eocene in eight models of the DeepMIP project
-
The primary region of deep-water formation depends both on the atmospheric freshwater flux and the strait geometry in the Southern Ocean
-
Compatible with proxy records, six of eight models show that deep waters predominantly originated from the south
Plain Language Summary
The ocean's overturning circulation refers to the replenishment of the ocean's deep water by cold dense polar surface waters and its eventual return to the surface. It affects the climate through redistribution of heat across the globe and uptake of atmosphere carbon dioxide (CO2). Here, we explore the overturning circulation of the Early Eocene, a hot period 47–56 million years ago when atmosphere CO2 levels were similar to the “worst case” projections for the end of this century, in eight climate models setup up for that time. Our results, together with available ocean circulation sediment data for the time, indicate that during the early Eocene deep water originated predominantly from cold surface waters around Antarctica. The North Atlantic source of deep water that today contributes to European's relatively mild climate for its latitude, was completely absent at the time. Interestingly, even when the carbon dioxide in the Eocene model simulations was lowered to levels similar to today and before the industrial revolution, the North Atlantic source of deep water remains absent, indicating that it is the distribution of continents and ice-sheets, rather than CO2 that is responsible for the difference between the modern and Eocene circulation.
Conflict of Interest
The authors declare no conflicts of interest relevant to this study.
Open Research
Data Availability Statement
The DeepMIP simulation data used in this study have been archived in the DeepMIP database. The database can be accessed by following the instructions at https://www.deepmip.org/data-eocene/. In addition, temperature and radiative fluxes from the models can be downloaded directly from the Supporting Information of Lunt et al. (2021). The compiled Nd proxy data set is available from the Supporting Information of this study, and all the original sources for the data are Hague et al. (2012), Huck et al. (2017), MacLeod et al. (2011), Scher and Martin (2004), Thomas (2004), Thomas et al. (2003), Thomas et al. (2008), Thomas et al. (2014), and Via and Thomas (2006).
Supporting Information
Filename | Description |
---|---|
2021PA004329-sup-0001-Supporting Information SI-S01.docx3.1 MB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., & Lunt, D. J. (2020). Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nature Communications, 11(1), 4436. https://doi.org/10.1038/s41467-020-17887-x
- Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., & Dijkstra, H. A. (2020). The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5. Climate of the Past, 16(6), 2573–2597. https://doi.org/10.5194/cp-16-2573-2020
- Baatsen, M. L. J., von der Heydt, A. S., Kliphuis, M., Viebahn, J., & Dijkstra, H. A. (2018). Multiple states in the late Eocene ocean circulation. Global and Planetary Change, 163, 18–28. https://doi.org/10.1016/j.gloplacha.2018.02.009
- Barnet, J. S. K., Littler, K., Kroon, D., Leng, M. J., Westerhold, T., Röhl, U., & Zachos, J. C. (2018). A new high-resolution chronology for the late Maastrichtian warming event: Establishing robust temporal links with the onset of Deccan volcanism. Geology, 46(2), 147–150. https://doi.org/10.1130/G39771.1
- Barnet, J. S. K., Littler, K., Westerhold, T., Kroon, D., Leng, M. J., & Bailey, I. (2019). A high-Fidelity benthic stable isotope record of late Cretaceous–early eocene climate change and CarbonSche-cycling. Paleoceanography and Paleoclimatology, 34(4), 672–691. https://doi.org/10.1029/2019PA003556
- Barron, E. J., & Peterson, W. H. (1991). The Cenozoic ocean circulation based on ocean General Circulation Model results. Palaeogeography, Palaeoclimatology, Palaeoecology, 83(1), 1–28. https://doi.org/10.1016/0031-0182(91)90073-Z
- Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A., & Klein, T. (2018). Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth. Nature Communications, 9(1), 4954. https://doi.org/10.1038/s41467-018-07457-7
- Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., & Tauxe, L. (2013). Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9645–9650. https://doi.org/10.1073/pnas.1220872110
- Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., & Brinkhuis, H. (2009). Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature, 461(7265), 776–779. https://doi.org/10.1038/nature08399
- Bornemann, A., D’haenens, S., Norris, R. D., & Speijer, R. P. (2016). The demise of the early Eocene greenhouse – Decoupled deep and surface water cooling in the eastern North Atlantic. Global and Planetary Change, 145, 130–140. https://doi.org/10.1016/j.gloplacha.2016.08.010
- Boscolo-Galazzo, F., Crichton, K. A., Barker, S., & Pearson, P. N. (2018). Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change? Global and Planetary Change, 170, 201–212. https://doi.org/10.1016/j.gloplacha.2018.08.017
- Boyle, P. R., Romans, B. W., Tucholke, B. E., Norris, R. D., Swift, S. A., & Sexton, P. F. (2017). Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada. Marine Geology, 385, 185–203. https://doi.org/10.1016/j.margeo.2016.12.014
- Brass, G. W., Southam, J. R., & Peterson, W. H. (1982). Warm saline bottom water in the ancient ocean. Nature, 296(5858), 620–623. https://doi.org/10.1038/296620a0
- Burls, N. J., Fedorov, A. V., Sigman, D. M., Jaccard, S. L., Tiedemann, R., & Haug, G. H. (2017). Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Science Advances, 3(9), e1700156. https://doi.org/10.1126/sciadv.1700156
- Chalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F., & Badger, M. P. S. (2017). Causes of ice age intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13114–13119. https://doi.org/10.1073/pnas.1702143114
- Coxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda-Lisarri, A., & O’Regan, M. (2018). Export of nutrient rich northern component water preceded early Oligocene Antarctic glaciation. Nature Geoscience, 11(3), 190–196. https://doi.org/10.1038/s41561-018-0069-9
- Craig, P. M., Ferreira, D., & Methven, J. (2017). The contrast between Atlantic and Pacific surface water fluxes. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 1330454. https://doi.org/10.1080/16000870.2017.1330454
- Cramer, B. S., Miller, K. G., Barrett, P. J., & Wright, J. D. (2011). Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. Journal of Geophysical Research, 116(C12), C12023. https://doi.org/10.1029/2011JC007255
- Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., & Miller, K. G. (2009). Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24(4). https://doi.org/10.1029/2008PA001683
- Cramwinckel, M. J., Coxall, H. K., Śliwińska, K. K., Polling, M., Harper, D. T., & Bijl, P. K. (2020). A warm, stratified, and restricted Labrador Sea across the middle eocene and its climatic optimum. Paleoceanography and Paleoclimatology, 35(10). https://doi.org/10.1029/2020PA003932
- Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., & Bohaty, S. M. (2018). Synchronous tropical and polar temperature evolution in the Eocene. Nature, 559(7714), 382–386. https://doi.org/10.1038/s41586-018-0272-2
- Curry, W. B., & Oppo, D. W. (2005). Glacial water mass geometry and the distribution of δ13 C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20(1). https://doi.org/10.1029/2004PA001021
- de Boer, A. M., Sigman, D. M., Toggweiler, J. R., & Russell, J. L. (2007). Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography, 22(2). PA2210. https://doi.org/10.1029/2005PA001242
- de Lavergne, C., Madec, G., Roquet, F., Holmes, R. M., & McDougall, T. J. (2017). Abyssal ocean overturning shaped by seafloor distribution. Nature, 551(7679), 181–186. https://doi.org/10.1038/nature24472
- D’haenens, S., Bornemann, A., Claeys, P., Röhl, U., Steurbaut, E., & Speijer, R. P. (2014). A transient deep-sea circulation switch during Eocene Thermal Maximum 2. Paleoceanography, 29(5), 370–388. https://doi.org/10.1002/2013PA002567
- Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., & Deconinck, J.-F. (2016). A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications, 7(1), 10316. https://doi.org/10.1038/ncomms10316
- Döös, K., & Webb, D. J. (1994). The Deacon cell and the other meridional cells of the Southern Ocean. Journal of Physical Oceanography, 24(2), 429–442.
- Elsworth, G., Galbraith, E., Halverson, G., & Yang, S. (2017). Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nature Geoscience, 10(3), 213–216. https://doi.org/10.1038/ngeo2888
- England, M. H., Hutchinson, D. K., Santoso, A., & Sijp, W. P. (2017). Ice–atmosphere feedbacks dominate the response of the climate system to Drake Passage closure. Journal of Climate, 30(15), 5775–5790. https://doi.org/10.1175/JCLI-D-15-0554.1
- English, J. M., & Johnston, S. T. (2004). The Laramide Orogeny: What were the driving forces? International Geology Review, 46, 833–838. https://doi.org/10.2747/0020-6814.46.9.833
- Fan, M., & Carrapa, B. (2014). Late Cretaceous-early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction: Laramide uplift and exhumation. Tectonics, 33(4), 509–529. https://doi.org/10.1002/2012TC003221
- Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M., & Campin, J.-M. (2016). Turning ocean mixing upside down. Journal of Physical Oceanography, 46(7), 2239–2261. https://doi.org/10.1175/JPO-D-15-0244.1
- Ferreira, D., Cessi, P., Coxall, H. K., de Boer, A., Dijkstra, H. A., & Drijfhout, S. S. (2018). Atlantic-Pacific asymmetry in deep water formation. Annual Review of Earth and Planetary Sciences, 46(1), 327–352. https://doi.org/10.1146/annurev-earth-082517-010045
- Foster, G. L., Royer, D. L., & Lunt, D. J. (2017). Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8, 14845. https://doi.org/10.1038/ncomms14845
- Frank, M. (2002). Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Reviews of Geophysics, 40(1), 1001. https://doi.org/10.1029/2000RG000094
- Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P., & Sarmiento, J. L. (2015). The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean. Global Biogeochemical Cycles, 29(3), 307–324. https://doi.org/10.1002/2014GB004929
- Gleason, J. D., Thomas, D. J., Moore, T. C., Blum, J. D., Owen, R. M., & Haley, B. A. (2009). Early to middle Eocene history of the Arctic Ocean from Nd-Sr isotopes in fossil fish debris, Lomonosov Ridge. Paleoceanography, 24(2). https://doi.org/10.1029/2008PA001685
- Goldstein, S. L., & Hemming, S. R. (2014). Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. In Treatise on geochemistry (pp. 453–483). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00617-3
- Hague, A. M., Thomas, D. J., Huber, M., Korty, R., Woodard, S. C., & Jones, L. B. (2012). Convection of North Pacific deep water during the early Cenozoic. Geology, 40(6), 527–530. https://doi.org/10.1130/G32886.1
- Haley, B. A., Du, J., Abbott, A. N., & McManus, J. (2017). The impact of benthic processes on rare earth element and neodymium isotope distributions in the oceans. Frontiers in Marine Science, 4, 426. https://doi.org/10.3389/fmars.2017.00426
- Harrington, G. J., Eberle, J., Le-Page, B. A., Dawson, M., & Hutchison, J. H. (2012). Arctic plant diversity in the Early Eocene greenhouse. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1515–1521. https://doi.org/10.1098/rspb.2011.1704
- Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., & Müller, R. D. (2014). A suite of early Eocene (∼55 Ma) climate model boundary conditions. Geoscientific Model Development, 7(5), 2077–2090. https://doi.org/10.5194/gmd-7-2077-2014
- Hilting, A. K., Kump, L. R., & Bralower, T. J. (2008). Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump. Paleoceanography, 23(3), PA3222. https://doi.org/10.1029/2007PA001458
- Hohbein, M. W., Sexton, P. F., & Cartwright, J. A. (2012). Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology, 40(3), 255–258. https://doi.org/10.1130/G32461.1
- Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A., & Creech, J. (2009). Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37(2), 99–102. https://doi.org/10.1130/G25200A.1
- Huber, M., & Sloan, L. C. (2001). Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophysical Research Letters, 28(18), 3481–3484. https://doi.org/10.1029/2001GL012943
- Huck, C. E., van de Flierdt, T., Bohaty, S. M., & Hammond, S. J. (2017). Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene: Eocene Southern Ocean circulation. Paleoceanography, 32(7), 674–691. https://doi.org/10.1002/2017PA003135
- Hutchinson, D. K., Coxall, H. K., OʹRegan, M., Nilsson, J., Caballero, R., & de Boer, A. M. (2019). Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene transition. Nature Communications, 10(1), 3797. https://doi.org/10.1038/s41467-019-11828-z
- Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., & Baatsen, M. (2018). Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1. Climate of the Past, 14(6), 789–810. https://doi.org/10.5194/cp-14-789-2018
- Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T., & Bryden, H. L. (2011). Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. Journal of Climate, 24(10), 2429–2449. https://doi.org/10.1175/2010JCLI3997.1
- Kaminski, M. A., Berggren, W. A., & Gradstein, F. M. (1989). Paleogene benthic foraminifer biostratigraphy and paleoecology at site 647, Southern Labrador Sea-CORE. Retrieved May 18, 2021, from https://core.ac.uk/display/1687161
- Kennedy-Asser, A. T., Lunt, D. J., Valdes, P. J., Ladant, J.-B., Frieling, J., & Lauretano, V. (2020). Changes in the high latitude Southern Hemisphere through the Eocene-Oligocene transition: A model-data comparison. Climate of the Past, 16(2), 555–573. https://doi.org/10.5194/cp-16-555-2020Kroopnick
- Kroopnick, P. M. (1985). The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research Part A. Oceanographic Research Papers, 32(1), 57–84. https://doi.org/10.1016/0198-0149(85)90017-2
- Ladant, J.-B., Donnadieu, Y., Bopp, L., Lear, C. H., & Wilson, P. A. (2018). Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanography and Paleoclimatology, 33(3), 302–317. https://doi.org/10.1002/2017PA003211re
- Lauretano, V., Hilgen, F. J., Zachos, J. C., & Lourens, L. J. (2016). Astronomically tuned age model for the early Eocene carbon isotope events: A new high-resolution δ13C benthic record of ODP Site 1263 between ∼ 49 and ∼ 54 Ma. Newsletters on Stratigraphy, 49(2), 383–400. https://doi.org/10.1127/nos/2016/0077deLavergne
- Lauretano, V., Littler, K., Polling, M., Zachos, J. C., & Lourens, L. J. (2015). Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum. Climate of the Past, 11(10), 1313–1324. https://doi.org/10.5194/cp-11-1313-2015
- Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurent, L. C., Schmitt, R. W., & Toole, J. M. (2000). Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403(6766), 179–182. https://doi.org/10.1038/35003164
- Littler, K., Röhl, U., Westerhold, T., & Zachos, J. C. (2014). A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth and Planetary Science Letters, 401, 18–30. https://doi.org/10.1016/j.epsl.2014.05.054
- Lumpkin, R., & Speer, K. (2007). Global ocean meridional overturning. Journal of Physical Oceanography, 37(10), 2550–2562. https://doi.org/10.1175/JPO3130.1
- Lunt, D. J., Bragg, F., Chan, W.-L., Hutchinson, D. K., Ladant, J.-B., & Niezgodzki, I. (2021). DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 17(1), 203–227. https://doi.org/10.5194/cp-17-203-2021
- Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., & DeConto, R. (2017). The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 10(2), 889–901. https://doi.org/10.5194/gmd-10-889-2017
- Lunt, D. J., Valdes, P. J., Jones, T. D., Ridgwell, A., Haywood, A. M., & Schmidt, D. N. (2010). CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology, 38(10), 875–878. https://doi.org/10.1130/G31184.1
- Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R., & Herguera, J. C. (2007). Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316(5821), 66–69. https://doi.org/10.1126/science.1137127
- MacLeod, K. G., Isaza Londoño, C., Martin, E. E., Jiménez Berrocoso, Á., & Basak, C. (2011). Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nature Geoscience, 4(11), 779–782. https://doi.org/10.1038/ngeo1284
- Maffre, P., Ladant, J.-B., Donnadieu, Y., Sepulchre, P., & Goddéris, Y. (2018). The influence of orography on modern ocean circulation. Climate Dynamics, 50(3–4), 1277–1289. https://doi.org/10.1007/s00382-017-3683-0
- Markwick, P. J. (1998). Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: Implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(3–4), 205–271. https://doi.org/10.1016/S0031-0182(97)00108-9
- Marson, J. M., Myers, P. G., Hu, X., Petrie, B., Azetsu-Scott, K., & Lee, C. M. (2017). Cascading off the West Greenland Shelf: A numerical perspective. Journal of Geophysical Research: Oceans, 122(7), 5316–5328. https://doi.org/10.1002/2017JC012801
- Martin, E. E., & Haley, B. A. (2000). Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochimica et Cosmochimica Acta, 64(5), 835–847. https://doi.org/10.1016/S0016-7037(99)00376-2
- Martin, E. E., & Scher, H. D. (2004). Preservation of seawater Sr and Nd isotopes in fossil fish teeth: Bad news and good news. Earth and Planetary Science Letters, 220(1–2), 25–39. https://doi.org/10.1016/S0012-821X(04)00030-5
- McCarren, H., Thomas, E., Hasegawa, T., Röhl, U., & Zachos, J. C. (2008). Depth dependency of the Paleocene-Eocene carbon isotope excursion: Paired benthic and terrestrial biomarker records (Ocean Drilling Program Leg 208, Walvis Ridge). Geochemistry, Geophysics, Geosystems, 9(10), Q10008. https://doi.org/10.1029/2008GC002116
- Miller, K. G., & Tucholke, B. E. (1983). Development of Cenozoic abyssal circulation south of the Greenland-Scotland ridge. In M. H. P. Bott, S. Saxov, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland ridge: New methods and concepts (pp. 549–589). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4613-3485-9_27
- Monteiro, F. M., Pancost, R. D., Ridgwell, A., & Donnadieu, Y. (2012). Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison. Paleoceanography, 27(4), PA4209. https://doi.org/10.1029/2012PA002351
- Msadek, R., Johns, W. E., Yeager, S. G., Danabasoglu, G., Delworth, T. L., & Rosati, A. (2013). The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. Journal of Climate, 26(12), 4335–4356. https://doi.org/10.1175/JCLI-D-12-00081.1
- Munk, W., & Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research Part I Oceanographic Research Papers, 45(12), 1977–2010. https://doi.org/10.1016/s0967-0637(98)00070-3
- Munk, W. H. (1966). Abyssal recipes. Deep Sea Research and Oceanographic Abstracts, 13, 707–730. https://doi.org/10.1016/0011-7471(66)90602-4
- Nikurashin, M., & Vallis, G. (2011). A theory of deep stratification and overturning circulation in the ocean. Journal of Physical Oceanography, 41(3), 485–502. https://doi.org/10.1175/2010JPO4529.1
- Nisancioglu, K. H., Raymo, M. E., & Stone, P. H. (2003). Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography, 18(1). https://doi.org/10.1029/2002PA000767
- Nong, G. T., Najjar, R. G., Seidov, D., & Peterson, W. H. (2000). Simulation of ocean temperature change due to the opening of Drake Passage. Geophysical Research Letters, 27(17), 2689–2692. https://doi.org/10.1029/1999GL011072
- Nunes, F., & Norris, R. D. (2006). Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature, 439(7072), 60–63. https://doi.org/10.1038/nature04386
- Omta, A. W., & Dijkstra, H. A. (2003). A physical mechanism for the Atlantic–Pacific flow reversal in the early Miocene. Global and Planetary Change, 36(4), 265–276. https://doi.org/10.1016/S0921-8181(02)00221-7
- O’Regan, M., Williams, C., Frey, K., & Jakobsson, M. (2011). A synthesis of the long-term paleoclimatic evolution of the Arctic. Oceanography, 24(3), 66–80. https://doi.org/10.5670/oceanog.2011.57
- Orsi, A. H., Johnson, G. C., & Bullister, J. L. (1999). Circulation, mixing, and production of Antarctic bottom water. Progress in Oceanography, 43(1), 55–109. https://doi.org/10.1016/S0079-6611(99)00004-X
- Pak, D. K., & Miller, K. G. (1992). Paleocene to Eocene benthic foraminiferal isotopes and assemblages: Implications for deepwater circulation. Paleoceanography, 7(4), 405–422. https://doi.org/10.1029/92PA01234
- Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., & Schouten, S. (2012). Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488(7409), 73–77. https://doi.org/10.1038/nature11300
- Roberts, C. D., LeGrande, A. N., & Tripati, A. K. (2009). Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth and Planetary Science Letters, 286(3–4), 576–585. https://doi.org/10.1016/j.epsl.2009.07.026
- Robinson, S., Ivanovic, R., van de Flierdt, T., Blanchet, C. L., Tachikawa, K., & Martin, E. E. (2021). Global continental and marine detrital εNd: An updated compilation for use in understanding marine Nd cycling. Chemical Geology, 567. https://doi.org/10.1016/j.chemgeo.2021.120119
- Robinson, S. A., Murphy, D. P., Vance, D., & Thomas, D. J. (2010). Formation of “southern component water” in the Late Cretaceous: Evidence from Nd-isotopes. Geology, 38(10), 871–874. https://doi.org/10.1130/G31165.1
- Rose, B. E. J., & Ferreira, D. (2013). Ocean heat transport and water vapor greenhouse in a warm equable climate: A new look at the low gradient paradox. Journal of Climate, 26(6), 2117–2136. https://doi.org/10.1175/JCLI-D-11-00547.1
- Scher, H. D., & Martin, E. E. (2004). Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth and Planetary Science Letters, 228(3–4), 391–405. https://doi.org/10.1016/j.epsl.2004.10.016
- Sexton, P. F., Norris, R. D., Wilson, P. A., Pälike, H., Westerhold, T., & Röhl, U. (2011). Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature, 471(7338), 349–352. https://doi.org/10.1038/nature09826
- Sexton, P. F., Wilson, P. A., & Norris, R. D. (2006). Testing the Cenozoic multisite composite δ18O and δ13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography, 21(2). https://doi.org/10.1029/2005PA001253
- Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., & Hargreaves, J. C. (2020). An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4). https://doi.org/10.1029/2019RG000678
- Stap, L., Lourens, L. J., Thomas, E., Sluijs, A., Bohaty, S., & Zachos, J. C. (2010). High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology, 38(7), 607–610. https://doi.org/10.1130/G30777.1
- Stärz, M., Jokat, W., Knorr, G., & Lohmann, G. (2017). Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland ridge. Nature Communications, 8(1), 15681. https://doi.org/10.1038/ncomms15681
- Tachikawa, K., Athias, V., & Jeandel, C. (2003). Neodymium budget in the modern ocean and paleo-oceanographic implications. Journal of Geophysical Research, 108(C8), 3254. https://doi.org/10.1029/1999JC000285
- Thomas, D. J. (2004). Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval. Nature, 430(6995), 65–68. https://doi.org/10.1038/nature02639
- Thomas, D. J., Bralower, T. J., & Jones, C. E. (2003). Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation. Earth and Planetary Science Letters, 209(3–4), 309–322. https://doi.org/10.1016/S0012-821X(03)00096-7
- Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., & Haines, B. (2014). Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. Paleoceanography, 29(5), 454–469. https://doi.org/10.1002/2013PA002535
- Thomas, D. J., Lyle, M., Moore, T. C., & Rea, D. K. (2008). Paleogene deepwater mass composition of the tropical Pacific and implications for thermohaline circulation in a greenhouse world. Geochemistry, Geophysics, Geosystems, 9(2), 1–13. https://doi.org/10.1029/2007GC001748
- Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., & Ford, H. L. (2020). Past climates inform our future. Science, 370(6517), eaay3701. https://doi.org/10.1126/science.aay3701
- Toggweiler, J. R., & Bjornsson, H. (2000). Drake Passage and palaeoclimate. Journal of Quaternary Science, 15, 319–328.
- Toumoulin, A., Donnadieu, Y., Ladant, J.-B., Batenburg, S. J., Poblete, F., & Dupont-Nivet, G. (2020). Quantifying the effect of the Drake Passage opening on the Eocene Ocean. Paleoceanography and Paleoclimatology, 35(8). https://doi.org/10.1029/2020PA003889
- Trenberth, K. E., & Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14, 3433–3443.
- Utescher, T., & Mosbrugger, V. (2007). Eocene vegetation patterns reconstructed from plant diversity—A global perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3–4), 243–271. https://doi.org/10.1016/j.palaeo.2006.10.022
- Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., & Pälike, H. (2018). Ocean and climate response to North Atlantic seaway changes at the onset of long-term Eocene cooling. Earth and Planetary Science Letters, 498, 185–195. https://doi.org/10.1016/j.epsl.2018.06.031
- Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., & Crucifix, M. (2017). The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geoscientific Model Development, 10(10), 3715–3743. https://doi.org/10.5194/gmd-10-3715-2017
- van de Flierdt, T., Griffiths, A. M., Lambelet, M., Little, S. H., Stichel, T., & Wilson, D. J. (2016). Neodymium in the oceans: A global database, a regional comparison and implications for palaeoceanographic research. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 374(2081), 20150293. https://doi.org/10.1098/rsta.2015.0293
- van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., & Sluijs, A. (2015). A Paleolatitude calculator for paleoclimate studies. PLOS One, 10(6), e0126946. https://doi.org/10.1371/journal.pone.0126946
- Via, R. K., & Thomas, D. J. (2006). Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic. Geology, 34(6), 441. https://doi.org/10.1130/G22545.1
- Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., & Hoffmann, J. (2013). Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse. Earth and Planetary Science Letters, 369(370), 169–177. https://doi.org/10.1016/j.epsl.2013.03.019
- Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., & Anagnostou, E. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853
- Westerhold, T., Röhl, U., Donner, B., McCarren, H. K., & Zachos, J. C. (2011). A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography, 26(2). https://doi.org/10.1029/2010PA002092
- Westerhold, T., Röhl, U., Donner, B., & Zachos, J. C. (2018). Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology, 33(6), 626–642. https://doi.org/10.1029/2017PA003306
- Wilson, J. D., Monteiro, F. M., Schmidt, D. N., Ward, B. A., & Ridgwell, A. (2018). Linking marine plankton ecosystems and climate: A new modeling approach to the warm early Eocene climate. Paleoceanography and Paleoclimatology, 33(12), 1439–1452. https://doi.org/10.1029/2018PA003374
- Winguth, A. M. E., Thomas, E., & Winguth, C. (2012). Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum: Implications for the benthic extinction. Geology, 40(3), 263–266. https://doi.org/10.1130/G32529.1
- Wolfe, C. L., & Cessi, P. (2014). Salt feedback in the adiabatic overturning circulation. Journal of Physical Oceanography, 44(4), 1175–1194. https://doi.org/10.1175/JPO-D-13-0154.1
- Wright, J. D., & Miller, K. G. (1993). Southern Ocean influences on Late Eocene to Miocene deepwater circulation. In The Antarctic Paleoenvironment: A perspective on global change: Part two (pp. 1–25). American Geophysical Union. https://doi.org/10.1002/9781118668061.ch1
- Yang, S., Galbraith, E., & Palter, J. (2014). Coupled climate impacts of the Drake Passage and the Panama Seaway. Climate Dynamics, 43(1–2), 37–52. https://doi.org/10.1007/s00382-013-1809-6
- Zachos, J. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
- Zaucker, F., Stocker, T. F., & Broecker, W. S. (1994). Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. Journal of Geophysical Research, 99(C6), 12443. https://doi.org/10.1029/94JC00526
- Zhang, Y., Grima, N., & Huck, T. (2021). Fates of Paleo-Antarctic bottom water during the early Eocene: Based on a Lagrangian analysis of IPSL-CM5A2 climate model simulations. Paleoceanography and Paleoclimatology, 36(1). https://doi.org/10.1029/2019PA003845
- Zhang, Y., Huck, T., Lique, C., Donnadieu, Y., Ladant, J.-B., Rabineau, M., & Aslanian, D. (2020). Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean. Climate of the Past, 16(4), 1263–1283. https://doi.org/10.5194/cp-16-1263-2020
- Zhang, X., Prange, M., Steph, S., Butzin, M., Krebs, U., & Lunt, D. J. (2012). Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi-model study. Earth and Planetary Science Letters, 317–318, 76–84. https://doi.org/10.1016/j.epsl.2011.11.028
- Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5(9), eaax1874. https://doi.org/10.1126/sciadv.aax1874
References From the Supporting Information
- Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S., Dijkstra, H. A., Sluijs, A., Abels, H. A., & Bijl, P. K. (2016). Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic. Climate of the Past, 12(8), 1635–1644. https://doi.org/10.5194/cp-12-1635-2016
- Bryan, K., & Lewis, L. J. (1979). A water mass model of the World Ocean. Journal of Geophysical Research, 84(C5), 2503. https://doi.org/10.1029/JC084iC05p02503
- Gordon, C., Gregory, J. M., & Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16, 147–168. https://doi.org/10.1007/s003820050010
- Green, J. A. M., & Huber, M. (2013). Tidal dissipation in the early Eocene and implications for ocean mixing: EOCENE TIDES. Geophysical Research Letters, 40(11), 2707–2713. https://doi.org/10.1002/grl.50510
- Gregg, M. C., Sanford, T. B., & Winkel, D. P. (2003). Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422(6931), 513–515. https://doi.org/10.1038/nature01507
- Guo, C., Bentsen, M., Bethke, I., Ilicak, M., Tjiputra, J., & Toniazzo, T. (2019). Description and evaluation of NorESM1-F: A fast version of the Norwegian Earth System Model (NorESM). Geoscientific Model Development, 12(1), 343–362. https://doi.org/10.5194/gmd-12-343-2019
- Hasumi, H. (2000). CCSR Ocean Component Model (COCO) version 2.1. (Tech. Rep.). The University of Tokyo.
- Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4), 363. https://doi.org/10.1029/94RG01872
- Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., & Roske, F. (2003). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5, 91–127. https://doi.org/10.1016/S1463-5003(02)00015-X
- Pacanowski, R. C., & Philander, S. G. H. (1981). Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11(11), 1443–1451. https://doi.org/10.1175/1520-0485(1981)011<1443:povmin>2.0.co;2
- Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., et al. (2020). IPSL-CM5A2 – An Earth system model designed for multi-millennial climate simulations. Geoscientific Model Development, 13, 3011–3053. https://doi.org/10.5194/gmd-13-3011-2020
- Simmons, H. L., Jayne, S. R., Laurent, L. C. S., & Weaver, A. J. (2004). Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6, 245–263. https://doi.org/10.1016/S1463-5003(03)00011-8
- Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., & Dennis, J. (2010). The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM). Rep. LAUR-01853, 141, 1–140.
- Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep Sea Research (1953), 6, 140–154. https://doi.org/10.1016/0146-6313(59)90065-6
- Wolfe, C. L., & Cessi, P. (2011). The adiabatic pole-to-pole overturning circulation. Journal of Physical Oceanography, 41(9), 1795–1810. https://doi.org/10.1175/2011JPO4570.1