Neutral Composition and Horizontal Variations of the Martian Upper Atmosphere From MAVEN NGIMS
Corresponding Author
Shane W. Stone
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
Correspondence to:
S. W. Stone,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorRoger V. Yelle
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorMehdi Benna
Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
CRESST, University of Maryland, Baltimore, MD, USA
Contribution: Conceptualization, Methodology, Software, Data curation, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorMeredith K. Elrod
Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
CRESST, University of Maryland, College Park, MD, USA
Contribution: Software, Data curation, Writing - review & editing, Project administration
Search for more papers by this authorPaul R. Mahaffy
Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Contribution: Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorCorresponding Author
Shane W. Stone
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
Correspondence to:
S. W. Stone,
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorRoger V. Yelle
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
Contribution: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorMehdi Benna
Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
CRESST, University of Maryland, Baltimore, MD, USA
Contribution: Conceptualization, Methodology, Software, Data curation, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorMeredith K. Elrod
Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
CRESST, University of Maryland, College Park, MD, USA
Contribution: Software, Data curation, Writing - review & editing, Project administration
Search for more papers by this authorPaul R. Mahaffy
Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Contribution: Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition
Search for more papers by this authorAbstract
Using data from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS), we investigate the horizontal variations in composition of the Martian upper atmosphere. We focus on ratios of Ar, N2, O, He, and H2 to CO2 and their variation with local time, latitude, season, and temperature. These are the first direct measurements of H2 in the upper atmosphere, a species important for the delivery of H to this region because H and H2 escape to space. The NGIMS data nominally cover an altitude range of ∼150–300 km, from near the mesopause to above the exobase. The ratios to CO2 of He and H2 are larger toward the poles and on the nightside of the planet, where the atmosphere is colder and downwelling leads to the enrichment of these lighter species. For example, the H2 to CO2 ratio, at a CO2 density of 1 × 108 cm−3, is observed to increase by a factor of 2.8 from 52.5°S to 72.5°S and by a factor of 5.5 from 3 p.m. to 3 a.m. around the equator. We observe seasonal variation of the Ar to CO2 ratio due to deposition and sublimation of CO2 at the polar ice caps. Finally, we find good agreement between the Ar and N2 to CO2 ratios obtained by the Viking Lander Upper Atmospheric Mass Spectrometers and those obtained by NGIMS, and significant disagreement between the N2 to CO2 ratios obtained by the Imaging Ultraviolet Spectrograph on MAVEN and those obtained by NGIMS.
Key Points
-
The composition of the upper atmosphere of Mars is investigated using mass spectrometer measurements from Mars Atmosphere and Volatile EvolutioN Neutral Gas and Ion Mass Spectrometer
-
The variation of the ratios of Ar, N2, O, He, and H2 to CO2 with local time, latitude, and season is measured
-
All species show a diurnal variation in density ratio with maxima in the early morning and magnitude inversely correlated with mass
Plain Language Summary
Using data from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS), which analyzes components of a gas by their mass, we investigate the composition of the outermost portion of the Martian atmosphere. This region of the atmosphere is important because a part of it escapes to space. We explore the way in which the proportions of Ar, N2, O, He, and H2 vary relative to the main atmospheric gas, CO2, over a Martian day and with temperature, latitude, and season. These are the first direct measurements of H2 in the upper atmosphere of Mars. We find that the proportions of the lightest species, H2 and He, vary substantially throughout the Martian day and with latitude. This variation is caused by transport of these species to cooler regions: the atmosphere on the nightside of the planet and above the poles. We observe seasonal variation in the proportion of Ar, which is due to the conversion of CO2 gas to ice at the polar caps during winter. Finally, we find good agreement between measurements obtained by NGIMS and the NASA Viking missions, but significant disagreement between NGIMS and the MAVEN Imaging Ultraviolet Spectrograph.
Open Research
Data Availability Statement
The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer data set is publicly available on the NASA Planetary Data System (see Benna and Lyness [2014]) and the MAVEN Science Data Center (https://lasp.colorado.edu/maven/sdc/public/pages/datasets/ngims.html). The derived data reported in this manuscript has been placed in a Zenodo repository (Stone et al., 2022).
Supporting Information
Filename | Description |
---|---|
2021JE007085-sup-0001-Supporting Information SI-S01.pdf919.3 KB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Anderson, D. E. (1974). Mariner 6, 7, and 9 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman alpha data. Journal of Geophysical Research, 79(10), 1513–1518. https://doi.org/10.1029/JA079i010p01513
- Anderson, D. E., & Hord, C. W. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman-alpha data. Journal of Geophysical Research, 76(28), 6666–6673. https://doi.org/10.1029/JA076i028p06666
- Anderson, D. E., & Hord, C. W. (1972). Correction [to “Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman-alpha data”]. Journal of Geophysical Research, 77(28). https://doi.org/10.1029/JA077i028p05638
- Arunan, S., & Satish, R. (2015). Mars Orbiter Mission spacecraft and its challenges. Current Science, 109(6), 1061–1069. https://doi.org/10.18520/v109/i6/1061-1069
- Barth, C. A. (1974). The atmosphere of Mars. Annual Review of Earth and Planetary Sciences, 2(1), 333–367. https://doi.org/10.1146/annurev.ea.02.050174.002001
- Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., & Stewart, A. I. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data. Journal of Geophysical Research, 76(10), 2213–2227. https://doi.org/10.1029/JA076i010p02213
- Barth, C. A., Hord, C. W., Stewart, A. I., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Initial results. Science, 175(4019), 309–312. https://doi.org/10.1126/science.175.4019.309
- Barth, C. A., Stewart, A. I., Hord, C. W., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus, 17(2), 457–468. https://doi.org/10.1016/0019-1035(72)90011-5
- Benna, M., & Lyness, E. (2014). MAVEN Neutral Gas and Ion Mass Spectrometer data. NASA Planetary Data System Atmospheres Node. https://doi.org/10.17189/1518931
- Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., & Jakosky, B. M. (2015). First measurements of composition and dynamics of the martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophysical Research Letters, 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146
- Bertaux, J.-L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., et al. (2006). SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 111(E10), E10S90. https://doi.org/10.1029/2006JE002690
- Bhardwaj, A., Mohankumar, S. V., Das, T. P., Pradeepkumar, P., Sreelatha, P., Sundar, B., et al. (2015). MENCA experiment aboard India’s Mars Orbiter Mission. Current Science, 109(6), 1106–1113. https://doi.org/10.18520/v109/i6/1106-1113
- Bhardwaj, A., Thampi, S. V., Das, T. P., Dhanya, M. B., Naik, N., Vajja, D. P., et al. (2016). On the evening time exosphere of Mars: Result from MENCA aboard Mars Orbiter Mission. Geophysical Research Letters, 43(5), 1862–1867. https://doi.org/10.1002/2016GL067707
- Bhardwaj, A., Thampi, S. V., Das, T. P., Dhanya, M. B., Naik, N., Vajja, D. P., et al. (2017). Observation of suprathermal argon in the exosphere of Mars. Geophysical Research Letters, 44(5), 2088–2095. https://doi.org/10.1002/2016GL072001
- Bhattacharyya, D., Clarke, J. T., Bertaux, J.-L., Chaufray, J.-Y., & Mayyasi, M. (2015). A strong seasonal dependence in the Martian hydrogen exosphere. Geophysical Research Letters, 42(20), 8678–8685. https://doi.org/10.1002/2015GL065804
- Bhattacharyya, D., Clarke, J. T., Bertaux, J. L., Chaufray, J. Y., & Mayyasi, M. (2017). Analysis and modeling of remote observations of the martian hydrogen exosphere. Icarus, 281, 264–280. https://doi.org/10.1016/j.icarus.2016.08.034
- Bhattacharyya, D., Clarke, J. T., Chaufray, J. Y., Mayyasi, M., Bertaux, J. L., Chaffin, M. S., et al. (2017). Seasonal changes in hydrogen escape from Mars through analysis of HST observations of the Martian exosphere near perihelion. Journal of Geophysical Research: Space Physics, 122(11), 11756–11764. https://doi.org/10.1002/2017ja024572
- Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. (2015). Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120(2), 311–342. https://doi.org/10.1002/2014JE004715
- Brinton, H. C., & Mayr, H. G. (1971). Temporal variations of thermospheric hydrogen derived from in situ measurements. Journal of Geophysical Research, 76(25), 6198–6201. https://doi.org/10.1029/ja076i025p06198
- Brinton, H. C., Mayr, H. G., & Potter, W. E. (1975). Winter bulge and diurnal variations in hydrogen inferred from AE-C composition measurements. Geophysical Research Letters, 2(9), 389–392. https://doi.org/10.1029/gl002i009p00389
- Brinton, H. C., Taylor, H. A., Niemann, H. B., Mayr, H. G., Nagy, A. F., Cravens, T. E., & Strobel, D. F. (1980). Venus nighttime hydrogen bulge. Geophysical Research Letters, 7(11), 865–868. https://doi.org/10.1029/GL007i011p00865
- Chaffin, M. S., Chaufray, J. Y., Deighan, J., Schneider, N. M., Mayyasi, M., Clarke, J. T., et al. (2018). Mars H escape rates derived from MAVEN/IUVS Lyman alpha brightness measurements and their dependence on model assumptions. Journal of Geophysical Research: Planets, 123(8), 2192–2210. https://doi.org/10.1029/2018je005574
- Chaffin, M. S., Chaufray, J.-Y., Deighan, J., Schneider, N. M., McClintock, W. E., Stewart, A. I. F., et al. (2015). Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophysical Research Letters, 42(21), 9001–9008. https://doi.org/10.1002/2015GL065287
- Chaffin, M. S., Chaufray, J.-Y., Stewart, I., Montmessin, F., Schneider, N. M., & Bertaux, J.-L. (2014). Unexpected variability of Martian hydrogen escape. Geophysical Research Letters, 41(2), 314–320. https://doi.org/10.1002/2013GL058578
- Chaufray, J.-Y., Bertaux, J.-L., Leblanc, F., & Quémerais, E. (2008). Observation of the hydrogen corona with SPICAM on Mars Express. Icarus, 195(2), 598–613. https://doi.org/10.1016/j.icarus.2008.01.009
- Chaufray, J.-Y., Chaffin, M., Deighan, J., Jain, S., Schneider, N., Mayyasi, M., & Jakosky, B. (2019). Effect of the 2018 Martian global dust storm on the CO2 density in the lower nightside thermosphere observed from MAVEN/IUVS Lyman-alpha absorption. Geophysical Research Letters, 47(7), e2019GL082889. https://doi.org/10.1029/2019gl082889
- Chaufray, J.-Y., Deighan, J. I., Chaffin, M. S., Schneider, N. M., McClintock, W. E., Stewart, A. I. F., et al. (2015). Study of the Martian cold oxygen corona from the O I 130.4 nm by IUVS/MAVEN. Geophysical Research Letters, 42(21), 9031–9039. https://doi.org/10.1002/2015GL065341
- Chaufray, J.-Y., Leblanc, F., Quémerais, E., & Bertaux, J.-L. (2009). Martian oxygen density at the exobase deduced from O I 130.4-nm observations by spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. Journal of Geophysical Research, 114(E2), E02006. https://doi.org/10.1029/2008JE003130
- Chaufray, J.-Y., Retherford, K. D., Horvath, D. G., Bertaux, J.-L., Forget, F., & Leblanc, F. (2011). The density of the upper martian atmosphere measured by Lyman-α absorption with Mars Express SPICAM. Icarus, 215(2), 522–525. https://doi.org/10.1016/j.icarus.2011.07.025
- Clarke, J. T., Bertaux, J. L., Chaufray, J. Y., Gladstone, G. R., Quemerais, E., Wilson, J. K., & Bhattacharyya, D. (2014). A rapid decrease of the hydrogen corona of Mars. Geophysical Research Letters, 41(22), 8013–8020. https://doi.org/10.1002/2014gl061803
- Clarke, J. T., Mayyasi, M., Bhattacharyya, D., Schneider, N. M., McClintock, W. E., Deighan, J. I., et al. (2017). Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. Journal of Geophysical Research: Space Physics, 122(2), 2336–2344. https://doi.org/10.1002/2016JA023479
- Demcak, S., Jesick, M., Young, B., Jones, D. R., McCandless, S. E., Schadegg, M., et al. (2016). MAVEN navigation during the first Mars year of the science mission. In AIAA/AAS Astrodynamics Specialist Conference (pp. 1–34). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2016-5428
- Demcak, S., Young, B., Graat, E., Beswick, R., Criddle, K., Ionasescu, R., et al. (2020). Navigation design and operations of MAVEN aerobraking. In AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2020-0471
- Elrod, M. K., Bougher, S. W., Bell, J., Mahaffy, P. R., Benna, M., Stone, S. W., et al. (2017). He bulge revealed: He and CO2 diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. Journal of Geophysical Research: Space Physics, 122(2), 2564–2573. https://doi.org/10.1002/2016JA023482
- Elrod, M. K., Bougher, S. W., Roeten, K., Sharrar, R., & Murphy, J. (2020). Structural and compositional changes in the upper atmosphere related to the PEDE-2018 dust event on Mars as observed by MAVEN NGIMS. Geophysical Research Letters, 47(4), e2019GL084378. https://doi.org/10.1029/2019gl084378
- England, S. L., Liu, G., Withers, P., Yiğit, E., Lo, D., Jain, S., et al. (2016). Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft. Journal of Geophysical Research: Planets, 121(4), 594–607. https://doi.org/10.1002/2016JE004997
- England, S. L., Liu, G., Yiğit, E., Mahaffy, P. R., Elrod, M., Benna, M., et al. (2017). MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. Journal of Geophysical Research: Space Physics, 122(2), 2310–2335. https://doi.org/10.1002/2016JA023475
- Evans, J. S., Stevens, M. H., Lumpe, J. D., Schneider, N. M., Stewart, A. I. F., Deighan, J., et al. (2015). Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 42(21), 9040–9049. https://doi.org/10.1002/2015GL065489
- Farahat, A., Mayyasi, M., Withers, P., Dayeh, M. A., & Abuelgasim, A. (2021). Effects of the June 2018 global dust storm on the atmospheric composition of the Martian upper atmosphere as observed by MAVEN. Journal of Geophysical Research: Planets, 126(10). https://doi.org/10.1029/2021je006868
- Forget, F., Montmessin, F., Bertaux, J.-L., González-Galindo, F., Lebonnois, S., Quémerais, E., et al. (2009). Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 114(E1), E01004. https://doi.org/10.1029/2008JE003086
- Fox, J. L. (2003). Effect of H2 on the Martian ionosphere: Implications for atmospheric evolution. Journal of Geophysical Research, 108(A6), 1223. https://doi.org/10.1029/2001JA000203
- Fox, J. L. (2015). The chemistry of protonated species in the Martian ionosphere. Icarus, 252, 366–392. https://doi.org/10.1016/j.icarus.2015.01.010
- Gröller, H., Montmessin, F., Yelle, R. V., Lefèvre, F., Forget, F., Schneider, N. M., et al. (2018). MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. Journal of Geophysical Research: Planets, 123(6), 1449–1483. https://doi.org/10.1029/2017je005466
- Gröller, H., Yelle, R. V., Koskinen, T. T., Montmessin, F., Lacombe, G., Schneider, N. M., et al. (2015). Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophysical Research Letters, 42(21), 9064–9070. https://doi.org/10.1002/2015GL065294
- Gupta, N., Rao, N. V., Bougher, S., & Elrod, M. K. (2021). Latitudinal and seasonal asymmetries of the helium bulge in the Martian upper atmosphere. Journal of Geophysical Research: Planets, 126(10). https://doi.org/10.1029/2021je006976
- Gupta, N., Rao, N. V., & Kadhane, U. R. (2019). Dawn-dusk asymmetries in the Martian upper atmosphere. Journal of Geophysical Research: Planets, 124(12), 3219–3230. https://doi.org/10.1029/2019je006151
- R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.). (2017). The Atmosphere and Climate of Mars. Cambridge University Press. https://doi.org/10.1017/9781139060172
- Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Science Reviews, 195(1–4), 3–48. https://doi.org/10.1007/s11214-015-0139-x
- Kim, Y.-K., Irikura, K., Rudd, M. E., Ali, M. A., Stone, P. M., Chang, J., et al. (1997). Electron-impact cross section for ionization and excitation. In NIST Standard Reference Database (Vol. 107). National Institute of Standards and Technology. https://doi.org/10.18434/T4KK5C
- Krasnopolsky, V. A. (1975). On the structure of Mars’ atmosphere at 120–200 km. Icarus, 24(1), 28–35. https://doi.org/10.1016/0019-1035(75)90155-4
- Krasnopolsky, V. A., & Feldman, P. D. (2001). Detection of molecular hydrogen in the atmosphere of Mars. Science, 294(5548), 1914–1917. https://doi.org/10.1126/science.1065569
- Leblanc, F., Chaufray, J.-Y., Lilensten, J., Witasse, O., & Bertaux, J.-L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111(E9), E09S11. https://doi.org/10.1029/2005JE002664
- Lian, Y., Richardson, M. I., Newman, C. E., Lee, C., Toigo, A. D., Mischna, M. A., & Campin, J.-M. (2012). The Ashima/MIT Mars GCM and argon in the martian atmosphere. Icarus, 218(2), 1043–1070. https://doi.org/10.1016/j.icarus.2012.02.012
- Mahaffy, P. R., Benna, M., Elrod, M. K., Yelle, R. V., Bougher, S. W., Stone, S. W., & Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329
- Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. (2015). The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution mission. Space Science Reviews, 195(1–4), 49–73. https://doi.org/10.1007/s11214-014-0091-1
- Matta, M., Withers, P., & Mendillo, M. (2013). The composition of Mars’ topside ionosphere: Effects of hydrogen. Journal of Geophysical Research: Space Physics, 118(5), 2681–2693. https://doi.org/10.1002/jgra.50104
- Mayyasi, M., Clarke, J., Bhattacharyya, D., Chaufray, J. Y., Benna, M., Mahaffy, P., et al. (2019). Seasonal variability of deuterium in the upper atmosphere of Mars. Journal of Geophysical Research: Space Physics, 124(3), 2152–2164. https://doi.org/10.1029/2018ja026244
- Mayyasi, M., Clarke, J., Bhattacharyya, D., Deighan, J., Jain, S., Chaffin, M., et al. (2017). The variability of atmospheric deuterium brightness at Mars: Evidence for seasonal dependence. Journal of Geophysical Research: Space Physics, 122(10), 10811–10823. https://doi.org/10.1002/2017ja024666
- McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., et al. (2015). The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195(1–4), 75–124. https://doi.org/10.1007/s11214-014-0098-7
- McElroy, M. B., Kong, T. Y., Yung, Y. L., & Nier, A. O. (1976). Composition and structure of the Martian upper atmosphere: Analysis of results from Viking. Science, 194(4271), 1295–1298. https://doi.org/10.1126/science.194.4271.1295
- Montmessin, F., Korablev, O., Lefèvre, F., Bertaux, J.-L., Fedorova, A., Trokhimovskiy, A., et al. (2017). SPICAM on Mars Express: A 10 year in-depth survey of the martian atmosphere. Icarus, 297, 195–216. https://doi.org/10.1016/j.icarus.2017.06.022
- Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M., & Spencer, N. W. (1980). Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. Journal of Geophysical Research, 85(A13), 7817. https://doi.org/10.1029/ja085ia13p07817
- Nier, A. O., Hanson, W. B., McElroy, M. B., Seiff, A., & Spencer, N. W. (1972). Entry science experiments for Viking 1975. Icarus, 16(1), 74–91. https://doi.org/10.1016/0019-1035(72)90138-8
- Nier, A. O., Hanson, W. B., Seiff, A., McElroy, M. B., Spencer, N. W., Duckett, R. J., et al. (1976). Composition and structure of the martian atmosphere: Preliminary results from Viking 1. Science, 193(4255), 786–788. https://doi.org/10.1126/science.193.4255.786
- Nier, A. O., & McElroy, M. B. (1976). Structure of the neutral upper atmosphere of Mars: Results from Viking 1 and Viking 2. Science, 194(4271), 1298–1300. https://doi.org/10.1126/science.194.4271.1298
- Nier, A. O., & McElroy, M. B. (1977). Composition and structure of Mars’ upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. Journal of Geophysical Research, 82(28), 4341–4349. https://doi.org/10.1029/JS082i028p04341
- NIST Mass Spectrometry Data Center, & Wallace, W. E., director. (2021). Mass spectra. In P. J. Linstrom & W. G. Mallard (Eds.), NIST Chemistry Webbook, NIST standard Reference Database number 69. National Institute of Standards and Technology. https://doi.org/10.18434/T4D303
- Owen, J. E., & Wu, Y. (2017). The evaporation valley in the Kepler planets. The Astrophysical Journal, 847(1), 29. https://doi.org/10.3847/1538-4357/aa890a
- Qin, J. (2020). Mars upper atmospheric temperature and atomic oxygen density derived from the O I 130.4 nm emission observed by NASA’s MAVEN mission. The Astronomical Journal, 159(5), 206. https://doi.org/10.3847/1538-3881/ab7fae
- Quémerais, E., Bertaux, J.-L., Korablev, O., Dimarellis, E., Cot, C., Sandel, B. R., & Fussen, D. (2006). Stellar occultations observed by SPICAM on Mars Express. Journal of Geophysical Research, 111(E9), E09S04. https://doi.org/10.1029/2005JE002604
- Rao, N. V., Gupta, N., & Kadhane, U. R. (2020). Enhanced densities in the Martian thermosphere associated with the 2018 planet-encircling dust event: Results from MENCA/MOM and NGIMS/MAVEN. Journal of Geophysical Research: Planets, 125(10). https://doi.org/10.1029/2020je006430
- Reber, C. A., & Hays, P. B. (1973). Thermospheric wind effects on the distribution of helium and argon in the Earth’s upper atmosphere. Journal of Geophysical Research, 78(16), 2977–2991. https://doi.org/10.1029/ja078i016p02977
- Ritter, B., Gérard, J. C., Gkouvelis, L., Hubert, B., Jain, S. K., & Schneider, N. M. (2019). Characteristics of Mars UV dayglow emissions from atomic oxygen at 130.4 and 135.6 nm: MAVEN/IUVS limb observations and modeling. Journal of Geophysical Research: Space Physics, 124(6), 4809–4832. https://doi.org/10.1029/2019ja026669
- Sandel, B. R., Gröller, H., Yelle, R. V., Koskinen, T., Lewis, N. K., Bertaux, J. L., et al. (2015). Altitude profiles of O2 on Mars from SPICAM stellar occultations. Icarus, 252, 154–160. https://doi.org/10.1016/j.icarus.2015.01.004
- Siddle, A. G., Mueller-Wodarg, I. C. F., Stone, S. W., & Yelle, R. V. (2019). Global characteristics of gravity waves in the upper atmosphere of Mars as measured by MAVEN/NGIMS. Icarus, 333, 12–21. https://doi.org/10.1016/j.icarus.2019.05.021
- Sprague, A. L., Boynton, W. V., Forget, F., Lian, Y., Richardson, M., Starr, R., et al. (2012). Interannual similarity and variation in seasonal circulation of Mars’ atmospheric Ar as seen by the gamma ray spectrometer on Mars odyssey. Journal of Geophysical Research, 117(E4). https://doi.org/10.1029/2011je003873
- Sprague, A. L., Boynton, W. V., Kerry, K. E., Janes, D. M., Hunten, D. M., Kim, K. J., et al. (2004). Mars’ south polar Ar enhancement: A tracer for south polar seasonal meridional mixing. Science, 306(5700), 1364–1367. https://doi.org/10.1126/science.1098496
- Sprague, A. L., Boynton, W. V., Kerry, K. E., Janes, D. M., Kelly, N. J., Crombie, M. K., et al. (2007). Mars’ atmospheric argon: Tracer for understanding Martian atmospheric circulation and dynamics. Journal of Geophysical Research, 112(E3), E03S02. https://doi.org/10.1029/2005je002597
- Stevens, M. H., Siskind, D. E., Evans, J. S., Fox, J. L., Deighan, J., Jain, S. K., & Schneider, N. M. (2019). Detection of the nitric oxide dayglow on Mars by MAVEN/IUVS. Journal of Geophysical Research: Planets, 124(5), 1226–1237. https://doi.org/10.1029/2019je005945
- Stewart, A. I. F., Alexander, M. J., Meier, R. R., Paxton, L. J., Bougher, S. W., & Fesen, C. G. (1992). Atomic oxygen in the Martian thermosphere. Journal of Geophysical Research, 97(A1), 91–102. https://doi.org/10.1029/91JA02489
- Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. Journal of Geophysical Research: Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018je005559
- Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. (2022). Neutral composition and horizontal variations of the Martian upper atmosphere from MAVEN NGIMS. Zenodo. https://doi.org/10.5281/zenodo.5792283
- Stone, S. W., Yelle, R. V., Benna, M., Lo, D. Y., Elrod, M. K., & Mahaffy, P. R. (2020). Seasonal and dust-storm-induced changes in upper atmospheric water abundance and H escape at Mars. Science, 370(6518), 824–831. https://doi.org/10.1126/science.aba5229
- Strickland, D. J., Stewart, A. I., Barth, C. A., Hord, C. W., & Lane, A. L. (1973). Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304 Å emission. Journal of Geophysical Research, 78(22), 4547–4559. https://doi.org/10.1029/JA078i022p04547
- Strickland, D. J., Thomas, G. E., & Sparks, P. R. (1972). Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of the O I 1304- and 1356-Å emissions. Journal of Geophysical Research, 77(22), 4052–4068. https://doi.org/10.1029/JA077i022p04052
- Taylor, H. A., Brinton, H. C., Niemann, H. B., Mayr, H. G., Hartle, R. E., Barnes, A., & Larson, J. (1984). Interannual and short-term variations of the Venus nighttime hydrogen bulge. Journal of Geophysical Research, 89(A12), 10669. https://doi.org/10.1029/ja089ia12p10669
- Terada, N., Leblanc, F., Nakagawa, H., Medvedev, A. S., Yiğit, E., Kuroda, T., et al. (2017). Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 122(2), 2374–2397. https://doi.org/10.1002/2016ja023476
- Trainer, M. G., Wong, M. H., McConnochie, T. H., Franz, H. B., Atreya, S. K., Conrad, P. G., et al. (2019). Seasonal variations in atmospheric composition as measured in Gale Crater, Mars. Journal of Geophysical Research: Planets, 124(11), 3000–3024. https://doi.org/10.1029/2019je006175
- Vals, M., Spiga, A., Forget, F., Millour, E., Montabone, L., & Lott, F. (2019). Study of gravity waves distribution and propagation in the thermosphere of Mars based on MGS, ODY, MRO and MAVEN density measurements. Planetary and Space Science, 178, 104708. https://doi.org/10.1016/j.pss.2019.104708
- Yiğit, E., England, S. L., Liu, G., Medvedev, A. S., Mahaffy, P. R., Kuroda, T., & Jakosky, B. M. (2015). High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophysical Research Letters, 42(21), 8993–9000. https://doi.org/10.1002/2015GL065307
- Yoshida, N., Nakagawa, H., Terada, N., Evans, J. S., Schneider, N. M., Jain, S. K., et al. (2020). Seasonal and latitudinal variations of dayside N2/CO2 ratio in the Martian thermosphere derived from MAVEN IUVS observations. Journal of Geophysical Research: Planets, 125(12). https://doi.org/10.1029/2020je006378
- Zahnle, K. J., & Catling, D. C. (2017). The cosmic shoreline: The evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. The Astrophysical Journal, 843(2), 122. https://doi.org/10.3847/1538-4357/aa7846