Sublimation Origin of Negative Deuterium Excess Observed in Snow and Ice Samples From McMurdo Dry Valleys and Allan Hills Blue Ice Areas, East Antarctica
Corresponding Author
Jun Hu
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Correspondence to:
J. Hu and Y. Yan,
Contribution: Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorCorresponding Author
Yuzhen Yan
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
Correspondence to:
J. Hu and Y. Yan,
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorLaurence Y. Yeung
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
Department of Chemistry, Rice University, Houston, TX, USA
Contribution: Conceptualization, Writing - review & editing, Supervision
Search for more papers by this authorSylvia G. Dee
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
Contribution: Writing - review & editing, Supervision
Search for more papers by this authorCorresponding Author
Jun Hu
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Correspondence to:
J. Hu and Y. Yan,
Contribution: Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorCorresponding Author
Yuzhen Yan
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
Correspondence to:
J. Hu and Y. Yan,
Contribution: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing, Visualization
Search for more papers by this authorLaurence Y. Yeung
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
Department of Chemistry, Rice University, Houston, TX, USA
Contribution: Conceptualization, Writing - review & editing, Supervision
Search for more papers by this authorSylvia G. Dee
Department of Earth, Environmental & Planetary Sciences, Rice University, Houston, TX, USA
Contribution: Writing - review & editing, Supervision
Search for more papers by this authorJun Hu and Yuzhen Yan contributed equally to this work.
Abstract
The oxygen and hydrogen isotopic composition in snow and ice have long been utilized to reconstruct past temperatures of polar regions, under the assumption that post-depositional processes such as sublimation do not fractionate snow. In low-accumulation (<0.01 m yr−1) areas near the McMurdo Dry Valleys in Antarctica, surface snow and ice samples have exceptionally low deuterium excess values (d-excess ≡ δD – 8*δ18O)—sometimes as negative as −5‰—an uncommon phenomenon that is not fully understood. Here we use both an isotope-enabled general circulation model and an ice physics model and establish that such exceptionally low d-excess values can only arise from precipitation if the majority of the moisture is sourced from the Southern Ocean (south of 55°S). However, the model results show that moisture sourced from oceans north of 55°S contributes significantly (>50%) to precipitation in Antarctica today. We thus propose that sublimation must have occurred to yield the low d-excess values in snow observed in and near the Dry Valleys, and that solid-phase-diffusion in ice grains is sufficiently fast to allow Rayleigh-like isotopic fractionation in similar environments. We calculate that under present-day conditions at the Allan Hills outside the Dry Valleys, 3%–24% of the surface snow is lost due to sublimation. Because the magnitude of sublimation may be nonstationary (i.e., it could vary in time) during past cold periods, we suggest that sublimation-induced fractionation can alter the relationship between the snow isotopic composition and polar temperatures.
Key Points
-
Exceptionally low deuterium excess values exist in surface snow in the McMurdo Dry Valleys and Allan Hills Blue Ice Area, East Antarctica
-
To yield such low deuterium excess in Antarctic precipitation, unrealistic moisture contributions from high-latitude oceans are required
-
Sublimation fractionation lowers deuterium excess in relatively dry, windy, and warm conditions
Plain Language Summary
Earth's past temperatures in the polar regions are often calculated from the relative abundances of heavy hydrogen or oxygen atoms (isotopes) in the polar ice. Implicit to this approach is the assumption that once the snow has fallen from the sky, its isotopic composition no longer changes. Yet, this conventional notion is incompatible with some observations. In and near the McMurdo Dry Valleys in Antarctica, for example, the surface snow and ice show an unusually large depletion in heavy hydrogen isotopes relative to heavy oxygen isotopes. Deficits of such a magnitude are rare in precipitation and therefore hint at sublimation causing the ice to change its isotopic composition (to “fractionate”) after deposition; if true, this process would challenge the conventional wisdom about snow and ice as paleoclimate indicators. Here, we investigate whether these unusual heavy-isotope deficits could originate from Antarctic precipitation. We determine that the moisture arriving at Antarctica today does not have these deficits. Sublimation of the snow that falls, however, can quantitatively explain the observed range of heavy-hydrogen depletions. We conclude that sublimation does fractionate isotopes in and near the Dry Valleys, and may affect the past temperatures reconstructed from the hydrogen and/or oxygen isotopes.
Open Research
Data Availability Statement
The simulation data used for interpreting deuterium excess values in this study are available at Zenodo via https://doi.org/10.5281/zenodo.5523287 (Hu et al., 2021).
Supporting Information
Filename | Description |
---|---|
2021JD035950-sup-0001-Supporting Information SI-S01.pdf4.6 MB | Supporting Information S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alley, R. B., & Bentley, C. R. (1988). Ice-core analysis on the Siple coast of West Antarctica. Annals of Glaciology, 11, 1–7. https://doi.org/10.1017/s0260305500006236
- Bailey, A., Singh, H. K. A., & Nusbaumer, J. (2019). Evaluating a moist isentropic framework for poleward moisture transport: Implications for water isotopes over Antarctica. Geophysical Research Letters, 46, 7819–7827. https://doi.org/10.1029/2019GL082965
- Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen, H. C., & Vimeux, F. (2014). Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. Journal of Geophysical Research: Atmospheres, 119(2), 584–593. https://doi.org/10.1002/2013jd020535
- Bintanja, R. (1999). On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Reviews of Geophysics, 37(3), 337–359. https://doi.org/10.1029/1999rg900007
- Bliss, A. K., Cuffey, K. M., & Kavanaugh, J. L. (2011). Sublimation and surface energy budget of Taylor Glacier, Antarctica. Journal of Glaciology, 57(204), 684–696. https://doi.org/10.3189/002214311797409767
- Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., & Nusbaumer, J. (2019). The connected isotopic water cycle in the Community Earth System Model version 1. Journal of Advances in Modeling Earth Systems, 11(8), 2547–2566. https://doi.org/10.1029/2019ms001663
- Bromwich, D. H., & Kurtz, D. D. (1984). Katabatic wind forcing of the Terra Nova Bay polynya. Journal of Geophysical Research, 89(C3), 3561. https://doi.org/10.1029/jc089ic03p03561
- Buizert, C., Fudge, T. J., Roberts, W. H. G., Steig, E. J., Sherriff-Tadano, S., Ritz, C., et al. (2021). Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 372(6546), 1097–1101. https://doi.org/10.1126/science.abd2897
- Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S., Kindler, P., et al. (2014). Greenland temperature response to climate forcing during the last deglaciation. Science, 345(6201), 1177–1180. https://doi.org/10.1126/science.1254961
- Casado, M., Landais, A., Masson-Delmotte, V., Genthon, C., Kerstel, E., Kassi, S., et al. (2016). Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau. Atmospheric Chemistry and Physics, 16(13), 8521–8538. https://doi.org/10.5194/acp-16-8521-2016
- Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., et al. (2018). Archival processes of the water stable isotope signal in East Antarctic ice cores. The Cryosphere, 12(5), 1745–1766. https://doi.org/10.5194/tc-12-1745-2018
- Ciais, P., & Jouzel, J. (1994). Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes. Journal of Geophysical Research, 99(D8), 16793. https://doi.org/10.1029/94jd00412
- Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In E. Tongiorgi (Ed.), Stable isotopes in Oceanographic studies and paleotemperatures. Spoleto: Conferences in Nuclear Geology (pp. 9–130).
- Cuffey, K. M., & Clow, G. D. (1997). Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. Journal of Geophysical Research, 102(C12), 26383–26396. https://doi.org/10.1029/96jc03981
- Cuffey, K. M., Clow, G. D., Alley, R. B., Stuiver, M., Waddington, E. D., & Saltus, R. W. (1995). Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270(5235), 455–458. https://doi.org/10.1126/science.270.5235.455
- Cuffey, K. M., Clow, G. D., Steig, E. J., Buizert, C., Fudge, T. J., Koutnik, M., et al. (2016). Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14249–14254. https://doi.org/10.1073/pnas.1609132113
- Cuffey, K. M., & Steig, E. J. (1998). Isotopic diffusion in polar firn: Implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. Journal of Glaciology, 44(147), 273–284. https://doi.org/10.1017/s0022143000002616
- Dadic, R., Schneebeli, M., Bertler, N. A. N., Schwikowski, M., & Matzl, M. (2015). Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition. Journal of Glaciology, 61(230), 1171–1182. https://doi.org/10.3189/2015jog15j027
- Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
- Delisle, G., & Sievers, J. (1991). Sub-ice topography and meteorite finds near the allan Hills and the near Western ice field, Victoria land, Antarctica. Journal of Geophysical Research, 96(E1), 15577–15587. https://doi.org/10.1029/91je01117
- Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T., & Berry Lyons, W. (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107(D24), ACL 13-1–ACL 13-12. https://doi.org/10.1029/2001jd002045
- Dütsch, M., Blossey, P. N., Steig, E. J., & Nusbaumer, J. M. (2019). Nonequilibrium fractionation during ice cloud formation in iCAM5: Evaluating the common parameterization of supersaturation as a linear function of temperature. Journal of Advances in Modeling Earth Systems, 11(11), 3777–3793. https://doi.org/10.1029/2019ms001764
- Dütsch, M., Steig, E., Blossey, P., Nusbaumer, J., & Herrington, A. (2021). Modeling insights into processes affecting water isotopes in polar regions. American Geophysical Union. Paper presented at 2021 Fall Meeting.
- Dyer, E. L. E., Jones, D. B. A., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. (2017). Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research, 122(13), 6882–6898. https://doi.org/10.1002/2016jd026240
- Ellehoj, M. D., Steen-Larsen, H. C., Johnsen, S. J., & Madsen, M. B. (2013). Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: Experimental investigations and implications for stable water isotope studies. Rapid Communications in Mass Spectrometry, 27(19), 2149–2158. https://doi.org/10.1002/rcm.6668
- Friedman, I., Benson, C., & Gleason, J. (1991). Isotopic changes during snow metamorphism. In Stable isotope geochemistry: A tribute to Samuel Epstein (pp. 211–221).
- Gat, J. R., Klein, B., Kushnir, Y., Roether, W., Wernli, H., Yam, R., & Shemesh, A. (2011). Isotope composition of air moisture over the Mediterranean sea: An index of the air-sea interaction pattern. Tellus B: Chemical and Physical Meteorology, 55(5), 953–965. https://doi.org/10.3402/tellusb.v55i5.16395
- Gay, M., Fily, M., Genthon, C., Frezzotti, M., Oerter, H., & Winther, J.-G. (2002). Snow grain-size measurements in Antarctica. Journal of Glaciology, 48(163), 527–535. https://doi.org/10.3189/172756502781831016
- Gooseff, M. N., Berry Lyons, W., McKnight, D. M., Vaughn, B. H., Fountain, A. G., & Dowling, C. (2006). A stable isotopic investigation of a polar desert hydrologic System, McMurdo dry valleys, Antarctica. Arctic Antarctic and Alpine Research, 38(1), 60–71. https://doi.org/10.1657/1523-0430(2006)038[0060:asiioa]2.0.co;2
- Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., & Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455), 552–554. https://doi.org/10.1038/366552a0
- Higgins, J. A., Kurbatov, A. V., Spaulding, N. E., Brook, E., Introne, D. S., Chimiak, L. M., et al. (2015). Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 112(22), 6887–6891. https://doi.org/10.1073/pnas.1420232112
- Hu, J., Emile-Geay, J., Tabor, C., Nusbaumer, J., & Partin, J. (2019). Deciphering oxygen isotope records from Chinese Speleothems with an isotope-enabled climate model. Paleoceanography and Paleoclimatology, 34(12), 2098–2112. https://doi.org/10.1029/2019pa003741
- Hu, J., Yan, Y., Yeung, L., & Dee, S. (2021). Water tagging experiments for the interpretation of deuterium excess in Antarctica (Version 1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.5523287
- Hughes, A. G., Jones, T. R., Vinther, B. M., Gkinis, V., Max Stevens, C., Morris, V., et al. (2020). High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland. Climate of the Past, 16(4), 1369–1386. https://doi.org/10.5194/cp-16-1369-2020
- Hughes, A. G., Wahl, S., Jones, T. R., Zuhr, A., Hörhold, M., White, J. W. C., & Steen-Larsen, H. C. (2021). The role of sublimation as a driver of climate signals in the water isotope content of surface snow: Laboratory and field experimental results. The Cryosphere, 15(10), 4949–4974. https://doi.org/10.5194/tc-2021-87
- Hurley, J. V., Vuille, M., & Hardy, D. R. (2016). Forward modeling of δ18O in Andean ice cores. Geophysical Research Letters, 43(15), 8178–8188. https://doi.org/10.1002/2016gl070150
- Jones, T. R., Cuffey, K. M., White, J. W. C., Steig, E. J., Buizert, C., Markle, B. R., et al. (2017). Water isotope diffusion in the WAIS Divide ice core during the Holocene and last glacial. Journal of Geophysical Research: Earth Surface, 122(1), 290–309. https://doi.org/10.1002/2016jf003938
- Jones, T. R., Roberts, W. H. G., Steig, E. J., Cuffey, K. M., Markle, B. R., & White, J. W. C. (2018). Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography. Nature, 554(7692), 351–355. https://doi.org/10.1038/nature24669
- Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., et al. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793–796. https://doi.org/10.1126/science.1141038
- Jouzel, J., & Merlivat, L. (1984). Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. Journal of Geophysical Research, 89(D7), 11749. https://doi.org/10.1029/jd089id07p11749
- Jouzel, J., Merlivat, L., & Lorius, C. (1982). Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature, 299(5885), 688–691. https://doi.org/10.1038/299688a0
- Kahle, E. C., Steig, E. J., Jones, T. R., Fudge, T. J., Koutnik, M. R., Morris, V., et al. (2021). Reconstruction of temperature, accumulation rate, and layer thinning from an ice core at South Pole using a statistical inverse method. Journal of Geophysical Research: Atmospheres, 126, e2020JD033300. https://doi.org/10.1002/essoar.10503447.3
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 77, 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
- Li, C., Ren, J., Shi, G., Pang, H., Wang, Y., Hou, S., et al. (2021). Spatial and temporal variations of fractionation of stable isotopes in East-Antarctic snow. Journal of Glaciology, 67(263), 523–532. https://doi.org/10.1017/jog.2021.5
- Lorius, C., Merlivat, L., & Hagemann, R. (1969). Variation in the mean deuterium content of precipitations in Antarctica. Journal of Geophysical Research, 74(28), 7027–7031. https://doi.org/10.1029/jc074i028p07027
- Madsen, M. V., Steen-Larsen, H. C., Hörhold, M., Box, J., Berben, S. M. P., Capron, E., et al. (2019). Evidence of isotopic fractionation during vapor exchange between the atmosphere and the snow surface in Greenland. Journal of Geophysical Research: Atmospheres, 124(6), 2932–2945. https://doi.org/10.1029/2018JD029619
- Markle, B. R., & Steig, E. J. (2021). Improving temperature reconstructions from ice-core water-isotope records. Climate of the Past Discussions. https://doi.org/10.5194/cp-2021-37
- Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R. T., et al. (2008). A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. Journal of Climate, 21(13), 3359–3387. https://doi.org/10.1175/2007jcli2139.1
- Merlivat, L. (1978). Molecular diffusivities of H216O, HD16O, and H218O in gases. The Journal of Chemical Physics, 69(6), 2864. https://doi.org/10.1063/1.436884
- Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida, M., et al. (2017). Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nature Communications, 8(1), 1334. https://doi.org/10.1038/s41467-017-01455-x
- Moser, H., & Stichler, W. (1974). Deutenum and oxygen-18 contents as an index of the properties of snowblankets. In Int. Symp. Snow Mechanics (IUGG, IASH, ICSI). Grindelwald.
- Nusbaumer, J., & Noone, D. (2018). Numerical evaluation of the modern and future origins of atmospheric river moisture over the west coast of the United States. Journal of Geophysical Research: Atmospheres, 123(12), 6423–6442. https://doi.org/10.1029/2017JD028081
- Nusbaumer, J., Wong, T. E., Bardeen, C., & Noone, D. (2017). Evaluating hydrological processes in the Community Atmosphere Model Version 5 (CAM5) using stable isotope ratios of water. Journal of Advances in Modeling Earth Systems, 9(2), 949–977. https://doi.org/10.1002/2016MS000839
- Pang, H., Hou, S., Landais, A., Masson-Delmotte, V., Jouzel, J., Steen-Larsen, H. C., et al. (2019). Influence of summer sublimation on δD, δ18O, and δ17O in precipitation, east Antarctica, and implications for climate reconstruction from ice cores. Journal of Geophysical Research: Atmospheres, 124, 7339–7358. https://doi.org/10.1029/2018jd030218
- Petit, J. R., Jouzel, J., Pourchet, M., & Merlivat, L. (1982). A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica). Journal of Geophysical Research, 87(C6), 4301. https://doi.org/10.1029/jc087ic06p04301
- Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429–436. https://doi.org/10.1038/20859
- Petit, J. R., White, J. W. C., Young, N. W., Jouzel, J., & Korotkevich, Y. S. (1991). Deuterium excess in recent Antarctic snow. Journal of Geophysical Research, 96(D3), 5113. https://doi.org/10.1029/90jd02232
- Pfahl, S., & Sodemann, H. (2014). What controls deuterium excess in global precipitation? Climate of the Past, 10, 771–781. https://doi.org/10.5194/cp-10-771-2014
- Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002jd002670
- Ritter, F., Steen-Larsen, H. C., Werner, M., Masson-Delmotte, V., Orsi, A., Behrens, M., et al. (2016). Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica. The Cryosphere, 10(4), 1647–1663. https://doi.org/10.5194/tc-10-1647-2016
- Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A., Kawamura, K., Montzka, S. A., et al. (2010). Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth and Planetary Science Letters, 293(3–4), 359–367. https://doi.org/10.1016/j.epsl.2010.03.003
- Siegert, M. J. (2003). Glacial–interglacial variations in central East Antarctic ice accumulation rates. Quaternary Science Reviews, 22(5–7), 741–750. https://doi.org/10.1016/s0277-3791(02)00191-9
- Sime, L. C., Wolff, E. W., Oliver, K. I. C., & Tindall, J. C. (2009). Evidence for warmer interglacials in East Antarctic ice cores. Nature, 462(7271), 342–345. https://doi.org/10.1038/nature08564
- Singh, H. K. A., Donohoe, A., Bitz, C. M., Nusbaumer, J., & Noone, D. C. (2016). Greater aerial moisture transport distances with warming amplify interbasin salinity contrasts. Geophysical Research Letters, 43(16), 8677–8684. https://doi.org/10.1002/2016gl069796
- Sodemann, H., & Stohl, A. (2009). Asymmetries in the moisture origin of Antarctic precipitation. Geophysical Research Letters, 36(22), L22803. https://doi.org/10.1029/2009gl040242
- Sokratov, S. A., & Golubev, V. N. (2009). Snow isotopic content change by sublimation. Journal of Glaciology, 55(193), 823–828. https://doi.org/10.3189/002214309790152456
- Spaulding, N. E., Spikes, V. B., Hamilton, G. S., Mayewski, P. A., Dunbar, N. W., Harvey, R. P., et al. (2012). Ice motion and mass balance at the Allan Hills blue-ice area, Antarctica, with implications for paleoclimate reconstructions. Journal of Glaciology, 58(208), 399–406. https://doi.org/10.3189/2012jog11j176
- Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., et al. (2014). What controls the isotopic composition of Greenland surface snow? Climate of the Past, 10(1), 377–392. https://doi.org/10.5194/cp-10-377-2014
- Steig, E. J., Jones, T. R., Schauer, A. J., Kahle, E. C., Morris, V. A., Vaughn, B. H., et al. (2021). Continuous-flow analysis of δ17O, δ18O, and δD of H2O on an ice core from the South Pole. Frontiers of Earth Science, 9, 640292. https://doi.org/10.3389/feart.2021.640292
- Stenni, B., Masson-Delmotte, V., Selmo, E., Oerter, H., Meyer, H., Röthlisberger, R., et al. (2010). The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quaternary Science Reviews, 29(1–2), 146–159. https://doi.org/10.1016/j.quascirev.2009.10.009
- Stichler, W., Schotterer, U., Fröhlich, K., Ginot, P., Kull, C., Gäggeler, H., & Pouyaud, B. (2001). Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. Journal of Geophysical Research, 106(D19), 22613–22620. https://doi.org/10.1029/2001jd900179
- Tabor, C. R., Otto-Bliesner, B. L., Brady, E. C., Nusbaumer, J., Zhu, J., Erb, M. P., et al. (2018). Interpreting precession-driven δ18O variability in the South Asian monsoon region. Journal of Geophysical Research: Atmospheres, 123, 5927–5946. https://doi.org/10.1029/2018JD028424
- Tindall, J. C., Valdes, P. J., & Sime, L. C. (2009). Stable water isotopes in HadCM3: Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. Journal of Geophysical Research, 114(D4). https://doi.org/10.1029/2008jd010825
- Uemura, R., Masson-Delmotte, V., Jouzel, J., Landais, A., Motoyama, H., & Stenni, B. (2012). Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles. Climate of the Past, 8(3), 1109–1125. https://doi.org/10.5194/cp-8-1109-2012
- Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., & Yoshida, N. (2008). Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journal of Geophysical Research, 113(D19). https://doi.org/10.1029/2008jd010209
- Vimeux, F., Masson, V., Delaygue, G., Jouzel, J., Petit, J. R., & Stievenard, M. (2001). A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok. Journal of Geophysical Research, 106(D23), 31863–31873. https://doi.org/10.1029/2001jd900076
- Vimeux, F., Masson, V., Jouzel, J., Petit, J. R., Steig, E. J., Stievenard, M., et al. (2001). Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records. Climate Dynamics, 17(7), 503–513. https://doi.org/10.1007/pl00007928
- Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., & Petit, J. R. (1999). Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature, 398(6726), 410–413. https://doi.org/10.1038/18860
- Waddington, E. D., Steig, E. J., & Neumann, T. A. (2002). Using characteristic times to assess whether stable isotopes in polar snow can be reversibly deposited. Annals of Glaciology, 35, 118–124. https://doi.org/10.3189/172756402781817004
- Wahl, S., Steen-Larsen, H. C., Reuder, J., & Hörhold, M. (2021). Quantifying the stable water isotopologue exchange between the snow surface and lower atmosphere by direct flux measurements. Journal of Geophysical Research, 126(13). https://doi.org/10.1029/2020jd034400
- Wang, H., Fyke, J. G., Lenaerts, J., Nusbaumer, J. M., Singh, H., Noone, D., et al. (2020). Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. The Cryosphere, 14(2), 429–444. https://doi.org/10.5194/tc-14-429-2020
- Werner, M., Jouzel, J., Masson-Delmotte, V., & Lohmann, G. (2018). Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer. Nature Communications, 9(1), 3537. https://doi.org/10.1038/s41467-018-05430-y
- Whillans, I. M., & Grootes, P. M. (1985). Isotopic diffusion in cold snow and firn. Journal of Geophysical Research, 90(D2), 3910. https://doi.org/10.1029/jd090id02p03910
- Yan, Y., Bender, M. L., Brook, E. J., Clifford, H. M., Kemeny, P. C., Kurbatov, A. V., et al. (2019). Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature, 574(7780), 663–666. https://doi.org/10.1038/s41586-019-1692-3
- Yau, M. K., & Rogers, R. R. (1996). A short course in cloud physics. Elsevier Science.