Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps
Sergio Fagherazzi
Search for more papers by this authorAnnalisa Bortoluzzi
Search for more papers by this authorWilliam E. Dietrich
Search for more papers by this authorAttilio Adami
Search for more papers by this authorStefano Lanzoni
Search for more papers by this authorMarco Marani
Search for more papers by this authorAndrea Rinaldo
Search for more papers by this authorSergio Fagherazzi
Search for more papers by this authorAnnalisa Bortoluzzi
Search for more papers by this authorWilliam E. Dietrich
Search for more papers by this authorAttilio Adami
Search for more papers by this authorStefano Lanzoni
Search for more papers by this authorMarco Marani
Search for more papers by this authorAndrea Rinaldo
Search for more papers by this authorAbstract
We propose a method of automatic extraction of the tidal channel network from topographic data of marsh and tidal flat lands that uses a combination of a threshold elevation and threshold curvature. Not only the location but also the area of the channel bed is identified. This method differs substantially from that used to identify terrestrial channel networks, and it successfully predicts all of the main channels and nearly all of the smaller tributaries of the channel networks derived from SPOT imagery of the northern Venice Lagoon. Channel network maps of Venice and other sites (Petaluma Marsh in the San Francisco Bay and Barnstable Marsh in Massachusetts) were examined for scaling properties. Because of the large width of the channels relative to a characteristic length of their drainage area, we had to develop procedures for automatically delineating channel width and then for identifying the skeleton of the channel network (the pattern connecting the loci of the channel centerlines) for box-counting analysis. Box-counting dimensions of the network skeleton proved site-dependent and showed finite-size effects. Because of the large widths we also performed a scaling analysis based on the proportions of the total channel bed area occupied by the tidal networks (i.e., a “fat” fractal analysis). This analysis showed a strong break in scaling between large and small channels. These analyses suggest that tidal channels differ significantly in their scaling relationships from terrestrial systems. In subsequent papers [Rinaldo et al., this issue (a), (b)] we pursue this point much further.
References
- Adami, A., G. Biotto, N. Casalini, Ricerca statistica sulla morfologia dei canali lagunari, Atti del XX Convegno di Idraulica e Costruzioni Idrauliche 1–10, Ed. Libr. Progetto, Padua, Italy, 1986.
- Allard, D.,
H. Group, On the connectivity of two random set models: The truncated Gaussian and the Boolean, Geostatistics Troia, 92 467–478, Kluwer Acad., Norwell, Mass., 1993.
10.1007/978-94-011-1739-5_37 Google Scholar
- Allen, J. R. L., K. Pye, Salt Marshes, Cambridge Univ. Press, New York, 1992.
- Ashley, G. M., M. L. Zeff, Tidal channel classification for a low-mesotidal salt marsh, Mar. Geol., 82, 17–32, 1988.
- Ayles, C. P., M. F. Lapointe, Downvalley gradients in flow patterns, sediment transport and channel morphology in a small macrotidal estuary: Dipper Harbour Creek, New Brunswick, Canada, Earth Surf. Processes Landforms, 21, 829–842, 1996.
- Bayliss-Smith, T. P., R. Healey, R. Lailey, T. Spencer, D. R. Stoddart, Tidal flows in salt-marsh creeks, Estuarine Coastal Mar. Sci., 9, 235–255, 1979.
- Blondeaux, P., G. Seminara, A unified bar-bend theory of river meanders, J. Fluid Mech., 157, 449–470, 1985.
- Boon III, J. D., Tidal discharge asymmetry in a salt marsh drainage system, Limnol. Oceanogr., 20, 71–80, 1975.
- Bridges, P. H., M. R. Leeder, Sedimentary model for intertidal mudflat channels, with examples from the Solway Firth, Scotland, Sedimentology, 23, 533–552, 1976.
- Chapman, V. J., Salt Marshes and Salt Deserts of the World, Wiley-Interscience, New York, 1960.
- Collins, L. M., J. M. Collins, L. B. Leopold, Geomorphic processes of an estuarine marsh: preliminary results and hypothesis, International Geomorphology 1986: Proceedings of the First International Conference on Geomorphology, 1 V. Gardiner, 1049–1071, John Wiley, New York, 1987.
- , Comune di Venezia, Previsioni delle altezze di marea per il bacino di S. Marco e delle velocita' di corrente per il Canal Porto di Lido-Laguna di Venezia: Valori astonomici, technical report, 181Ist. Poligr. dello Stato, Rome, 1997.
- Dedrick, K. G., Use of the early hydrographic surveys in studies of California estuaries, Coastal Zone ‘83, Coastal and Ocean Management, Publ., 3 2294–2316, Am. Soc. of Civ. Eng., Reston, Va., 1983.
- Dorigo, W., Venezia Origini, Electa, Venezia, 1983.
- Dronkers, J. J., Tidal Computations in Rivers and Coastal Waters, North-Holland, New York, 1964.
- Eykholt, R., D. K. Umberger, Relating the various scaling exponents used to characterize fat fractals in nonlinear dynamical systems, Physica D, 30, 43–60, 1988.
- Eykholt, R., D. K. Umberger, Extension of the fat-fractal exponent B to arbitrary sets in D dimensions, Phys. Lett. A, 163, 409–414, 1992.
- French, J. R., D. R. Stoddart, Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange, Earth Surf. Processes Landforms, 17, 235–252, 1992.
- Gottardo, D., S. Cavazzoni, Osservazioni sulla propagazione della marea nella Laguna di Venezia, Rapporti e Studi, Atti Ist. Veneto Sci. Lett. Arti Cl. Sci. Fis. Mat. Nat., VIII, 30–37, 1981.
- Grebogi, C., S. W. McDonald, E. Ott, J. A. Yorke, Exterior dimension of fat fractals, Phys. Lett. A, 110, 1–4, 1985.
- Grossinger, R. M., Historical evidence of freshwater effects on the plan form of tidal marshlands in the Golden Gate Estuary, Master thesis,Univ. of Calif.,Santa Cruz,1995.
- Healey, R. G., K. Pye, D. R. Stoddart, T. P. Bayliss-Smith, Velocity variation in salt marsh creeks, Norfolk, England, Estuarine Coastal Shelf Sci., 13, 535–545, 1981.
- Horton, R. E., Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative geomorphology, Geol. Soc. Am. Bull., 56, 275–370, 1945.
- Howard, A. D., A detachment-limited model of drainage basin evolution, Water Resour. Res., 307, 2261–2285, 1994.
- Jacobson, H. A., Historical development of the salt marsh at Wells, Maine, Earth Surf. Processes Landforms, 13, 475–486, 1988.
- Karlinger, M. R., B. M. Troutman, Fat fractal scaling of drainage networks from a random spatial network model, Water Resour. Res., 287, 1975–1981, 1992.
- Kirchner, J. W., Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks, Geology, 21, 591–599, 1993.
- Knighton, A. D., C. D. Woodroffe, K. Mills, The evolution of tidal creek networks, Mary River, northern Australia, Earth Surf. Processes Landforms, 17, 167–190, 1992.
- Leopold, L. B., T. Maddock Jr., The hydraulic geometry of stream channels and some physiographic implications, U. S. Geol. Surv. Prof. Pap., 252, 56, 1953.
- Leopold, L. B., L. Collins, M. Inbar, Channel and flow relationships in tidal salt marsh wetlandsTech. Rep. G830-06, 78Calif. Water Resour. Cent., U. S. Geol. Surv., Davis, 1984.
- Leopold, L. B., J. N. Collins, L. M. Collins, Hydrology of some tidal channels in estuarine marshlands near San Francisco, Catena, 20, 469–493, 1993.
- Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1982.
- Montgomery, D. R., W. E. Dietrich, Where do channels begin?, Nature, 336, 232–234, 1988.
- Montgomery, D. R., W. E. Dietrich, Channel initiation and the problem of landscape scale, Science, 255, 826–830, 1992.
- Montgomery, D. R., E. Foufoula-Georgiou, Channel network source representation using digital elevation models, Water Resour. Res., 2912, 1925–1934, 1993.
- Myrick, R. M., L. B. Leopold, Hydraulic geometry of a small tidal estuary, U. S. Geol. Surv. Prof. Pap., 422-B, 18, 1963.
- Nikora, V. I., Fractal structures of river plan forms, Water Resour. Res., 276, 1327–1333, 1991.
- Pestrong, R., The development of drainage patterns on tidal marshes, Stanford Univ. Publ. Geol. Sci., 10, 87, 1965.
- Redfield, A. C., Development of a New England salt marsh, Ecol. Monogr., 242, 201–237, 1972.
- Rinaldo, A., I. Rodriguez-Iturbe, R. Rigon, Channel networks, Annu. Rev. Earth Planet. Sci., 26, 289–327, 1998.
- Rinaldo, A., S. Fagherazzi, S. Lanzoni, M. Marani, andW. E. Dietrich, Tidal networks, 2, Watershed delineation and comparative network morphology,Water Resour. Res., 12 (a).
- Rinaldo, A., S. Fagherazzi, S. Lanzoni, M. Marani, andW. E. Dietrich, Tidal networks, 3, Landscape-forming discharges and studies in empirical geomorphic relationships,Water Resour. Res., 12 (b).
- Rodriguez-Iturbe, I., A. Rinaldo, Fractal River Basins: Chance and Self-Organization, Cambridge Univ. Press, New York, 1997.
- Sagar, B. S. D., Fractal relation of a morphological skeleton, Chaos Solitons Fractals, 711, 1871–1879, 1996.
- Shi, Z., H. F. Lamb, R. L. Collin, Geomorphic change of salt marsh tidal creek networks in the Dyfi Estuary, Wales, Mar. Geol., 128, 73–83, 1995.
- vanStraaten, L. M. J. U., Composition and structure of recent marine sediments in the Netherlands, Leidse Geol. Meded., 19, 1–110, 1954.
- Woldenberg, M., Relations between Horton's laws and hydraulic geometry as applied to tidal networks, Harvard Pap. Theor. Geogr., 45, 1–39, 1972.