Biogeochemistry of Wetland Carbon Preservation and Flux
Scott C. Neubauer
Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorJ. Patrick Megonigal
Smithsonian Environmental Research Center, Edgewater, Maryland, USA
Search for more papers by this authorScott C. Neubauer
Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorJ. Patrick Megonigal
Smithsonian Environmental Research Center, Edgewater, Maryland, USA
Search for more papers by this authorKen W. Krauss
Search for more papers by this authorZhiliang Zhu
Search for more papers by this authorCamille L. Stagg
Search for more papers by this authorSummary
The recognition that wetlands play an important role in regulating global climate has led to management actions intended to maintain and enhance the globally significant amounts of carbon preserved in wetland soils while minimizing greenhouse gas emissions. Our goal in this chapter is to review the biogeochemical processes that are relevant to wetland climate regulation, which we do by discussing: (1) the concepts of radiative balance and radiative forcing; (2) the mechanisms for wetland carbon preservation; (3) factors influencing greenhouse gas emissions and other carbon losses; and (4) opportunities for wetland management actions to influence carbon preservation and flux. Wetland carbon preservation, which reflects the accumulation of undecomposed organic material, is a function of the redox environment, organic matter characteristics, and physicochemical factors that inhibit decomposition. However, the conditions that favor carbon preservation often result in increased emissions of methane and nitrous oxide such that there is a biogeochemical tradeoff between carbon preservation and greenhouse gas emissions. The losses of carbon via gaseous and dissolved pathways are sensitive to environmental disturbances and raise challenges about fully accounting for the climatic impacts of wetlands. Wetland management and disturbance intentionally or unintentionally affect biogeochemical processes, such that wise environmental management offers opportunities to enhance wetland carbon preservation, prevent the destabilization of accumulated soil carbon, and reduce greenhouse gas emissions, thus maintaining the role of wetlands as regulators of global climate.
REFERENCES
- Ainsworth , E. A. , & Long , S. P. ( 2005 ). What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . New Phytologist , 165 ( 2 ), 351 – 372 . https://doi.org/10.1111/j.1469-8137.2004.01224.x
- Anderson , B. , Barlett , K. , Frolking , S. , Hayhoe , K. , Jenkins , J. , & Salas , W. ( 2010 ). Methane and nitrous oxide emissions from natural sources (No. EPA 430-R-10-001 ). US Environmental Protection Agency, Office of Atmospheric Programs , Washington, DC, USA . Retrieved from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100717T.TXT
- Angle , J. C. , Morin , T. H. , Solden , L. M. , Narrowe , A. B. , Smith , G. J. , Borton , M. A. , et al. ( 2017 ). Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions . Nature Communications , 8 ( 1 ), 1 – 9 . https:10.1038/s41467-017-01753-4
- Armentano , T. V , & Menges , E. S. ( 1986 ). Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone . The Journal of Ecology , 74 ( 3 ), 755 . https:10.2307/2260396
- Aufdenkampe , A. K. , Hedges , J. I. , Richey , J. E. , Krusche , A. V. , & Llerena , C. A. ( 2001 ). Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin . Limnology and Oceanography , 46 ( 8 ), 1921 – 1935 . https://doi.org/10.4319/lo.2001.46.8.1921
- Bailey , V. L. , Smith , A. P. , Tfaily , M. , Fansler , S. J. , & Bond-Lamberty , B. ( 2017 ). Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains . Soil Biology and Biochemistry , 107 , 133 – 143 . https://doi.org/10.1016/j.soilbio.2016.11.025
- Baldock , J. A. , Masiello , C. A. , Gélinas , Y. , & Hedges , J. I. ( 2004 ). Cycling and composition of organic matter in terrestrial and marine ecosystems . Marine Chemistry , 92 ( 1–4 Spec. Iss.), 39 – 64 . https://doi.org/10.1016/j.marchem.2004.06.016
- Bansal , S. , Johnson , O. F. , Meier , J. , & Zhu , X. ( 2020 ). Vegetation affects timing and location of wetland methane emissions . Journal of Geophysical Research: Biogeosciences , 125 ( 9 ), e2020JG005777 . https://doi.org/10.1029/2020jg005777
- Bartlett , K. B. , Harriss , R. C. , & Sebacher , D. I. ( 1985 ). Methane flux from coastal salt marshes . Journal of Geophysical Research: Atmospheres , 90 ( D3 ), 5710 – 5720 . https://doi.org/10.1029/JD090iD03p05710
- Basiliko , N. , Stewart , H. , Roulet , N. T. , & Moore , T. R. ( 2012 ). Do root exudates enhance peat decomposition? Geomicrobiology Journal , 29 ( 4 ), 374 – 378 . https://doi.org/10.1080/01490451.2011.568272
- Beal , E. J. , House , C. H. , & Orphan , V. J. ( 2009 ). Manganese- and iron-dependent marine methane oxidation . Science , 325 ( 5937 ), 184 – 187 . https://doi.org/10.1126/science.1169984
- Bedford , B. L. , Walbridge , M. R. , & Aldous , A. ( 1999 ). Patterns in nutrient availability and plant diversity of temperate North American wetlands . Ecology , 80 ( 7 ), 2151 – 2169 . https://doi.org/10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2
- Beltman , B. , Van Den Broek , T. , Barendregt , A. , Bootsma , M. ., & Grootjans , A. P. ( 2001 ). Rehabilitation of acidified and eutrophied fens in The Netherlands: Effects of hydrologic manipulation and liming . Ecological Engineering , 17 ( 1 ), 21 – 31 . https://doi.org/10.1016/S0925-8574(00)00128-2
- Belyea , L. R. ( 1996 ). Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland . Oikos , 77 ( 3 ), 529 . https://doi.org/10.2307/3545942
- Benner , R. , Fogel , M. L. , Sprague , E. K. , & Hodson , R. E. ( 1987 ). Depletion of 13 C in lignin and its implications for stable carbon isotope studies . Nature , 329 , 708 – 710 . https://doi.org/10.1038/329708a0
- Bernal , B. , Megonigal , J. P. , & Mozdzer , T. J. ( 2017 ). An invasive wetland grass primes deep soil carbon pools . Global Change Biology , 23 ( 5 ), 2104 – 2116 . https://doi.org/10.1111/gcb.13539
- Bhadha , J. H. , Wright , A. L. , & Snyder , G. H. ( 2009 ). Everglades Agricultural Area soil subsidence and sustainability . University of Florida, Institute of Food and Agricultural Sciences , publication SL 311.
- Billett , M. F. , & Moore , T. R. ( 2007 ). Supersaturation and evasion of CO 2 and CH 4 in surface waters at Mer Bleue peatland, Canada . Hydrological Processes , 22 ( 12 ), 2044 – 2054 . https://doi.org/10.1002/hyp.6805
- Billett , M. F. , Palmer , S. M. , Hope , D. , Deacon , C. , Storeton-West , R. , Hargreaves , K. J. , et al. ( 2004 ). Linking land-atmosphere-stream carbon fluxes in a lowland peatland system . Global Biogeochemical Cycles , 18 ( 1 ), n/a–n/a. https://doi.org/10.1029/2003gb002058
- Billett , M. F. , Garnett , M. H. , Dinsmore , K. J. , Dyson , K. E. , Harvey , F. , Thomson , A. M. , et al. ( 2012 ). Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland . Biogeochemistry , 111 ( 1–3 ), 273 – 286 . https://doi.org/10.1007/s10533-011-9645-4
- Blain , D. , Murdiyarso , D. , Couwenberg , J. , Nagata , O. , Renou-Wilson , F. , Sirin , A. , et al. ( 2014 ). Rewetted organic soils . In: T. Hiraishi , T. Krug , K. Tanabe , N. Srivastava , B. Jamsranjav , M. Fukuda , & T. Troxler (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Task Force on National Greenhouse Gas Inventories (p. 42 ). Geneva, Switzerland : Intergovernmental Panel on Climate Change .
- Blair , N. E. , & Aller , R. C. ( 2012 ). The fate of terrestrial organic carbon in the marine environment . Annual Review of Marine Science , 4 ( 1 ), 401 – 423 . https://doi.org/10.1146/annurev-marine-120709-142717
- Blair , N. E. , Leithold , E. L. , & Aller , R. C. ( 2004 ). From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems . Marine Chemistry , 92 ( 1–4 Spec. Iss.), 141 – 156 . https://doi.org/10.1016/j.marchem.2004.06.023
-
Blazewicz , S. J.
,
Petersen , D. G.
,
Waldrop , M. P.
, &
Firestone , M. K.
(
2012
).
Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling
.
Journal of Geophysical Research: Biogeosciences
,
117
(
2
),
1
–
9
.
https://doi.org/10.1029/2011JG001864
10.1029/2011JG001864 Google Scholar
- Blum , M. D. , & Roberts , H. H. ( 2009 ). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise . Nature Geoscience , 2 ( 7 ), 488 – 491 . https://doi.org/10.1038/ngeo553
- van Bodegom , P. M. , Stams , F. , Mollema , L. , Boeke , S. , & Leffelaar , P. ( 2001 ). Methane oxidation and the competition for oxygen in the rice rhizosphere . Applied and Environmental Microbiology , 67 , 3586 – 3597 . https://doi.org/10.1128/AEM.67.8.3586-3597.2001
- van Bodegom , P. M. , Broekman , R. , Van Dijk , J. , Bakker , C. , & Aerts , R. ( 2005 ). Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands . Biogeochemistry , 76 ( 1 ), 69 – 83 . https://doi.org/10.1007/s10533-005-2053-x
- Bodelier , P. L. E. ( 2011 ). Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils . Current Opinion in Environmental Sustainability , 3 ( 5 ), 379 – 388 . https://doi.org/10.1016/j.cosust.2011.06.002
- Bodelier , P. L. E. , & Frenzel , P. ( 1999 ). Contribution of methanotrophic and nitrifying bacteria to CH 4 and NH 4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination . Applied and Environmental Microbiology , 65 ( 5 ), 1826 – 1833 . https://doi.org/10.1128/aem.65.5.1826-1833.1999
- Bodelier , P. L. E. , Roslev , P. , Henckel , T. , & Frenzel , P. ( 2000 ). Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots . Nature , 403 ( 6768 ), 421 – 424 . https://doi.org/10.1038/35000193
- Bonnett , S. A. F. , Maltby , E. , & Freeman , C. ( 2017 ). Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence . Scientific Reports , 7 ( 1 ), 1 – 13 . https://doi.org/10.1038/s41598-017-10430-x
- Boye , K. , Noël , V. , Tfaily , M. M. , Bone , S. E. , Williams , K. H. , Bargar , J. R. , & Fendorf , S. ( 2017 ). Thermodynamically controlled preservation of organic carbon in floodplains . Nature Geoscience , 10 ( 6 ), 415 – 419 . https://doi.org/10.1038/ngeo2940
- Brantley , C. G. , Day , J. W. , Lane , R. R. , Hyfield , E. , Day , J. N. , & Ko , J. Y. ( 2008 ). Primary production, nutrient dynamics, and accretion of a coastal freshwater forested wetland assimilation system in Louisiana . Ecological Engineering , 34 ( 1 ), 7 – 22 . https://doi.org/10.1016/j.ecoleng.2008.05.004
- van Breemen , N. ( 1995 ). How Sphagnum bogs down other plants . Trends in Ecology & Evolution , 10 ( 7 ), 270 – 275 . https://doi.org/10.1016/0169-5347(95)90007-1
- Bridgham , S. D. , & Richardson , C. J. ( 2003 ). Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands . Biogeochemistry , 65 , 151 – 178 . https://doi.org/10.1023/A:1026026212581
- Bridgham , S. D. , Megonigal , J. P. , Keller , J. K. , Bliss , N. B. , & Trettin , C. ( 2006 ). The carbon balance of North American wetlands . Wetlands , 26 ( 4 ), 889 – 916 . https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
- Bridgham , S. D. , Cadillo-Quiroz , H. , Keller , J. K. , & Zhuang , Q. ( 2013 ). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales . Global Change Biology , 19 ( 5 ), 1 – 22 . https://doi.org/10.1111/gcb.12131
- Brinson , M. M. , Lugo , A. E. , & Brown , S. ( 1981 ). Primary productivity, decomposition and consumer activity in freshwater wetlands . Annual Review of Ecology and Systematics , 12 , 123 – 161 . https://doi.org/doi.org/10.1146/annurev.es.12.110181.001011
- Brooks , M. L. , Meyer , J. S. , & McKnight , D. M. ( 2007 ). Photooxidation of wetland and riverine dissolved organic matter: Altered copper complexation and organic composition . Hydrobiologia , 579 ( 1 ), 95 – 113 . https://doi.org/10.1007/s10750-006-0387-6
- Brown , S. L. , Gouslbra , C. S. , & Evans , M. G. ( 2019 ). Controls on fluvial carbon efflux from eroding peatland catchments . Hydrological Processes , 33 ( 3 ), 361 – 371 . https://doi.org/10.1002/hyp.13329
- Bruhn , D. , Møller , I. M. , Mikkelsen , T. N. , & Ambus , P. ( 2012 ). Terrestrial plant methane production and emission . Physiologia Plantarum , 144 ( 3 ), 201 – 209 . https://doi.org/10.1111/j.1399-3054.2011.01551.x
- Burd , K. , Tank , S. E. , Dion , N. , Quinton , W. L. , Spence , C. , Tanentzap , A. J. , & Olefeldt , D. ( 2018 ). Seasonal shifts in export of DOC and nutrients from burned and unburned peatland-rich catchments, Northwest Territories, Canada . Hydrology and Earth System Sciences , 22 ( 8 ), 4455 – 4472 . https://doi.org/10.5194/hess-22-4455-2018
- Burgin , A. J. , & Hamilton , S. K. ( 2008 ). NO 3 – -driven SO 4 2– production in freshwater ecosystems: Implications for N and S cycling . Ecosystems , 11 ( 6 ), 908 – 922 . https://doi.org/10.1007/s10021-008-9169-5
- Butman , D. , & Raymond , P. A. ( 2011 ). Significant efflux of carbon dioxide from streams and rivers in the United States . Nature Geoscience , 4 ( 12 ), 839 – 842 . https://doi.org/10.1038/ngeo1294
- Cabezas , A. , Comín , F. A. , & Walling , D. E. ( 2009 ). Changing patterns of organic carbon and nitrogen accretion on the middle Ebro floodplain (NE Spain) . Ecological Engineering , 35 ( 10 ), 1547 – 1558 . https://doi.org/10.1016/j.ecoleng.2009.07.006
- Cai , W.-J. ( 2011 ). Estuarine and coastal ocean carbon paradox: CO 2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science , 3 ( 1 ), 123 – 145 . https://doi.org/10.1146/annurev-marine-120709-142723
- Cai , W.-J. , & Wang , Y. ( 1998 ). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia . Limnology and Oceanography , 43 ( 4 ), 657 – 668 . https://doi.org/10.4319/lo.1998.43.4.0657
- Cao , F. , Tzortziou , M. , Hu , C. , Mannino , A. , Fichot , C. G. , Del Vecchio , R. , et al. ( 2018 ). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins . Remote Sensing of Environment , 205 (April 2017), 151 – 165 . https://doi.org/10.1016/j.rse.2017.11.014
- Caplan , J. S. , Hager , R. N. , Megonigal , J. P. , & Mozdzer , T. J. ( 2015 ). Global change accelerates carbon assimilation by a wetland ecosystem engineer . Environmental Research Letters , 10 ( 11 ), 115006 . https://doi.org/10.1088/1748-9326/10/11/115006
- Carey , E. , & Taillefert , M. ( 2005 ). The role of soluble Fe(III) in the cycling of iron and sulfur in coastal marine sediments . Limnology and Oceanography , 50 ( 4 ), 1129 – 1141 . https://doi.org/10.4319/lo.2005.50.4.1129
- Carlson , K. M. , Goodman , L. K. , & May-Tobin , C. C. ( 2015 ). Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations . Environmental Research Letters , 10 ( 7 ), 74006 . https://doi.org/10.1088/1748-9326/10/7/074006
- Cavanaugh , K. C. , Kellner , J. R. , Forde , A. J. , Gruner , D. S. , Parker , J. D. , Rodriguez , W. , & Feller , I. C. ( 2014 ). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events . Proceedings of the National Academy of Sciences of the United States of America , 111 ( 2 ), 723 – 727 . https://doi.org/10.1073/pnas.1315800111
-
Chambers , L. G.
,
Osborne , T. Z.
, &
Reddy , K. R.
(
2013
).
Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment
.
Biogeochemistry
.
https://doi.org/10.1007/s10533-013-9841-5
10.1007/s10533?013?9841?5 Google Scholar
- Chambers , R. M. , & Odum , W. E. ( 1990 ). Porewater oxidation, dissolved phosphate and the iron curtain: Iron-phosphorus relations in tidal freshwater marshes . Biogeochemistry , 10 , 37 – 52 . https://doi.org/10.1007/BF00000891
- Chanton , J. P. , Martens , C. S. , & Kelley , C. A. ( 1989 ). Gas transport from methane-saturated, tidal freshwater and wetland sediments . Limnology and Oceanography , 34 ( 5 ), 807 – 819 . https://doi.org/10.4319/lo.1989.34.5.0807
- Chanton , J. P. , Glaser , P. H. , Chasar , L. S. , Burdige , D. J. , Hines , M. E. , Siegel , D. I. , et al. ( 2008 ). Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands . Global Biogeochemical Cycles , 22 ( 4 ), 1 – 11 . https://doi.org/10.1029/2008GB003274
- Chapin , C. T. , Bridgham , S. D. , & Pastor , J. ( 2004 ). pH and nutrient effects on above-ground net primary production in a Minnesota, USA bog and fen . Wetlands , 24 ( 1 ), 186 – 201 . https://doi.org/10.1672/0277-5212(2004)024[0186:PANEOA]2.0.CO;2
- Chapman , S. K. , Hayes , M. A. , Kelly , B. , & Langley , J. A. ( 2019 ). Exploring the oxygen sensitivity of wetland soil carbon mineralization . Biology Letters , 15 ( 1 ), 20180407 . https://doi.org/10.1098/rsbl.2018.0407
- Chen , C. T. A. , Huang , T. H. , Chen , Y. C. , Bai , Y. , He , X. , & Kang , Y. ( 2013 ). Air-sea exchanges of CO 2 in the world's coastal seas . Biogeosciences , 10 , 6509 – 6544 . https://doi.org/10.5194/bg-10-6509-2013
- Childers , D. L. , Day , J. W. , & McKellar Jr. , H. N. ( 2000 ). Twenty more years of marsh and estuarine flux studies: Revisiting Nixon (1980) . In: M. Weinstein & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 391 – 423 ). Dordrecht, Netherlands : Kluwer Academic Publishing .
- Chin , Y. P. , Traina , S. J. , Swank , C. R. , & Backhus , D. ( 1998 ). Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland . Limnology and Oceanography , 43 ( 6 ), 1287 – 1296 . https://doi.org/10.4319/lo.1998.43.6.1287
- Chmura , G. L. , Anisfeld , S. C. , Cahoon , D. R. , & Lynch , J. C. ( 2003 ). Global carbon sequestration in tidal, saline wetland soils . Global Biogeochemical Cycles , 17 ( 4 ), 1111 . https://doi.org/10.1029/2002GB001917
- Christensen , D. ( 1984 ). Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments . Limnology and Oceanography , 29 ( 1 ), 189 – 191 . https://doi.org/10.4319/lo.1984.29.1.0189
- Clay , G. D. , Worrall , F. , & Fraser , E. D. G. ( 2009 ). Effects of managed burning upon dissolved organic carbon (DOC) in soil water and runoff water following a managed burn of a UK blanket bog . Journal of Hydrology , 367 ( 1–2 ), 41 – 51 . https://doi.org/10.1016/j.jhydrol.2008.12.022
- Cleary , J. , Roulet , N. T. , & Moore , T. R. ( 2005 ). Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A life-cycle analysis . Ambio , 34 ( 6 ), 456 – 461 . https://doi.org/10.1579/0044-7447-34.6.456
- Cole , J. J. , Prairie , Y. T. , Caraco , N. F. , McDowell , W. H. , Tranvik , L. J. , Striegl , R. G. , et al. ( 2007 ). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon cycle . Ecosystems , 10 ( 1 ), 172 – 185 .
- Colmer , T. D. ( 2003 ). Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots . Plant, Cell and Environment , 26 , 17 – 36 .
- Conant , R. T. , Ryan , M. G. , Ågren , G. I. , Birge , H. E. , Davidson , E. A. , Eliasson , P. E. , et al. ( 2011 ). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward . Global Change Biology , 17 ( 11 ), 3392 – 3404 . https://doi.org/10.1111/j.1365-2486.2011.02496.x
- Conner , W. H. , & Day , J. W. ( 1991 ). Leaf litter decomposition in three Louisiana freshwater forested wetland areas with different flooding regimes . Wetlands , 11 ( 2 ), 303 – 312 . https://doi.org/10.1007/BF03160855
- Cornwell , J. C. , Kemp , W. M. , & Kana , T. M. ( 1999 ). Denitrification on coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review . Aquatic Ecology , 33 , 41 – 54 . https://doi.org/10.1023/A:1009921414151
- Cornwell , J. C. , Owens , M. S. , Staver , L. W. , & Stevenson , J. C. ( 2020 ). Tidal marsh restoration at Poplar Island I: Transformation of estuarine sediments into marsh soils . Wetlands , 40 . 1673 – 1686 . https://doi.org/10.1007/s13157-020-01294-5
- Courtwright , J. , & Findlay , S. E. G. ( 2011 ). Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River . Wetlands , 31 ( 2 ), 239 – 249 . https://doi.org/10.1007/s13157-011-0156-9
- Couwenberg , J. , Dommain , R. , & Joosten , H. ( 2010 ). Greenhouse gas fluxes from tropical peatlands in south-east Asia . Global Change Biology , 16 ( 6 ), 1715 – 1732 . https://doi.org/10.1111/j.1365-2486.2009.02016.x
- Covey , K. R. , & Megonigal , J. P. ( 2019 ). Methane production and emissions in trees and forests . New Phytologist , 222 ( 1 ), 35 – 51 . https://doi.org/10.1111/nph.15624
- Craft , C. , Megonigal , P. , Broome , S. , Stevenson , J. , Cornell , J. , Zheng , L. , et al. ( 2003 ). The pace of ecosystem development of constructed Spartina alterniflora marshes . Ecological Applications , 13 ( 5 ), 1417 – 1432 . https://doi.org/10.1890/02-5086
- Crill , P. M. , Martikainen , P. J. , Nykanen , H. , & Silvola , J. ( 1994 ). Temperature and N fertilization effects on methane oxidation in a drained peatland soil . Soil Biology and Biochemistry , 26 ( 10 ), 1331 – 1339 . https://doi.org/10.1016/0038-0717(94)90214-3
- Cui , J. , Li , Z. , Liu , Z. , Ge , B. , Fang , C. , Zhou , C. , & Tang , B. ( 2014 ). Physical and chemical stabilization of soil organic carbon along a 500-year cultived soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects . Agriculture, Ecosystems and Environment , 196 (October 2017), 10 – 20 . https://doi.org/10.1016/j.agee.2014.06.013
- Curtis , P. S. , Drake , B. G. , Leadley , P. W. , Arp , W. J. , & Whigham , D. F. ( 1989 ). Growth and senescence in plant communities exposed to elevated CO 2 concentrations on an estuarine marsh . Oecologia , 78 ( 1 ), 20 – 26 . https://doi.org/10.1007/BF00377193
- Cutter , G. A. , & Velinsky , D. J. ( 1988 ). Temporal variations of sedimentary sulfur in a Delaware salt marsh . Marine Chemistry , 23 , 311 – 327 . https://doi.org/10.1016/0304-4203(88)90101-6
- Dai , T. , & Wiegert , R. G. ( 1996 ). Estimation of the primary productivity of Spartina alterniflora using a canopy model . Ecography , 19 , 410 – 423 . https://doi.org/10.1111/j.1600-0587.1996.tb00006.x
- Dalal , R. C. , & Bridge , B. J. ( 1996 ). Aggregation and organic matter storage in sub-humid and semi-arid soils . In M. R. Carter & B. A. Stewart (Eds.), Structure and organic matter storage in agricultural soils (pp. 263 – 307 ). Boca Raton, FL : CRC Press .
- Damm , E. , Helmke , E. , Thoms , S. , Schauer , U. , Nöthig , E. , Bakker , K. , & Kiene , R. P. ( 2010 ). Methane production in aerobic oligotrophic surface water in the central Arctic Ocean . Biogeosciences , 7 ( 3 ), 1099 – 1108 . https://doi.org/10.5194/bg-7-1099-2010
-
Dang , C.
,
Morrissey , E. M.
,
Neubauer , S. C.
, &
Franklin , R. B.
(
2019
).
Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands
.
Global Change Biology
.
https://doi.org/10.1111/gcb.14486
10.1111/gcb.14486 Google Scholar
- Darrouzet-Nardi , A. , & Weintraub , M. N. ( 2014 ). Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry . Soil Biology and Biochemistry , 73 ( 3 ), 22 – 32 . https://doi.org/10.1016/j.soilbio.2014.02.010
- Davidson , E. A. , Keller , M. , Erickson , H. E. , Verchot , L. V , & Veldkamp , E. ( 2000 ). Testing a conceptual model of soil emissions of nitrous and nitric oxides . BioScience , 50 ( 8 ), 667 – 680 . https://doi.org/10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2
- Day , F. P. ( 1982 ). Litter decomposition rates in the seasonally flooded Great Dismal Swamp . Ecology , 63 (November 1980), 670 – 678 . https://doi.org/10.2307/1936787
- Dean , J. F. , Garnett , M. H. , Spyrakos , E. , & Billett , M. F. ( 2019 ). The potential hidden age of dissolved organic carbon exported by peatland streams . Journal of Geophysical Research: Biogeosciences , 124 ( 2 ), 328 – 341 . https://doi.org/10.1029/2018JG004650
- Deegan , L. A. , Johnson , D. S. , Warren , R. S. , Peterson , B. J. , Fleeger , J. W. , Fagherazzi , S. , & Wollheim , W. M. ( 2012 ). Coastal eutrophication as a driver of salt marsh loss . Nature , 490 ( 7420 ), 388 – 392 . https://doi.org/10.1038/nature11533
- DeLaune , R. D. , & White , J. R. ( 2012 ). Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: A case study of the rapidly subsiding Mississippi River deltaic plain . Climatic Change , 110 ( 1–2 ), 297 – 314 . https://doi.org/10.1007/s10584-011-0089-6
- Deverel , S. J. , Ingrum , T. , & Leighton , D. ( 2016 ). Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA . Hydrogeology Journal , 24 ( 3 ), 569 – 586 . https://doi.org/10.1007/s10040-016-1391-1
- Devol , A. H. , Richey , J. E. , Clark , W. A. , King , S. L. , & Martinelli , L. A. ( 1988 ). Methane emissions to the troposphere from the Amazon floodplain . Journal of Geophysical Research: Atmospheres , 93 ( D2 ), 1583 – 1592 . https://doi.org/10.1029/JD093iD02p01583
- Dinsmore , K. J. , Billett , M. F. , Skiba , U. M. , Rees , R. M. , Drewer , J. , & Helfter , C. ( 2010 ). Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment . Global Change Biology , 16 ( 10 ), 2750 – 2762 . https://doi.org/10.1111/j.1365-2486.2009.02119.x
- Dinsmore , K. J. , Billett , M. F. , & Dyson , K. E. ( 2013 ). Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment . Global Change Biology , 19 ( 7 ), 2133 – 2148 . https://doi.org/10.1111/gcb.12209
- Dioumaeva , I. , Trumbore , S. , Schuur , E. A. G. , Goulden , M. L. , Litvak , M. , & Hirsch , A. I. ( 2003 ). Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon . Journal of Geophysical Research: Atmospheres , 108 ( 3 ), 1 – 12 . https://doi.org/10.1029/2001jd000848
- Dorodnikov , M. , Knorr , K. H. , Kuzyakov , Y. , & Wilmking , M. ( 2011 ). Plant-mediated CH 4 transport and contribution of photosynthates to methanogenesis at a boreal mire: A 14 C pulse-labeling study . Biogeosciences , 8 ( 8 ), 2365 – 2375 . https://doi.org/10.5194/bg-8-2365-2011
- Dorrepaal , E. , Toet , S. , Van Logtestijn , R. S. P. , Swart , E. , Van De Weg , M. J. , Callaghan , T. V. , & Aerts , R. ( 2009 ). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic . Nature , 460 ( 7255 ), 616 – 619 . https://doi.org/10.1038/nature08216
- Doughty , C. L. , Langley , J. A. , Walker , W. S. , Feller , I. C. , Schaub , R. , & Chapman , S. K. ( 2016 ). Mangrove range expansion rapidly increases coastal wetland carbon storage . Estuaries and Coasts , 39 ( 2 ), 385 – 396 . https://doi.org/10.1007/s12237-015-9993-8
- Drake , B. G. ( 2014 ). Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO 2 on a Chesapeake Bay wetland: Review of a 28-year study . Global Change Biology , 20 ( 11 ), 3329 – 3343 . https://doi.org/10.1111/gcb.12631
- Drake , H. , & Ivarsson , M. ( 2018 ). The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere . Fungal Biology Reviews , 32 ( 1 ), 20 – 25 . https://doi.org/10.1016/j.fbr.2017.10.001
- Drake , T. W. , Wickland , K. P. , Spencer , R. G. M. , McKnight , D. M. , & Striegl , R. G. ( 2015 ). Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw . Proceedings of the National Academy of Sciences of the United States of America , 112 ( 45 ), 13946 – 13951 . https://doi.org/10.1073/pnas.1511705112
- Drexler , J. Z. , de Fontaine , C. S. , & Deverel , S. J. ( 2009 ). The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA . Wetlands , 29 ( 1 ), 372 – 386 . https://doi.org/10.1672/08-97.1
- Driscoll , C. T. , Lehtinen , M. D. , & Sullivan , T. J. ( 1994 ). Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes . Water Resources Research , 30 ( 2 ), 297 – 306 . https://doi.org/doi.org/10.1029/93WR02888
- Drösler , M. , Verchot , L. V , Freibauer , A. , Pan , G. , Evans , C. D. , Bourbonniere , R. A. , et al. ( 2014 ). Drained inland organic soils . In: T. Hiraishi , T. Krug , K. Tanabe , N. Srivastava , B. Jamsranjav , M. Fukuda , & T. Troxler (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Task Force on National Greenhouse Gas Inventories (p. 79 ). Geneva, Switzerland : Intergovernmental Panel on Climate Change .
- Duan , W. M. , Hedrick , D. B. , Pye , K. , Coleman , M. L. , & White , D. C. ( 1996 ). A preliminary study of the geochemical and microbiological characteristics of modern sedimentary concretions . Limnology and Oceanography , 41 ( 7 ), 1404 – 1414 . https://doi.org/10.4319/lo.1996.41.7.1404
- Duarte , C. M. , Losada , I. J. , Hendriks , I. E. , Mazarrasa , I. , & Marbà , N. ( 2013 ). The role of coastal plant communities for climate change mitigation and adaptation . Nature Climate Change , 3 ( 11 ), 961 – 968 . https://doi.org/10.1038/nclimate1970
- Duddleston , K. N. , Kinney , M. A. , Kiene , R. P. , & Hines , M. E. ( 2002 ). Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product . Global Biogeochemical Cycles , 16 ( 4 ), 11-1 – 11-9 . https://doi.org/10.1029/2001gb001402
- Dunfield , P. , Knowles , R. , Dumont , R. , & Moore , T. R. ( 1993 ). Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH . Soil Biology and Biochemistry , 25 ( 3 ), 321 – 326 . https://doi.org/10.1016/0038-0717(93)90130-4
- Dunn , C. , Jones , T. G. , Roberts , S. , & Freeman , C. ( 2016 ). Plant species effects on the carbon storage capabilities of a blanket bog complex . Wetlands , 36 ( 1 ), 47 – 58 . https://doi.org/10.1007/s13157-015-0714-7
- Egger , M. , Rasigraf , O. , Sapart , C. J. , Jilbert , T. , Jetten , M. S. M. , Röckmann , T. , et al. ( 2015 ). Iron-mediated anaerobic oxidation of methane in brackish coastal sediments . Environmental Science and Technology , 49 ( 1 ), 277 – 283 . https://doi.org/10.1021/es503663z
- Emerson , D. , Weiss , J. V , & Megonigal , J. P. ( 1999 ). Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants . Applied and Environmental Microbiology , 65 ( 6 ), 2758 – 2761 .
- Enríquez , S. , Duarte , C. M. , & Sand-Jensen , K. ( 1993 ). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content . Oecologia , 94 ( 4 ), 457 – 471 . https://doi.org/10.1007/BF00566960
- Erickson , J. E. , Megonigal , J. P. , Peresta , G. , & Drake , B. G. ( 2007 ). Salinity and sea level mediate elevated CO 2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland . Global Change Biology , 13 , 202 – 215 . https://doi.org/10.1111/j.1365-2486.2006.01285.x
- Erwin , K. L. ( 2009 ). Wetlands and global climate change: The role of wetland restoration in a changing world . Wetlands Ecology and Management , 17 ( 1 ), 71 – 84 . https://doi.org/10.1007/s11273-008-9119-1
- Evans , C. D. , Monteith , D. T. , & Cooper , D. M. ( 2005 ). Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts . Environmental Pollution , 137 ( 1 ), 55 – 71 . https://doi.org/10.1016/j.envpol.2004.12.031
- Evans , C. D. , Freeman , C. , Cork , L. G. , Thomas , D. N. , Reynolds , B. , Billett , M. F. , et al. ( 2007 ). Evidence against recent climate-induced destabilisation of soil carbon from 14 C analysis of riverine dissolved organic matter . Geophysical Research Letters , 34 ( 7 ), 1 – 5 . https://doi.org/10.1029/2007GL029431
- Evans , C. D. , Jones , T. G. , Burden , A. , Ostle , N. , Zieliński , P. , Cooper , M. D. A. , et al. ( 2012 ). Acidity controls on dissolved organic carbon mobility in organic soils . Global Change Biology , 18 ( 11 ), 3317 – 3331 . https://doi.org/10.1111/j.1365-2486.2012.02794.x
- Evans , C. D. , Page , S. E. , Jones , T. , Moore , S. , Gauci , V. , Laiho , R. , et al. ( 2014 ). Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon . Global Biogeochemical Cycles , 28 ( 11 ), 1215 – 1234 . https://doi.org/10.1002/2013GB004782
- Ewing , J. M. , & Vepraskas , M. J. ( 2006 ). Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage . Wetlands , 26 ( 1 ), 119 – 130 . https://doi.org/10.1672/0277-5212(2006)26[119:EPASSI]2.0.CO;2
- Fargione , J. E. , Bassett , S. , Boucher , T. , Bridgham , S. D. , Conant , R. T. , Cook-Patton , S. C. , et al. ( 2018 ). Natural climate solutions for the United States . Science Advances , 4 ( 11 ), 1 – 15 . https://doi.org/10.1126/sciadv.aat1869
- Fenner , N. , & Freeman , C. ( 2011 ). Drought-induced carbon loss in peatlands . Nature Geoscience , 4 ( 12 ), 895 – 900 . https://doi.org/10.1038/ngeo1323
- Fenner , N. , & Freeman , C. ( 2020 ). Woody litter protects peat carbon stocks during drought . Nature Climate Change , 10 ( 4 ), 363 – 369 . https://doi.org/10.1038/s41558-020-0727-y
- Fenner , N. , Freeman , C. , Lock , M. A. , Harmens , H. , Reynolds , B. , & Sparks , T. ( 2007 ). Interactions between elevated CO 2 and warming could amplify DOC exports from peatland catchments . Environmental Science and Technology , 41 ( 9 ), 3146 – 3152 . https://doi.org/10.1021/es061765v
- Fetherston , K. L. , Naiman , R. J. , & Bilby , R. E. ( 1995 ). Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest . Geomorphology , 13 ( 1–4 ), 133 – 144 . https://doi.org/10.1016/0169-555X(95)00033-2
- Feurdean , A. , Gałka , M. , Florescu , G. , Diaconu , A. C. , Tanţău , I. , Kirpotin , S. , & Hutchinson , S. M. ( 2019 ). 2000 years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large-scale atmospheric circulation: A multi-proxy peat record . Quaternary Science Reviews , 226 ( 2019 ), 105948 . https://doi.org/10.1016/j.quascirev.2019.105948
- Fey , A. , & Conrad , R. ( 2003 ). Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil . Soil Biology and Biochemistry , 35 , 1 – 8 .
- Flanagan , N. E. , Wang , H. , Winton , S. , & Richardson , C. J. ( 2020 ). Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition . Global Change Biology , 26 ( 7 ), 3930 – 3946 . https://doi.org/10.1111/gcb.15102
- Frankignoulle , M. ( 1994 ). A complete set of buffer factors for acid/base CO 2 system in seawater . Journal of Marine Systems , 5 ( 2 ), 111 – 118 . https://doi.org/10.1016/0924-7963(94)90026-4
- Freeman , C. , Lock , M. A. , Marxsen , J. , & Jones , S. E. ( 1990 ). Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes in biofilms from contrasting rivers and streams . Freshwater Biology , 24 ( 1 ), 159 – 166 . https://doi.org/10.1111/j.1365-2427.1990.tb00315.x
- Freeman , C. , Ostle , N. , & Kang , H. ( 2001 ). An enzymic “latch” on a global carbon store . Nature , 409 ( 6817 ), 149 . https://doi.org/10.1038/35051650
- Freeman , C. , Evans , C. D. , Monteith , D. T. , Reynolds , B. , & Fenner , N. ( 2001 ). Export of organic carbon from peat soils . Nature , 412 ( 6849 ), 785 . https://doi.org/10.1038/35090628
- Freeman , C. , Ostle , N. J. , Fenner , N. , & Kang , H. ( 2004 ). A regulatory role for phenol oxidase during decomposition in peatlands . Soil Biology and Biochemistry , 36 ( 10 ), 1663 – 1667 . https://doi.org/10.1016/j.soilbio.2004.07.012
- Freeman , C. , Fenner , N. , Ostle , N. J. , Kang , H. , Dowrick , D. J. , Reynolds , B. , et al. ( 2004 ). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels . Nature , 430 ( 6996 ), 195 – 198 . https://doi.org/10.1038/nature02707
- Freeman , C. , Fenner , N. , & Shirsat , A. H. (2012). Peatland geoengineering: An alternative approach to terrestrial carbon sequestration . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 370 ( 1974 ), 4404 – 4421 . https://doi.org/10.1098/rsta.2012.0105
- Frey , K. E. , & Smith , L. C. ( 2005 ). Amplified carbon release from vast West Siberian peatlands by 2100 . Geophysical Research Letters , 32 ( 9 ), 1 – 4 . https://doi.org/10.1029/2004GL022025
- Friedrichs , C. T. , & Perry , J. E. ( 2001 ). Tidal salt marsh morphodynamics: A synthesis . Journal of Coastal Research, Special Issue , 27 , 7 – 37 .
- Fritz , K. A. , & Whiles , M. R. ( 2018 ). Amphibian-mediated nutrient fluxes across aquatic–terrestrial boundaries of temporary wetlands . Freshwater Biology , 63 ( 10 ), 1250 – 1259 . https://doi.org/10.1111/fwb.13130
- Frolking , S. , & Roulet , N. T. ( 2007 ). Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions . Global Change Biology , 13 ( 5 ), 1079 – 1088 . https://doi.org/10.1111/j.1365-2486.2007.01339.x
- Frolking , S. , Roulet , N. T. , Tuittila , E. , Bubier , J. L. , Quillet , A. , Talbot , J. , & Richard , P. J. H. ( 2010 ). A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation . Earth System Dynamics , 1 ( 1 ), 1 – 21 . https://doi.org/10.5194/esd-1-1-2010
- Galand , P. E. , Yrjäla , K. , & Conrad , R. ( 2010 ). Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems . Biogeosciences , 7 ( 11 ), 3893 – 3900 . https://doi.org/10.5194/bg-7-3893-2010
- Gandois , L. , Cobb , A. R. , Hei , I. C. , Lim , L. B. L. , Salim , K. A. , & Harvey , C. F. ( 2013 ). Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: Implications for carbon release . Biogeochemistry , 114 ( 1–3 ), 183 – 199 . https://doi.org/10.1007/s10533-012-9799-8
- Gauci , V. , Matthews , E. , Dise , N. B. , Walter , B. , Koch , D. , Granberg , G. , & Vile , M. A. ( 2004 ). Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries . Proceedings of the National Academy of Sciences , 101 ( 34 ), 12583 – 12587 .
- Gauci , V. , Gowing , D. J. G. , Hornibrook , E. R. C. , Davis , J. M. , & Dise , N. B. ( 2010 ). Woody stem methane emission in mature wetland alder trees . Atmospheric Environment , 44 ( 17 ), 2157 – 2160 . https://doi.org/10.1016/j.atmosenv.2010.02.034
- Gedan , K. B. , Kirwan , M. L. , Wolanski , E. , Barbier , E. B. , & Silliman , B. R. ( 2011 ). The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm . Climatic Change , 106 ( 1 ), 7 – 29 . https://doi.org/10.1007/s10584-010-0003-7
- Glaser , B. , & Birk , J. J. ( 2012 ). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia ( terra preta de índio ) . Geochimica et Cosmochimica Acta , 82 , 39 – 51 . https://doi.org/10.1016/j.gca.2010.11.029
- Glaser , P. H. , Janssens , J. A. , & Siegel , D. I. ( 1990 ). The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota . The Journal of Ecology , 78 ( 4 ), 1021 . https://doi.org/10.2307/2260950
- Gleason , R. A. , & Euliss , N. H. J. ( 1998 ). Sedimentation of prairie wetlands . Great Plains Research , 8 ( 1 ), 97 – 112 .
- Göckede , M. , Kwon , M. J. , Kittler , F. , Heimann , M. , Zimov , N. , & Zimov , S. ( 2019 ). Negative feedback processes following drainage slow down permafrost degradation . Global Change Biology , 25 ( 10 ), 3254 – 3266 . https://doi.org/10.1111/gcb.14744
-
González , E.
,
Cabezas , Á.
,
Corenblit , D.
, &
Steiger , J.
(
2014
).
Autochthonous versus allochthonous organic matter in recent soil C accumulation along a floodplain biogeomorphic gradient: An exploratory study
.
Journal of Environmental Geography
,
7
(
1–2
),
29
–
38
.
https://doi.org/10.2478/jengeo-2014-0004
10.2478/jengeo?2014?0004 Google Scholar
- Goodrich , J. P. , Varner , R. K. , Frolking , S. , Duncan , B. N. , & Crill , P. M. ( 2011 ). High-frequency measurements of methane ebullition over a growing season at a temperate peatland site . Geophysical Research Letters , 38 ( 7 ), 1 – 5 . https://doi.org/10.1029/2011GL046915
- Gorham , E. ( 1991 ). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming . Ecological Applications , 1 ( 2 ), 182 – 195 . https://doi.org/doi.org/10.2307/1941811
- Gribsholt , B. , Kostka , J. E. , & Kristensen , E. ( 2003 ). Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh . Marine Ecology Progress Series , 259 , 237 – 251 . https://doi.org/10.3354/meps259237
- Griffin , T. M. , Rabenhorst , M. C. , & Fanning , D. S. ( 1989 ). Iron and trace metals in some tidal marsh soils of the Chesapeake Bay . Soil Science Society of America Journal , 53 ( 4 ), 1010 – 1019 . https://doi.org/10.2136/sssaj1989.03615995005300040004x
- Grossart , H. P. , Frindte , K. , Dziallas , C. , Eckert , W. , & Tang , K. W. ( 2011 ). Microbial methane production in oxygenated water column of an oligotrophic lake . Proceedings of the National Academy of Sciences of the United States of America , 108 ( 49 ), 19657 – 19661 . https://doi.org/10.1073/pnas.1110716108
- Guimond , J. A. , Seyfferth , A. L. , Moffett , K. B. , & Michael , H. A. ( 2020 ). A physical-biogeochemical mechanism for negative feedback between marsh crabs and carbon storage . Environmental Research Letters , 15 ( 3 ). https://doi.org/10.1088/1748-9326/ab60e2
- Gupta , V. , Smemo , K. A. , Yavitt , J. B. , Fowle , D. , Branfireun , B. , & Basiliko , N. ( 2013 ). Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type . Environmental Science and Technology , 47 ( 15 ), 8273 – 8279 . https://doi.org/10.1021/es400484t
- Gurney , K. E. B. , Clark , R. G. , Slattery , S. M. , & Ross , L. C. M. ( 2017 ). Connecting the trophic dots: Responses of an aquatic bird species to variable abundance of macroinvertebrates in northern boreal wetlands . Hydrobiologia , 785 ( 1 ), 1 – 17 . https://doi.org/10.1007/s10750-016-2817-4
- Güsewell , S. , & Freeman , C. ( 2005 ). Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios . Functional Ecology , 19 ( 4 ), 582 – 593 . https://doi.org/10.1111/j.1365-2435.2005.01002.x
- Güsewell , S. , & Verhoeven , J. T. A. ( 2006 ). Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter . Plant and Soil , 287 ( 1–2 ), 131 – 143 . https://doi.org/10.1007/s11104-006-9050-2
- Hackney , C. T. , & Bishop , T. D. ( 1981 ). A note on the relocation of marsh debris during a storm surge . Estuarine Coastal and Shelf Science , 12 ( 5 ), 621 – 624 . https://doi.org/10.1016/S0302-3524(81)80087-4
- Haese , R. R. , Wallmann , K. , Dahmke , A. , Kretzmann , U. , Müller , P. J. , & Schulz , H. D. ( 1997 ). Iron species determination to investigate early diagenetic reactivity in marine sediments . Geochimica et Cosmochimica Acta , 61 ( 1 ), 63 – 72 . https://doi.org/10.1016/S0016-7037(96)00312-2
- Hall , S. J. , & Silver , W. L. ( 2013 ). Iron oxidation stimulates organic matter decomposition in humid tropical forest soils . Global Change Biology , 19 ( 9 ), 2804 – 2813 . https://doi.org/10.1111/gcb.12229
- Hall , S. J. , Silver , W. L. , Timokhin , V. I. , & Hammel , K. E. ( 2016 ). Iron addition to soil specifically stabilized lignin . Soil Biology and Biochemistry , 98 , 95 – 98 . https://doi.org/10.1016/j.soilbio.2016.04.010
- Hanley , T. C. , Kimbro , D. L. , & Hughes , A. R. ( 2017 ). Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure . Ecology , 98 ( 7 ), 1884 – 1895 . https://doi.org/10.1002/ecy.1862
- Hansel , C. M. , Fendorf , S. , Sutton , S. , & Newville , M. ( 2001 ). Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants . Environmental Science and Technology , 35 , 3863 – 3868 .
- Harrison , R. B. , Jones , W. M. , Clark , D. , Heise , B. A. , & Fraser , L. H. ( 2017 ). Livestock grazing in intermountain depressional wetlands: effects on breeding waterfowl . Wetlands Ecology and Management , 25 ( 4 ), 471 – 484 . https://doi.org/10.1007/s11273-017-9529-z
- Harriss , R. C. , Sebacher , D. I. , & Day , F. P. ( 1982 ). Methane flux in the Great Dismal Swamp . Nature , 297 ( 5868 ), 673 – 674 . https://doi.org/10.1038/297673a0
- Hartman , W. H. , Richardson , C. J. , Vilgalys , R. , & Bruland , G. L. ( 2008 ). Environmental and anthropogenic controls over bacterial communities in wetland soils . Proceedings of the National Academy of Sciences of the United States of America , 105 ( 46 ), 17842 – 17847 . https://doi.org/10.1073/pnas.0808254105
- Hartmann , D. L. , Klein Tank , A. M. G. , Rusticucci , M. , Alexander , L. V. , Brönnimann , S. , Charabi , Y. , et al. ( 2013 ). Observations: Atmosphere and surface . In: T. F. Stocker , D. Qin , G.-K. Plattner , M. Tignor , S. K. Allen , J. Boschung , et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, United Kingdom and New York, NY, USA : Cambridge University Press .
- Hedges , J. I. , & Keil , R. G. ( 1995 ). Sedimentary organic matter preservation: An assessment and speculative synthesis . Marine Chemistry , 49 , 81 – 115 .
- Hefting , M. M. , Bobbink , R. , & de Caluwe , H. ( 2003 ). Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones . Journal of Environmental Quality , 32 ( 4 ), 1194 – 1203 . https://doi.org/10.2134/jeq2003.1194
- Heitmann , T. , Goldhammer , T. , Beer , J. , & Blodau , C. ( 2007 ). Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog . Global Change Biology , 13 ( 8 ), 1771 – 1785 . https://doi.org/10.1111/j.1365-2486.2007.01382.x
- Hemingway , J. D. , Rothman , D. H. , Grant , K. E. , Rosengard , S. Z. , Eglinton , T. I. , Derry , L. A. , & Valier , V. V. ( 2019 ). Preservation of natural organic carbon . Nature , 570 , 228 – 238 . https://doi.org/10.1038/s41586-019-1280-6
-
Hemminga , M. A.
,
van Soelen , J.
, &
Koutstaal , B. P.
(
1990
).
Tidal dispersal of salt marsh insect larvae within the Westerschelde estuary
.
Ecography
,
13
(
4
),
308
–
315
.
https://doi.org/10.1111/j.1600-0587.1990.tb00623.x
10.1111/j.1600?0587.1990.tb00623.x Google Scholar
- Henneberry , Y. K. , Kraus , T. E. C. , Nico , P. S. , & Horwath , W. R. ( 2012 ). Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions . Organic Geochemistry , 48 , 81 – 89 . https://doi.org/10.1016/j.orggeochem.2012.04.005
- Herbert , E. R. , Boon , P. , Burgin , A. J. , Neubauer , S. C. , Franklin , R. B. , Ardón , M. , et al. ( 2015 ). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands . Ecosphere , 6 ( 10 ), 1 – 43 . https://doi.org/10.1890/ES14-00534.1
- Herbert , E. R. , Schubauer-Berigan , J. , & Craft , C. B. ( 2018 ). Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling . Biogeochemistry , 138 ( 2 ), 137 – 154 . https://doi.org/10.1007/s10533-018-0436-z
- Hergoualc'h , K. , & Verchot , L. V. ( 2014 ). Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands . Mitigation and Adaptation Strategies for Global Change , 19 ( 6 ), 789 – 807 . https://doi.org/10.1007/s11027-013-9511-x
- Hessen , D. O. , Ågren , G. I. , Anderson , T. R. , Elser , J. J. , & De Ruiter , P. C. ( 2004 ). Carbon sequestration in ecosystems: The role of stoichiometry . Ecology , 85 ( 5 ), 1179 – 1192 . https://doi.org/10.1890/02-0251
- Hieber , M. , & Gessner , M. O. ( 2002 ). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates . Ecology , 83 ( 4 ), 1026 – 1038 . https://doi.org/10.1890/0012-9658(2002)083[1026:COSDFA]2.0.CO;2
- Hines , J. , Reyes , M. , Mozder , T. J. , & Gessner , M. O. ( 2014 ). Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration . Global Change Biology , 20 ( 12 ), 3780 – 3789 . https://doi.org/10.1111/gcb.12704
- Hines , M. E. , Duddleston , K. N. , & Kiene , R. P. ( 2001 ). Carbon flow to acetate and C 1 compounds in northern wetlands . Geophysical Research Letters , 28 ( 22 ), 4251 – 4254 . https://doi.org/10.1029/2001GL012901
- Hobbie , S. E. ( 2000 ). Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest . Ecosystems , 3 ( 5 ), 484 – 494 . https://doi.org/10.1007/s100210000042
-
Hockaday , W. C.
,
Masiello , C. A.
,
Randerson , J. T.
,
Smernik , R. J.
,
Baldock , J. A.
,
Chadwick , O. A.
, &
Harden , J. W.
(
2009
).
Measurement of soil carbon oxidation state and oxidative ratio by
13
C nuclear magnetic resonance
.
Journal of Geophysical Research: Biogeosciences
,
114
(
2
),
1
–
14
.
https://doi.org/10.1029/2008JG000803
10.1029/2008JG000803 Google Scholar
- Hodgkins , S. B. , Tfaily , M. M. , McCalley , C. K. , Logan , T. A. , Crill , P. M. , Saleska , S. R. , et al. ( 2014 ). Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production . Proceedings of the National Academy of Sciences of the United States of America , 111 ( 16 ), 5819 – 5824 . https://doi.org/10.1073/pnas.1314641111
- Hodgkins , S. B. , Richardson , C. J. , Dommain , R. , Wang , H. , Glaser , P. H. , Verbeke , B. , et al. ( 2018 ). Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance . Nature Communications , 9 , 3640 . https://doi.org/10.1038/s41467-018-06050-2
- Holden , J. ( 2005 ). Peatland hydrology and carbon release: Why small-scale process matters . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 363 (1837), 2891 – 2913 . https://doi.org/10.1098/rsta.2005.1671
- Holgerson , M. A. , Post , D. M. , & Skelly , D. K. ( 2016 ). Reconciling the role of terrestrial leaves in pond food webs: A whole-ecosystem experiment . Ecology , 97 ( 7 ), 1771 – 1782 . https://doi.org/10.1890/15-1848.1
- Holm , G. O. , Perez , B. C. , McWhorter , D. E. , Krauss , K. W. , Johnson , D. J. , Raynie , R. C. , & Killebrew , C. J. ( 2016 ). Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects . Wetlands , 36 ( 3 ), 401 – 413 . https://doi.org/10.1007/s13157-016-0746-7
- Holmquist , J. R. , Windham-Myers , L. , Bernal , B. , Byrd , K. B. , Crooks , S. , Gonneea , M. E. , et al. ( 2018 ). Uncertainty in United States coastal wetland greenhouse gas inventorying . Environmental Research Letters , 13 ( 11 ), 115005 . https://doi.org/10.1088/1748-9326/aae157
- Hooijer , A. , Page , S. , Jauhiainen , J. , Lee , W. A. , Lu , X. X. , Idris , A. , & Anshari , G. ( 2012 ). Subsidence and carbon loss in drained tropical peatlands . Biogeosciences , 9 ( 3 ), 1053 – 1071 . https://doi.org/10.5194/bg-9-1053-2012
- Hope , G. , Chokkalingam , U. , & Anwar , S. ( 2005 ). The stratigraphy and fire history of the Kutai Peatlands, Kalimantan, Indonesia . Quaternary Research , 64 ( 3 ), 407 – 417 . https://doi.org/10.1016/j.yqres.2005.08.009
- Hopkinson , C. S. ( 1992 ). A comparison of ecosystem dynamics in freshwater wetlands . Estuaries , 15 ( 4 ), 549 – 562 . https://doi.org/10.2307/1352397
- Hopkinson , C. S. , Morris , J. T. , Fagherazzi , S. , Wollheim , W. M. , & Raymond , P. A. ( 2018 ). Lateral marsh edge erosion as a source of sediments for vertical marsh accretion . Journal of Geophysical Research: Biogeosciences , 123 ( 8 ), 2444 – 2465 . https://doi.org/10.1029/2017JG004358
- Hopple , A. M. , Wilson , R. M. , Kolton , M. , Zalman , C. A. , Chanton , J. P. , Kostka , J. E. , et al. ( 2020 ). Massive peatland carbon banks vulnerable to rising temperatures . Nature Communications , 11 ( 1 ), 4 – 10 . https://doi.org/10.1038/s41467-020-16311-8
- Hu , B. , Shen , L. , Lian , X. , Zhu , Q. , Liu , S. , Huang , Q. , et al. ( 2014 ). Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands . Proceedings of the National Academy of Sciences of the United States of America , 111 ( 12 ), 4495 – 4500 . https://doi.org/10.1073/pnas.1318393111
- Hupp , C. R. ( 2000 ). Hydrology, geomorphology and vegetation of Coastal Plain rivers in the south-eastern USA . Hydrological Processes , 14 , 2991 – 3010 . https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2991::AID-HYP131>3.0.CO;2-H
- Hupp , C. R. , Kroes , D. E. , Noe , G. B. , Schenk , E. R. , & Day , R. H. ( 2019 ). Sediment trapping and carbon sequestration in floodplains of the Lower Atchafalaya Basin, LA: allochthonous versus autochthonous carbon sources . Journal of Geophysical Research: Biogeosciences , 124 ( 3 ), 663 – 677 . https://doi.org/10.1029/2018JG004533
-
Hutchens , J. J.
,
Batzer , D. P.
, &
Reese , E.
(
2004
).
Bioassessment of silvicultural impacts in streams and wetlands of the eastern United States
.
Water, Air, and Soil Pollution: Focus
,
4
(
1
),
37
–
53
.
https://doi.org/10.1023/B:WAFO.0000012827.95431.b8
10.1023/B:WAFO.0000012827.95431.b8 Google Scholar
- Hutchinson , J. N. ( 1980 ). The record of peat wastage in the East Anglian fenlands at Holme Post, 1848–1978 A.D . The Journal of Ecology , 68 ( 1 ), 229. https://doi.org/10.2307/2259253
- Ipsilantis , I. , & Sylvia , D. M. ( 2007 ). Abundance of fungi and bacteria in a nutrient-impacted Florida wetland . Applied Soil Ecology , 35 ( 2 ), 272 – 280 . https://doi.org/10.1016/j.apsoil.2006.09.002
- Jackson , C. R. , & Vallaire , S. C. ( 2009 ). Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments . Wetlands , 29 ( 1 ), 277 – 287 . https://doi.org/10.1672/08-86.1
- Jacob , D. L. , Yellick , A. H. , Kissoon , L. T. T. , Asgary , A. , Wijeyaratne , D. N. , Saini-Eidukat , B. , & Otte , M. L. ( 2013 ). Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA . Environmental Pollution , 178 , 211 – 219 . https://doi.org/10.1016/j.envpol.2013.03.005
- Jager , D. F. , Wilmking , M. , & Kukkonen , J. V. K. ( 2009 ). The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: Evidence from one dry and one wet growing season . Science of the Total Environment , 407 ( 4 ), 1373 – 1382 . https://doi.org/10.1016/j.scitotenv.2008.10.005
- Jassey , V. E. J. , Reczuga , M. K. , Zielińska , M. , Słowińska , S. , Robroek , B. J. M. , Mariotte , P. , et al. ( 2018 ). Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration . Global Change Biology , 24 ( 3 ), 972 – 986 . https://doi.org/10.1111/gcb.13928
- Jastrow , J. D. , Amonette , J. E. , & Bailey , V. L. ( 2007 ). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration . Climatic Change , 80 ( 1–2 ), 5 – 23 . https://doi.org/10.1007/s10584-006-9178-3
- Jiao , N. , Herndl , G. J. , Hansell , D. A. , Benner , R. , Kattner , G. , Wilhelm , S. W. , et al. ( 2010 ). Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean . Nature Reviews Microbiology , 8 ( 8 ), 593 – 599 . https://doi.org/10.1038/nrmicro2386
- Joabsson , A. , Christensen , T. R. , & Wallén , B. ( 1999 ). Vascular plant controls on methane emissions from northern peatforming wetlands . Trends in Ecology and Evolution , 14 ( 10 ), 385 – 388 . https://doi.org/10.1016/S0169-5347(99)01649-3
- Johnson , W. C. , Millett , B. V , Gilmanov , T. , Voldseth , R. A. , Guntenspergen , G. R. , & Naugle , D. E. ( 2005 ). Vulnerability of northern prairie wetlands to climate change . BioScience , 55 ( 10 ), 863 . https://doi.org/10.1641/0006-3568(2005)055[0863:vonpwt]2.0.co;2
- Joosten , H. ( 2010 ). The Global Peatland CO 2 Picture . Ede , Netherlands . https://doi.org/10.1016/j.quascirev.2011.01.018
- Joye , S. B. , & Hollibaugh , J. T. ( 1995 ). Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments . Science , 270 ( 5236 ), 623 – 625 .
- Jutras , S. , Plamondon , A. P. , Hökkä , H. , & Bégin , J. ( 2006 ). Water table changes following precommercial thinning on post-harvest drained wetlands . Forest Ecology and Management , 235 ( 1–3 ), 252 – 259 . https://doi.org/10.1016/j.foreco.2006.08.335
- Kadlec , R. H. , & Reddy , K. R. ( 2001 ). Temperature effects in treatment wetlands . Water Environment Research , 73 ( 5 ), 543 – 557 . https://doi.org/10.2175/106143001X139614
- Kaiser , K. , & Guggenberger , G. ( 2000 ). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils . Organic Geochemistry , 31 ( 7–8 ), 711 – 725 . https://doi.org/10.1016/S0146-6380(00)00046-2
- Kammann , C. , Hepp , S. , Lenhart , K. , & Müller , C. ( 2009 ). Stimulation of methane consumption by endogenous CH 4 production in aerobic grassland soil . Soil Biology and Biochemistry , 41 ( 3 ), 622 – 629 . https://doi.org/10.1016/j.soilbio.2008.12.025
- Kang , H. , Kim , S. Y. , Fenner , N. , & Freeman , C. ( 2005 ). Shifts of soil enzyme activities in wetlands exposed to elevated CO 2 . Science of the Total Environment , 337 ( 1–3 ), 207 – 212 . https://doi.org/10.1016/j.scitotenv.2004.06.015
- Kao-Kniffin , J. , Freyre , D. S. , & Balser , T. C. ( 2010 ). Methane dynamics across wetland plant species . Aquatic Botany , 93 ( 2 ), 107 – 113 . https://doi.org/10.1016/j.aquabot.2010.03.009
- Kauffman , J. B. , Heider , C. , Norfolk , J. , & Payton , F. ( 2014 ). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic . Ecological Applications , 24 ( 3 ), 518 – 527 . https://doi.org/10.1890/13-0640.1
- Keil , R. G. , Montluçon , D. B. , Prahl , F. G. , & Hedges , J. I. ( 1994 ). Sorptive preservation of labile organic matter in marine sediments . Nature , 370 , 549 – 552 . https://doi.org/doi.org/10.1038/370549a0
- Keiluweit , M. , Nico , P. S. , Kleber , M. , & Fendorf , S. ( 2016 ). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry , 127 ( 2–3 ), 157 – 171 . https://doi.org/10.1007/s10533-015-0180-6
- Keller , J. K. , & Bridgham , S. D. ( 2007 ). Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient . Limnology and Oceanography , 52 ( 1 ), 96 – 107 . https://doi.org/10.4319/lo.2007.52.1.0096
- Keller , J. K. , Bridgham , S. D. , Chapin , C. T. , & Iversen , C. M. ( 2005 ). Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen . Soil Biology and Biochemistry , 37 ( 6 ), 1197 – 1204 . https://doi.org/10.1016/j.soilbio.2004.11.018
- Keller , J. K. , Wolf , A. A. , Weisenhorn , P. B. , Drake , B. G. , & Megonigal , J. P. ( 2009 ). Elevated CO 2 affects porewater chemistry in a brackish marsh . Biogeochemistry , 96 , 101 – 117 . https://doi.org/10.1007/s10533-009-9347-3
- Keller , J. K. , Weisenhorn , P. B. , & Megonigal , J. P. ( 2009 ). Humic acids as electron acceptors in wetland decomposition . Soil Biology and Biochemistry , 41 ( 7 ), 1518 – 1522 . https://doi.org/10.1016/j.soilbio.2009.04.008
- Keppler , F. , Hamilton , J. T. G. , Braß , M. , & Röckmann , T. ( 2006 ). Methane emissions from terrestrial plants under aerobic conditions . Nature , 439 , 187 – 191 . https://doi.org/10.1038/nature04420
- Keuskamp , J. A. , Hefting , M. M. , Dingemans , B. J. J. , Verhoeven , J. T. A. , & Feller , I. C. ( 2015 ). Effects of nutrient enrichment on mangrove leaf litter decomposition . Science of the Total Environment , 508 , 402 – 410 . https://doi.org/10.1016/j.scitotenv.2014.11.092
- Khan , H. , & Brush , G. S. ( 1994 ). Nutrient and metal accumulation in a freshwater tidal marsh . Estuaries , 17 ( 2 ), 345 – 360 . https://doi.org/10.2307/1352668
- Kim , S. Y. , Veraart , A. J. , Meima-Franke , M. , & Bodelier , P. L. E. ( 2015 ). Combined effects of carbon, nitrogen and phosphorus on CH 4 production and denitrification in wetland sediments . Geoderma , 259–260 , 354 – 361 . https://doi.org/10.1016/j.geoderma.2015.03.015
- Kitti , H. , Forbes , B. C. , & Oksanen , J. ( 2009 ). Long- and short-term effects of reindeer grazing on tundra wetland vegetation . Polar Biology , 32 ( 2 ), 253 – 261 . https://doi.org/10.1007/s00300-008-0526-9
- Kleber , M. , Sollins , P. , & Sutton , R. ( 2007 ). A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces . Biogeochemistry , 85 ( 1 ), 9 – 24 . https://doi.org/10.1007/s10533-007-9103-5
- Klemedtsson , L. , Von Arnold , K. , Weslien , P. , & Gundersen , P. ( 2005 ). Soil CN ratio as a scalar parameter to predict nitrous oxide emissions . Global Change Biology , 11 ( 7 ), 1142 – 1147 . https://doi.org/10.1111/j.1365-2486.2005.00973.x
- Klopatek , J. M. ( 1988 ). Some thoughts on using a landscape framework to address cumulative impacts on wetland food chain support . Environmental Management , 12 ( 5 ), 703 – 711 . https://doi.org/10.1007/BF01867547
- Knicker , H. , Scaroni , A. W. , & Hatcher , P. G. ( 1996 ). 13 C and 15 N NMR spectroscopic investigation on the formation of fossil algal residues . Organic Geochemistry , 24 ( 6–7 ), 661 – 669 . https://doi.org/10.1016/0146-6380(96)00057-5
- Knittel , K. , & Boetius , A. ( 2009 ). Anaerobic oxidation of methane: Progress with an unknown process . Annual Review of Microbiology , 63 ( 1 ), 311 – 334 . https://doi.org/10.1146/annurev.micro.61.080706.093130
- Knorr , K. H. ( 2013 ). DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – Are DOC exports mediated by iron reduction/oxidation cycles? Biogeosciences , 10 ( 2 ), 891 – 904 . https://doi.org/10.5194/bg-10-891-2013
- Knox , S. H. , Sturtevant , C. , Matthes , J. H. , Koteen , L. , Verfaillie , J. , & Baldocchi , D. ( 2015 ). Agricultural peatland restoration: Effects of land-use change on greenhouse gas (CO 2 and CH 4 ) fluxes in the Sacramento-San Joaquin Delta . Global Change Biology , 21 ( 2 ), 750 – 765 . https://doi.org/10.1111/gcb.12745
- Kögel-Knabner , I. ( 2002 ). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter . Soil Biology and Biochemistry , 34 , 139 – 162 . https://doi.org/10.1016/S0038-0717(01)00158-4
- Kon , K. , Hoshino , Y. , Kanou , K. , Okazaki , D. , Nakayama , S. , & Kohno , H. ( 2012 ). Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes . Estuarine, Coastal and Shelf Science , 96 ( 1 ), 236 – 244 . https://doi.org/10.1016/j.ecss.2011.11.015
- Korrensalo , A. , Mehtätalo , L. , Alekseychik , P. , Uljas , S. , Mammarella , I. , Vesala , T. , & Tuittila , E.-S. ( 2020 ). Varying vegetation composition, respiration and photosynthesis decrease temporal variability of the CO 2 sink in a boreal bog . Ecosystems , 23 , 842 – 858 . https://doi.org/10.1007/s10021-019-00434-1
- Kostka , J. E. , Roychoudhury , A. , & van Cappellen , P. ( 2002 ). Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments . Biogeochemistry , 60 , 49 – 76 . https://doi.org/10.1023/A:1016525216426
- Kreutzweiser , D. P. , Hazlett , P. W. , & Gunn , J. M. ( 2008 ). Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review . Environmental Reviews , 16 , 157 – 179 . https://doi.org/10.1139/A08-006
- Kristensen , E. , & Holmer , M. ( 2001 ). Decomposition of plant materials in marine sediment exposed to different electron acceptors (O 2 , NO 3 – and SO 4 2– ), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation . Geochimica et Cosmochimica Acta , 65 ( 3 ), 419 – 433 . https://doi.org/10.1016/S0016-7037(00)00532-9
- Kristensen , E. , Bouillon , S. , Dittmar , T. , & Marchand , C. ( 2008 ). Organic carbon dynamics in mangrove ecosystems: A review . Aquatic Botany , 89 ( 2 ), 201 – 219 . https://doi.org/10.1016/j.aquabot.2007.12.005
- Kristensen , E. , Mangion , P. , Tang , M. , Flindt , M. R. , Holmer , M. , & Ulomi , S. ( 2011 ). Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests . Biogeochemistry , 103 ( 1 ), 143 – 158 . https://doi.org/10.1007/s10533-010-9453-2
- Kroeger , K. D. , Crooks , S. , Moseman-Valtierra , S. , & Tang , J. ( 2017 ). Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention . Scientific Reports , 7 ( 1 ), 11914 . https://doi.org/10.1038/s41598-017-12138-4
- Kuehn , K. A. , Lemke , M. J. , Suberkropp , K. , & Wetzel , R. G. ( 2000 ). Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus . Limnology and Oceanography , 45 ( 4 ), 862 – 870 . https://doi.org/10.4319/lo.2000.45.4.0862
- Küsel , K. , Dorsch , T. , Acker , G. , & Stackebrandt , E. ( 1999 ). Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose . Applied and Environmental Microbiology , 65 ( 8 ), 3633 – 3640 . https://doi.org/10.1128/aem.65.8.3633-3640.1999
- Kuwata , M. , Kai , F. M. , Yang , L. , & Itoh , M. ( 2016 ). Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire . Journal of Geophysical Research: Atmospheres , 122 , 1281 – 1292 . https://doi.org/10.1002/2016JD025897
- Laanbroek , H. J. ( 2010 ). Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review . Annals of Botany , 105 ( 1 ), 141 – 153 . https://doi.org/10.1093/aob/mcp201
-
LaCroix , R.
,
Tfaily , M.
,
McCreight , M.
,
Jones , M. E.
,
Spokas , L.
, &
Keiluweit , M.
(
2018
).
Shifting mineral and redox controls on carbon cycling in seasonally flooded soils
.
Biogeosciences Discussions
,
1
–
36
.
https://doi.org/10.5194/bg-2018-432
10.5194/bg?2018?432 Google Scholar
- Lai , D. Y. F. ( 2009 ). Methane dynamics in northern peatlands: A review . Pedosphere , 19 ( 4 ), 409 – 421 . https://doi.org/10.1016/S1002-0160(09)00003-4
- Laiho , R. ( 2006 ). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels . Soil Biology and Biochemistry , 38 ( 8 ), 2011 – 2024 . https://doi.org/10.1016/j.soilbio.2006.02.017
- Lalonde , K. , Mucci , A. , Ouellet , A. , & Gélinas , Y. ( 2012 ). Preservation of organic matter in sediments promoted by iron . Nature , 483 ( 7388 ), 198 – 200 . https://doi.org/10.1038/nature10855
- Landre , A. L. , Watmough , S. A. , & Dillon , P. J. ( 2009 ). The effects of dissolved organic carbon, acidity and seasonality on metal geochemistry within a forested catchment on the Precambrian Shield, central Ontario, Canada . Biogeochemistry , 93 ( 3 ), 271 – 289 . https://doi.org/10.1007/s10533-009-9305-0
- Langley , J. A. , & Megonigal , J. P. ( 2010 ). Ecosystem response to elevated CO 2 levels limited by nitrogen-induced plant species shift . Nature , 466 ( 7302 ), 96 – 99 . https://doi.org/10.1038/nature09176
- Langley , J. A. , Mckee , K. L. , Cahoon , D. R. , Cherry , J. A. , & Megonigal , J. P. ( 2009 ). Elevated CO 2 stimulates marsh elevation gain, counterbalancing sea-level rise . Proceedings of the National Academy of Sciences of the United States of America , 106 ( 15 ), 6182 – 6186 . https://doi.org/10.1073/pnas.0807695106
- LaRowe , D. E. , & Van Cappellen , P. ( 2011 ). Degradation of natural organic matter: A thermodynamic analysis . Geochimica et Cosmochimica Acta , 75 ( 8 ), 2030 – 2042 . https://doi.org/10.1016/j.gca.2011.01.020
- LaRowe , D. E. , Arndt , S. , Bradley , J. A. , Estes , E. R. , Hoarfrost , A. , Lang , S. Q. , et al. ( 2020 ). The fate of organic carbon in marine sediments - New insights from recent data and analysis . Earth-Science Reviews , 204 (August 2019), 103146 . https://doi.org/10.1016/j.earscirev.2020.103146
- Lee , A. A. , & Bukaveckas , P. A. ( 2002 ). Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities . Aquatic Botany , 74 ( 4 ), 273 – 285 . https://doi.org/10.1016/S0304-3770(02)00128-6
- Lehmann , J. , & Kleber , M. ( 2015 ). The contentious nature of soil organic matter . Nature , 528 ( 7580 ), 60 – 68 . https://doi.org/10.1038/nature16069
- Leifeld , J. , Steffens , M. , & Galego-Sala , A. ( 2012 ). Sensitivity of peatland carbon loss to organic matter quality . Geophysical Research Letters , 39 ( 14 ), 1 – 6 . https://doi.org/10.1029/2012GL051856
- Lenhart , K. , Bunge , M. , Ratering , S. , Neu , T. R. , Schüttmann , I. , Greule , M. , et al. ( 2012 ). Evidence for methane production by saprotrophic fungi . Nature Communications , 3 . https://doi.org/10.1038/ncomms2049
- Liu , S. , Hu , R. , Zhao , J. , Brüggemann , N. , Bol , R. , Cai , G. , et al. ( 2014 ). Flooding effects on soil phenol oxidase activity and phenol release during rice straw decomposition . Journal of Plant Nutrition and Soil Science , 177 ( 4 ), 541 – 547 . https://doi.org/10.1002/jpln.201300356
- Loisel , J. , Yu , Z. , Beilman , D. W. , Camill , P. , Alm , J. , Amesbury , M. J. , et al. ( 2014 ). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation . The Holocene , 24 ( 9 ), 1028 – 1042 . https://doi.org/10.1177/0959683614538073
- Luo , M. , Liu , Y. , Huang , J. , Xiao , L. , Zhu , W. , Duan , X. , & Tong , C. ( 2018 ). Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: A rhizobox study . Plant and Soil , 433 ( 1–2 ), 83 – 100 . https://doi.org/10.1007/s11104-018-3827-y
- Luo , M. , Zhai , Z. , Ye , R. , Xing , R. , Huang , J. , & Tong , C. ( 2020 ). Carbon mineralization in tidal freshwater marsh soils at the intersection of low-level saltwater intrusion and ferric iron loading . Catena , 193 ( January ), 104644 . https://doi.org/10.1016/j.catena.2020.104644
- Ma , Z. , Melville , D. S. , Liu , J. , Chen , Y. , Yang , H. , Ren , W. , et al. ( 2014 ). Rethinking China's new great wall . Science , 346 ( 6212 ), 912 – 914 . https://doi.org/10.1126/science.1257258
- MacCarthy , R. , & Davey , C. B. ( 1976 ). Nutritional problems of Pinus taeda L. (loblolly pine) growing on pocosin soil . Soil Science Society of America Journal , 40 ( 4 ), 582 – 585 . https://doi.org/10.2136/sssaj1976.03615995004000040034x
- MacDonald , J. A. , Fowler , D. , Hargreaves , K. J. , Skiba , U. , Leith , I. D. , & Murray , M. B. ( 1998 ). Methane emission rates from a northern wetland: Response to temperature, water table and transport . Atmospheric Environment , 32 ( 19 ), 3219 – 3227 . https://doi.org/10.1016/S1352-2310(97)00464-0
- Mahieu , N. , Olk , D. C. , & Randall , E. W. ( 2002 ). Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils . Journal of Environmental Quality , 31 ( 2 ), 421 – 430 . https://doi.org/10.2134/jeq2002.4210
- Malhotra , A. , Brice , D. , Childs , J. , Graham , J. , Hobbie , E. , Vander Stel , H. , et al. ( 2020 ). Peatland warming strongly increases fine-root growth . Proceedings of the National Academy of Sciences , 117 ( 30 ), 202003361 . https://doi.org/10.1073/pnas.2003361117
- Männistö , E. , Korrensalo , A. , Alekseychik , P. , Mammarella , I. , Peltola , O. , Vesala , T. , & Tuittila , E. S. ( 2019 ). Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog . Biogeosciences , 16 ( 11 ), 2409 – 2421 . https://doi.org/10.5194/bg-16-2409-2019
- Marlier , M. E. , DeFries , R. S. , Kim , P. S. , Koplitz , S. N. , Jacob , D. J. , Mickley , L. J. , & Myers , S. S. ( 2015 ). Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia . Environmental Research Letters , 10 ( 8 ), 85005 . https://doi.org/10.1088/1748-9326/10/8/085005
- Marsh , A. S. , Rasse , D. P. , Drake , B. G. , & Megonigal , J. P. ( 2005 ). Effect of elevated CO 2 on carbon pools and fluxes in a brackish marsh . Estuaries , 28 ( 5 ), 694 – 704 . https://doi.org/10.1007/BF02732908
-
Masiello , C. A.
,
Gallagher , M. E.
,
Randerson , J. T.
,
Deco , R. M.
, &
Chadwick , O. A.
(
2008
).
Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio
.
Journal of Geophysical Research: Biogeosciences
,
113
(
3
),
1
–
9
.
https://doi.org/10.1029/2007JG000534
10.1029/2007JG000534 Google Scholar
- Maucieri , C. , Barbera , A. C. , Vymazal , J. , & Borin , M. ( 2017 ). A review on the main affecting factors of greenhouse gases emission in constructed wetlands . Agricultural and Forest Meteorology , 236 , 175 – 193 . https://doi.org/10.1016/j.agrformet.2017.01.006
- Mayer , L. M. ( 1994a ). Relationships between mineral surfaces and organic carbon concentrations in soils and sediments . Chemical Geology , 114 ( 3–4 ), 347 – 363 . https://doi.org/10.1016/0009-2541(94)90063-9
- Mayer , L. M. ( 1994b ). Surface area control of organic carbon accumulation in continental shelf sediments . Geochimica et Cosmochimica Acta , 58 ( 4 ), 1271 – 1284 . https://doi.org/10.1016/0016-7037(94)90381-6
- McAvoy , D. C. ( 1988 ). Seasonal trends of aluminum chemistry in a second-order Massachusetts stream . Journal of Environmental Quality , 17 ( 4 ), 528 – 534 . https://doi.org/10.2134/jeq1988.00472425001700040002x
- McCarty , G. W. , & Ritchie , J. C. ( 2002 ). Impact of soil movement on carbon sequestration in agricultural ecosystems . Environmental Pollution , 116 ( 3 ), 423 – 430 . https://doi.org/10.1016/S0269-7491(01)00219-6
- McCorvie , M. R. , & Lant , C. L. ( 1993 ). Drainage district formation and the loss of midwestern wetlands, 1850–1930 . Agricultural History , 67 ( 4 ), 13 – 39 .
- McLatchey , G. P. , & Reddy , K. R. ( 1998 ). Regulation of organic matter decomposition and nutrient release in a wetland soil . Journal of Environmental Quality , 27 ( 5 ), 1268 – 1274 . https://doi.org/10.2134/jeq1998.00472425002700050036x
- Mcleod , E. , Chmura , G. L. , Bouillon , S. , Salm , R. , Björk , M. , Duarte , C. M. , et al. ( 2011 ). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2 . Frontiers in Ecology and the Environment , 9 ( 10 ), 552 – 560 . https://doi.org/10.1890/110004
- McNicol , G. , Sturtevant , C. S. , Knox , S. H. , Dronova , I. , Baldocchi , D. D. , & Silver , W. L. ( 2017 ). Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland . Global Change Biology , 23 ( 7 ), 2768 – 2782 . https://doi.org/10.1111/gcb.13580
-
Megonigal , J. P.
, &
Neubauer , S. C.
(
2019
).
Biogeochemistry of tidal freshwater wetlands
. In
G. M. E. Perillo
,
E. Wolanski
,
D. R. Cahoon
, &
C. S. Hopkinson
(Eds.),
Coastal wetlands: An integrated ecosystem approach
(
2nd ed.
, pp.
641
–
683
).
Cambridge, MA
:
Elsevier
.
https://doi.org/10.1016/B978-0-444-63893-9.00019-8641
10.1016/B978-0-444-63893-9.00019-8 Google Scholar
- Megonigal , J. P. , & Schlesinger , W. H. ( 2002 ). Methane-limited methanotrophy in tidal freshwater swamps . Global Biogeochemical Cycles , 16 ( 4 ), 1088 . https://doi.org/10.1029/2001GB001594
- Megonigal , J. P. , Whalen , S. C. , Tissue , D. T. , Bovard , B. D. , Albert , D. B. , & Allen , A. S. ( 1999 ). A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis . Soil Science Society of America Journal , 63 ( 3 ), 665 – 671 . https://doi.org/10.2136/sssaj1999.03615995006300030033x
- Megonigal , J. P. , Hines , M. E. , & Visscher , P. T. ( 2004 ). Anaerobic metabolism: Linkages to trace gases and aerobic metabolism . In W. H. Schlesinger (Ed.), Biogeochemistry (pp. 317 – 424 ).