Hydrous Carbonatitic Liquids Drive CO2 Recycling From Subducted Marls and Limestones
Erwin Schettino
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Milano, Italy
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
Search for more papers by this authorStefano Poli
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Milano, Italy
Search for more papers by this authorErwin Schettino
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Milano, Italy
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
Search for more papers by this authorStefano Poli
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Milano, Italy
Search for more papers by this authorCraig E. Manning
Search for more papers by this authorJung-Fu Lin
Search for more papers by this authorWendy L. Mao
Search for more papers by this authorSummary
Pelagic limestones are subducted in a variety of subduction zones worldwide. Despite the geochemical relevance of systems enriched in CaCO3, previous experimental investigations mostly focused on carbonated pelites, with low Ca/(Ca+Mg+Fe) ratio. We present the compositions and the formation conditions of liquids in the model system CaO-Al2O3-SiO2-H2O-CO2 (CASHC), building on phase relationships in the subsystems CHC and CSHC, where a second critical endpoint was suggested at temperatures as low as 515 °C, and 3.2 GPa. Multianvil experiments were performed at 4.2 and 6.0 GPa on five bulk compositions at variable Ca/Si/Al ratios. H2O contents vary from 5.6 to 21 wt%. Aragonite + kyanite + vapor and minor lawsonite form at 700 °C, replaced by zoisite/grossular at 800 °C. Between 850 °C and 950 °C, a complex sequence of textural features is observed upon quenching of a single volatile-rich liquid phase formed at run conditions. Precipitates include dendritic CaCO3, silicate glass, and Al-rich whiskers. The bulk composition of such hydrous carbonatitic liquids is retrieved by image analysis on X-ray maps, showing Ca/Si ratio increasing with pressure and temperature. Hydrous Ca-carbonatitic liquids are efficient media for scavenging volatiles from subducted crustal material and for metasomatizing the mantle wedge.
REFERENCES
-
Ague, J. J., & Nicolescu, S. (2014). Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7, 355–360.
-
Aiuppa, A., Fischer, T. P., Plank, T., Robidoux, P., & Di Napoli, R. (2017). Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth-Science Reviews, 168, 24–47.
-
Aubouin, J., von Huene, & the Shipboard Scientific Party (1982). Site 495: Cocos plate—Middle America Trench Outer Slope. Initial Reports DSDP, 67, 79–141.
-
Boettcher, A. L., & Wyllie, P. J. (1969). The system CaO-SiO2-CO2-H2O-III. Second critical end-point on the melting curve. Geochimica et Cosmochimica Acta, 33, 611–632.
-
Brey, G. P., Girnis, A.V., Bulatov, V. K., Höfer, H. E., Gerdes, A., & Woodland, A. B. (2015). Reduced sediment melting at 7.5–12 GPa: Phase relations, geochemical signals and diamond nucleation. Contribution to Mineralagoy and Petrology, 170, 1–25.
-
Caciagli, N. C., & Manning, C. E. (2003). The solubility of calcite in water at 6–16 kbar and 500–800 °C. Contribution to
Mineralogy and Petrology, 146, 275–285.
-
Cann, J. R., Langseth, M. G., Honnorez, J., Von Herzen, R. P., White, S. M., & the Shipboard Scientific Party (1983). 2. Sites 501 and 504: Sediments and ocean crust in an area of high heat flow on the southern flank of the Costa Rica Rift. Initial Reports DSDP, 69, 31–173.
-
Carter, R. M., McCave, I. N., Richter, C., Carter, L., & the Shipboard Scientific Party (1999). 8. Site 1124: Rekohu drift—from the K/T boundary to the deep western boundary current. Proceedings of the Ocean Drilling Program, Initial Reports, 181, 1–137.
-
Chou, I-M. (1986). Permeability of precious metals to hydrogen at 2 kb total pressure and elevated temperatures. American Journal of Science, 286, 638–658.
-
Connolly, J.A.D. (1990). Multivariable phase diagrams: An algorithm based on generalized thermodynamics. American Journal of Science, 290, 666–718.
-
Connolly, J.A.D., & Galvez, M. E. (2018). Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth and Planetary Science Letters, 501, 90–102.
-
da Mommio, A. (2018). Evoluzione metamorfica delle unità paraderivate nella Finestra dei Tauri Occidentale (Ph.D. thesis, 216 p.). Università degli Studi di Milano.
-
Dasgupta, R., Hirschmann, M. M., & Withers, A. C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227, 73–85.
-
Dasgupta, R., & Hirschmann, M. M. (2006). Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature, 440, 659–662.
-
Donaldson, C. H. (1976). An experimental investigation of olivine morphology. Contribution to Mineralogy and Petrology, 57, 187–213.
-
Facq, S., Daniel, I., Montagnac, G., Cardon, H., & Sverjensky, D. A. (2016). Carbon speciation in saline solutions in equilibrium with aragonite at high pressure. Chemical Geology, 431, 44–53.
-
Ferri, F., Poli, S., & Rodríguez-Vargas, A. (2017). Andean volcanoes record carbonatite mantle metasomatism and CO2 degassing at subduction zones. Paper presented at 27th Goldschmidt Conference, Paris.
-
Foustoukos, D. I., & Mysen, B. O. (2015). The structure of water-saturated carbonate melts. American Mineralogist, 100, 35–46.
-
Franzolin, E., Schmidt, M. W., & Poli, S. (2011). Ternary Ca-Fe-Mg carbonates: Subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contribution to Mineralogy and Petrology, 161, 213–227.
-
Frezzotti, M. L., Selverstone, J., Sharp, Z. D., & Compagnoni, R. (2011). Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4, 703–706.
-
Garofalo, P. S. (2012). The composition of Alpine marine sediments (Bündnerschiefer Formation, W Alps) and the mobility of their chemical components during orogenic metamorphism. Lithos, 128–131, 55–72.
-
Genge, M. J., Jones, A. P., & Price, G. D. (1995). An infrared and Raman study of carbonate glasses: Implications for the structure of carbonatite magmas. Geochimica et Cosmochimica Acta, 59, 927–937.
-
Grassi, D., & Schmidt, M. W. (2011). The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52(4), 765–789.
-
Grice, J. D. (2005). The structure of spurrite, tilleyite and scawtite, and relationships to other silicate-carbonate minerals. The Canadian Mineralogist, 43, 1489–1500.
-
Heirtzler, J.R., Veevers, J. J., Bolli, H. M., Carter, A. N., Cook, P. J., Krasheninnikov, V., et al., & the Shipboard Scientific Party (1974). 3. Site 260. Initial Reports DSDP, 27, 89–127.
-
Holland, T., & Powell, R. (1991). A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600 °C. Contribution to Mineralogy and Petrology, 109, 265–273.
-
Holland, T.J.B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.
-
Huang, W. L., Wyllie, P. J., & Nehru, C. E. (1980). Subsolidus and liquidus phase relationships in the system CaO-SiO2-CO2 to 30 kbar with geological applications. American Mineralogist, 65, 285–301.
-
Irving, A. J., & Wyllie, P. J. (1975). Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36 kb. Geochimica et Cosmochimica Acta, 39, 35–53.
-
Kelemen, P. B., & Manning, C. E. (2015). Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences U.S.A., 112, E3997–E4006.
-
Keppler, H. (2003). Water solubility in carbonatite melts. American Mineralogist, 88, 1822–1824.
-
Kono, Y., Kenney-Benson, C., Hummer, D., Ohfuji, H., Park, C., Shen, G., et al. (2014). Ultralow viscosity of carbonate melts at high pressures. Nature Communications, 5, 1–8.
-
Lee, W. J., & Wyllie, P. J. (2000). The system CaO-MgO-SiO2-CO2 at 1 GPa, metasomatic wehrlites, and primary carbonatite magmas. Contribution to Mineralogy and Petrology, 138, 214–228.
-
Liu, L-g., & Lin, C-C. (1995). High-pressure phase transformations of carbonates in the system CaO-MgO-SiO2-CO2
. Earth and Planetary Science Letters, 134, 297–305.
-
Lofgren, G. (1974). An experimental study of plagioclase crystal morphology: Isothermal crystallization. American Journal of Science, 274, 243–273.
-
Manning, C. E. (1994). The solubility of quartz in H2O in the lower crust and upper mantle. Geochimica et Cosmochimica Acta, 58, 4831–4839.
-
Manning, C. E., Shock, E. L., & Sverjensky, D. A. (2013). The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Reviews in Mineralogy & Geochemistry, 75, 109–148.
-
Minarik, W. G., & Watson, E. B. (1995). Interconnectivity of carbonate melt at low melt fraction. Earth and Planetary Science Letters, 133, 423–437.
-
Paterson, M. S. (1958). The melting of calcite in the presence of water and carbon dioxide. American Mineralogist, 43, 603–606.
-
Penniston-Dorland, S. C., Kohn, M. J., & Manning, C. E. (2015). The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth and Planetary Science Letters, 428, 243–254.
-
Plank, T. (2014). The chemical composition of subducting sediments. In K. Turekian & H. Holland (Eds.), Treatise on Geochemistry ( 2nd ed., vol. 4, pp. 607–629). Elsevier.
-
Plank, T., & Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325–394.
-
Poli, S. (2015). Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nature Geoscience, 8, 633–636.
-
Poli, S., (2016). Melting carbonated epidote eclogites: Carbonatites from subducting slabs. Progress in Earth and Planetary Science
3, 27.
-
Poli, S., & Schmidt, M. W. (1998). The high-pressure stability of zoisite and phase relationships of zoisite-bearing assemblages. Contribution to Mineralogy and Petrology, 130, 162–175.
-
Schmidt, M. W., & Poli, S. (2014). Devolatilization during subduction. In K. Turekian & H. Holland (Eds.), Treatise on Geochemistry ( 2nd ed., vol. 4, pp. 669–701). Elsevier.
-
Skora, S., Blundy, J. D., Brooker, R. A., Green, E.C.R., De Hoog, J.C.M., & Connolly, J.A.D. (2015). Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions. Journal of Petrology, 56(5), 953–980.
-
Sokol, A. G., Kupriyanov, I. N., & Palyanov, Y. N. (2013). Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation. Earth and Planetary Science Letters, 383, 58–67.
-
Susaki, J., Akaogi, M., Akimoto, S. & Shinomura, O. (1985). Garnet perovskite transformation in CaGeO3: In situ X-ray measurements using synchrotron radiation. Geophysical Research Letters, 12, 729–732.
-
Syracuse, E. M., Van Keken, P. E., & Abers, G. A. (2010). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.
-
Taylor, L. A., Logvinova, A. M., Howarth, G. H., Liu, Y., Peslier, A. H., Rossman, G. R., et al. (2016). Low water contents in diamond mineral inclusions: Proto-genetic origin in a dry cratonic lithosphere. Earth and Planetary Science Letters, 433, 125–132.
-
Thomsen, T. B., & Schmidt, M. W. (2008). Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters, 267, 17–31.
-
Tsuno, K., & Dasgupta, R. (2012). The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 subduction. Earth and Planetary Science Letters, 319–320, 185–196.
-
Tumiati, S., Tiraboschi, C., Sverjensky, D. A., Pettke, T., Recchia, S., Ulmer, P., et al. (2017). Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nature Communications, 8, 616.
-
von der Borch, C.C., and the Shipboard Scientific Party. (1974). Site 212. Initial Reports DSDP, 22, 37–83.
-
Watson, E. B., Brenan, J. M., & Baker, D. R. (1990). Distribution of fluids in the continental lithospheric mantle. In M. A. Menzies (Ed.), The Continental Lithospheric Mantle (pp. 111–125). Oxford: Clarendon.
-
Wyllie, P. J., & Boettcher, A. L. (1969). Liquidus phase relationships in the system CaO-CO2-H2O to 40 kilobars pressure with petrological applications. American Journal of Science, 267-A, 489–508.
-
Wyllie, P. J., & Tuttle, O. F. (1959). Melting of calcite in presence of water. American Mineralogist, 44, 453–461.
-
Wyllie, P. J., & Tuttle, O. F. (1960). The system CaO-CO2-H2O and the origin of carbonatites. Journal of Petrology, 1, 1–46.
-
Zhang, J., Li, B., Utsumi, W., & Liebermann, R. C. (1996).
In situ X-ray observations on the coesite stishovite transition: Reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1–10.
-
Zhao, S., Schettino, E., Merlini, M., & Poli, S. (2019). The stability and melting of aragonite: An experimental and thermodynamic model for carbonated eclogites in the mantle. Lithos, 324–325, 105–114.