The First 3D Conductivity Model of the Contiguous United States
Reflections on Geologic Structure and Application to Induction Hazards
Anna Kelbert
Geomagnetism Program, United States Geological Survey, Denver, CO, USA
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Search for more papers by this authorPaul A. Bedrosian
Geology, Geophysics, and Geochemistry Science Center, United States Geological Survey, Denver, CO, USA
Crustal Geophysics, United States Geological Survey, Denver, CO, USA
Search for more papers by this authorBenjamin S. Murphy
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Search for more papers by this authorAnna Kelbert
Geomagnetism Program, United States Geological Survey, Denver, CO, USA
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Search for more papers by this authorPaul A. Bedrosian
Geology, Geophysics, and Geochemistry Science Center, United States Geological Survey, Denver, CO, USA
Crustal Geophysics, United States Geological Survey, Denver, CO, USA
Search for more papers by this authorBenjamin S. Murphy
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Search for more papers by this authorJennifer L. Gannon
Search for more papers by this authorAndrei Swidinsky
Search for more papers by this authorZhonghua Xu
Search for more papers by this authorSummary
Estimation of ground level geoelectric fields has been identified by the National Space Weather Action Plan as a key component of assessment and mitigation of space weather impacts on critical infrastructure. Estimates of spatially and temporally variable electric fields are used to generate statistically based hazard maps and show promise toward monitoring and responding to geomagnetic disturbances in near real-time. One approach to geoelectric field estimation is to employ three-dimensional (3D) Earth conductivity models. These data-constrained conductivity models are the results of regional magnetotelluric inversions based primarily on NSF's Earthscope USArray impedances, which to date cover ∼ 60% of the contiguous United States. Here, we present the first-ever composite conductivity model of the contiguous United States and describe its compilation from 3D regional conductivity models, a global mantle conductivity model, offshore bathymetry, and sediment thickness data. We discuss structures within the conductivity model and how they relate to the complex geologic tapestry of the continent. Finally, we discuss the utility of this synthesis model for estimation and mitigation of geomagnetically induced currents.
REFERENCES
- Ádám, A., E. Prácser, and V. Wesztergom (2012), Estimation of the electric resistivity distribution (EURHOM) in the European lithosphere in the frame of the EURISGIC WP2 project, Acta Geodaetica et Geophysica Hungarica, 47(4), 377–387, doi:10.1556/AGeod.47.2012.4.1.
- Alabi, A., P. Camfield, and D. Gough (1975), The north american central plains conductivity anomaly, Geophysical Journal International, 43(3), 815–833.
- Alekseev, D., A. Kuvshinov, and N. Palshin (2015), Compilation of 3D global conductivity model of the Earth for space weather applications, Earth, Planets and Space, 67(1), 108.
- Alken, P., A. Maute, A. Richmond, H. Vanhamäki, and G. Egbert (2017), An application of principal component analysis to the interpretation of ionospheric current systems, Journal of Geophysical Research: Space Physics, 122, 5687–5708, doi:10.1002/2017JA024051.
- Avdeeva, A., M. Moorkamp, D. Avdeev, M. Jegen, and M. Miensopust (2015), Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix, Geophysical Journal International, 202(1), 464–481.
- Barnes, P. R., D. T. Rizy, B. W. McConnell, F. M. Tesche, and E. R. J. Taylor (1991), Electric Utility Experience with Geomnagnetic Disturbances, Tech. rep., Oak Ridge National Laboratory.
-
Bedrosian, P., and S. Box (2016), Highly conductive horizons in the Mesoproterozoic Belt-Purcell Basin: Sulfidic early basin strata as key markers of Cordilleran shortening and Eocene extension, Geological Society of America Special Papers, 522, 305–339.
10.1130/2016.2522(12) Google Scholar
- Bedrosian, P., and A. Kelbert (2019), Reflections on the geological structure of North America based on magnetotelluric models, Earth and Planetary Science Letters. Manuscript in preparation.
- Bedrosian, P., S. Box, and L. Pellerin (2006), Magnetotelluric transect between the Selkirk Crest, Idaho and the Whitefish Range, Montana to probe deep crustal structure, doi:10.17611/DP/EMTF/USGS/CGGSC/BB06, retrieved from the IRIS database on March 20, 2018.
- Bedrosian, P., A. Kelbert, B. Burton, J. Morris, and C. Blum (2015), Long-period magnetotelluric transfer functions from the Florida Peninsula, doi:10.17611/DP/EMTF/USGS/GEOMAG/FL15, retrieved from the IRIS database on March 20, 2018.
- Bedrosian, P. A. (2007), MT+, integrating magnetotellurics to determine earth structure, physical state, and processes, Surveys in Geophysics, 28(2–3), 121–167.
- Bedrosian, P. A. (2016), Making it and breaking it in the midwest: Continental assembly and rifting from modeling of earthscope magnetotelluric data, Precambrian Research, 278, 337–361.
- Bedrosian, P. A., and D. W. Feucht (2014), Structure and tectonics of the Northwestern United States from EarthScope USArray magnetotelluric data, Earth and Planetary Science Letters, 402, 275–289, doi:10.1016/j.epsl.2013.07.035.
- Bedrosian, P. A., and J. J. Love (2015), Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances, Geophysical Research Letters, 42(23), 10160–10170, doi:10.1002/2015GL066636.
- Beggan, C. D., D. Beamish, A. Richards, G. S. Kelly, and A. W. P. Thomson (2013), Prediction of extreme geomagnetically induced currents in the UK high-voltage network, Space Weather, 11, 407–419, doi:10.1002/swe.20065.
- Blake, S. P., P. T. Gallagher, J. McCauley, A. G. Jones, C. Hogg, J. Campanyà, C. D. Beggan, A. W. P. Thomson, G. S. Kelly, and D. Bell (2016), Geomagnetically induced currents in the Irish power network during geomagnetic storms, Space Weather, 14, 1136–1154, doi:10.1002/2016SW001534.Received.
- Boerner, D., R. Kurtz, and J. Craven (1996), Electrical conductivity and paleo-proterozoic foredeeps, Journal of Geophysical Research: Solid Earth, 101(B6), 13775–13791.
- Bonner, L. R., and A. Schultz (2017), Rapid prediction of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors, Space Weather, doi:10.1002/2016SW001535, 2016SW001535.
- Boteler, D. H., and R. J. Pirjola (2017), Modeling geomagnetically induced currents, Space Weather, 15, 258–276, doi:10.1002/2016SW001499.
- Camfield, P., and D. Gough (1977), A possible Proterozoic plate boundary in North America, Canadian Journal of Earth Sciences, 14(6), 1229–1238.
- Chave, A. D. (2014), Magnetotelluric data, stable distributions and impropriety: An existential combination, Geophysical Journal International, 198, 622–636, doi:10.1093/gji/ggu121.
-
A. D. Chave, and A. G. Jones (Eds.) (2012), The Magnetotelluric Method, pp. 1–552, Cambridge University Press, Cambridge, UK.
10.1017/CBO9781139020138.002 Google Scholar
- Chave, A. D., D. J. Thomson, and M. E. Ander (1987), On the robust estimation of power spectra, coherences, and transfer functions, Journal of Geophysical Research, 92(B1), 633–648.
- Chulick, G. S., and W. D. Mooney (2002), Seismic structure of the crust and uppermost mantle of North America and adjacent oceanic basins: A synthesis, Bulletin of the Seismological Society of America, 92(6), 2478–2492.
- de Groot-Hedlin, C., S. Constable, and K. Weitemeyer (2003–2004), Transfer functions for deep magnetotelluric sounding along the yellowstone-snake river hotspot track, doi:10.17611/DP/EMTF/YSRP/2004, retrieved from the IRIS database on March 20, 2018.
- DeLucia, M. S., B. S. Murphy, S. Marshak, and G. D. Egbert (2019), The Missouri High-Conductivity Belt, revealed by magnetotelluric imaging: Evidence of a trans-lithospheric shear zone beneath the Ozark Plateau, Midcontinent USA? Tectonophysics, 753, 111–123, doi:10.1016/j.tecto.2019.01.011.
- Dickinson, W. R. (2004), Evolution of the North American cordillera, Annual Review of Earth and Planetary Sciences, 32, 13–45.
- Divett, T., M. Ingham, C. D. Beggan, G. S. Richardson, C. J. Rodger, A. W. P. Thomson, and M. Dalzell (2017), Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island s electrical transmission network, Space Weather, 15, 1396–1412.
- Dong, H., W. Wei, G. Ye, S. Jin, A. G. Jones, J. Jing, L. Zhang, C. Xie, F. Zhang, and H. Wang (2014), Three-dimensional electrical structure of the crust and upper mantle in ordos block and adjacent area: Evidence of regional lithospheric modification, Geochemistry, Geophysics, Geosystems, 15(6), 2414–2425.
- Dong, S.-W., T.-D. Li, Q.-T. Lü, R. Gao, J.-S. Yang, X.-H. Chen, W.-B. Wei, Q. Zhou, et al. (2013), Progress in deep lithospheric exploration of the continental china: A review of the sinoprobe, Tectonophysics, 606, 1–13.
- Egbert, G. D., and J. R. Booker (1986), Robust estimation of geomagnetic transfer functions, Geophysical Journal of the Royal Astronomical Society, 87(1), 173–194.
- Egbert, G. D., and A. Kelbert (2012a), Computational recipes for electromagnetic inverse problems, Geophysical Journal International, 189, 251–267, doi:10.1111/j.1365-246X.2011.05347.x.
- Egbert, G. D., and A. Kelbert (2012b), Computational recipes for electromagnetic inverse problems, Geophysical Journal International, 189, 251–167.
-
Evans, R. (2012), Earths electromagnetic environment. 3a. Conductivity of earth materials, in The Magnetotelluric Method: Theory and Practice, edited by A. D. Chave and A. G. Jones, pp. 50–93, Cambridge University Press.
10.1017/CBO9781139020138.004 Google Scholar
- Fernberg, P. (2012), One-Dimensional Earth Resistivity Models for Selected Areas of Continental United States & Alaska, pp. 1–190, EPRI Technical Update 1026430, Palo Alto, CA.
- Fisher, C. M., S. L. Loewy, C. F. Miller, P. Berquist, W. R. Van Schmus, R. D. Hatcher Jr, J. L. Wooden, and P. D. Fullagar (2010), Whole-rock Pb and Sm-Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis, Bulletin, 122(9–10), 1646–1659.
- Fujii, I., and A. Schultz (2002), The {3D} Electromagnetic response of the {E}arth to ring current and auroral oval excitation, Geophysical Journal International, 151(3), 689–709.
- Gilbert, H. (2012), Crustal structure and signatures of recent tectonism as influenced by ancient terranes in the western united states, Geosphere, 8(1), 141–157.
- Gribenko, A., and M. Zhdanov (2017), 3-D inversion of the MT EarthScope data, collected over the East Central United States, Geophysical Research Letters, 44, 11800–11807, doi:10.1002/2017GL075000.
- Groom, R. W., and R. C. Bailey (1989), Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion, Journal of Geophysical Research, 94(B2), 1913–1925.
- Hatcher, R. D., R. Tollo, M. Bartholomew, J. Hibbard, and P. Karabinos (2010), The Appalachian orogen: A brief summary, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir, 206, 1–19.
- Heinson, G. S., N. G. Direen, and R. M. Gill (2006), Magnetotelluric evidence for a deep-crustal mineralizing system beneath the olympic dam iron oxide copper-gold deposit, southern australia, Geology, 34(7), 573–576.
- Hirschmann, M. M., C. Aubaud, and A. C. Withers (2005), Storage capacity of h2o in nominally anhydrous minerals in the upper mantle, Earth and Planetary Science Letters, 236(1–2), 167–181.
-
Horton, J., C. San Juan, and D. Stoeser (2017), The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (ver. 1.1, August 2017), in U.S. Geological Survey Data Series 1052, p. 46, U.S. Geological Survey, doi:10.3133/ds1052.
10.3133/ds1052 Google Scholar
- INTERMAGNET Geomagnetic Data (2013), International Real-time Magnetic Observatory Network.
-
Jones, A. G. (2012), Distortion of magnetotelluric data: Its identification and removal, in The Magnetotelluric Method, edited by A. D. Chave and A. G. Jones, pp. 219–302, Cambridge University Press, Cambridge, UK.
10.1017/CBO9781139020138.008 Google Scholar
- Jones, A. G., J. Ledo, and I. J. Ferguson (2005), Electromagnetic images of the Trans-Hudson orogen: The North American Central Plains anomaly revealed, Canadian Journal of Earth Sciences, 42(4), 457–478.
- Kelbert, A. (2018), The role of global/regional earth conductivity models in natural geomagnetic hazard mitigation, Surveys in Geophysics. Manuscript in preparation.
- Kelbert, A., S. Erofeeva, C. Trabant, R. Karstens, and M. Van Fossen (2018a), Taking magnetotelluric data out of the drawer, Eos, 99, doi:10.1029/2018EO112859
- Kelbert, A., G. D. Egbert, and A. Schultz (2008b), Non-linear conjugate gradient inversion for global EM induction: Resolution studies, Geophysical Journal International, 173(2), 365–381, doi:10.1111/j.1365-246X.2008.03717.x.
- Kelbert, A., A. Schultz, and G. D. Egbert (2009), Global electromagnetic induction constraints on transition-zone water content variations, Nature, 460(7258), 1003–1006.
- Kelbert, A., G. D. Egbert, and A. Schultz (2011), IRIS DMC data services products: EMTF, The Magnetotelluric Transfer Functions, doi:10.17611/DP/EMTF.1.
- Kelbert, A., G. D. Egbert, and C. DeGroot-Hedlin (2012), Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track, Geology, 40(5), 447–450, doi:10.1130/G32655.1.
- Kelbert, A., N. Meqbel, G. D. Egbert, and K. Tandon (2014), ModEM: A modular system for inversion of electromagnetic geophysical data, Computers & Geosciences, 66, 40–53, doi:10.1016/j.cageo.2014.01.010.
- Kelbert, A., C. C. Balch, A. Pulkkinen, G. D. Egbert, J. J. Love, E. J. Rigler, and I. Fujii (2017), Methodology for time-domain estimation of storm time geoelectric fields using the 3-d magnetotelluric response tensors, Space Weather, 15(7), 874–894.
- Khan, A., A. Kuvshinov, and A. Semenov (2011), On the heterogeneous electrical conductivity structure of the Earth??s mantle with implications for transition zone water content, Journal of Geophysical Research, 116(B1), 1–19, doi:10.1029/2010JB007458.
- Kordy, M., P. Wannamaker, V. Maris, E. Cherkaev, and G. Hill (2016), 3-Dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers–Part II: Direct data-space inverse solution, Geophysical Journal International, 204(1), 94–110.
- Lanzerotti, L. J. (1983), Geomagnetic induction effects in ground-based systems, Space Science Reviews, 34, 347–356.
- Laske, G., and G. Masters (1997), A global digital map of sediment thickness, Eos, Transactions, American Geophysical Union, 78(F483), 19–97.
- Lehtinen, M., and R. Pirjola (1985), Currents produced in earthed conductor networks by geomagnetically-induced electric fields, Annales Geophysicae, 3(4), 479–484.
- Lindsay, M., J. Spratt, S. Occhipinti, A. Aitken, M. Dentith, J. Hollis, and I. Tyler (2017), Identifying mineral prospectivity using 3d magnetotelluric, potential field and geological data in the east Kimberley, Australia, Geological Society, London, Special Publications, 453, SP453–8.
- Love, J. J., and C. A. Finn (2011), The USGS Geomagnetism Program and its role in space weather monitoring, Space Weather, 9, S07001, doi:10.1029/2011SW000684.
- Love, J. J., P. A. Bedrosian, and A. Schultz (2017), Down to Earth with an electric hazard from space, Space Weather, 15(5), 658–662.
-
Love, J. J., E. J. Rigler, A. Kelbert, C. A. Finn, P. A. Bedrosian, and C. C. Balch (2018), On the feasibility of real-time mapping of the geoelectric field across North America, Tech. rep., U.S. Geological Survey Open File Report 2018-1043.
10.3133/ofr20181043 Google Scholar
- Lucas, G. M., J. J. Love, and A. Kelbert (2018), Calculation of voltages in electric power transmission lines during historic geomagnetic storms: An investigation using realistic earth impedances, Space Weather.
- Meqbel, N. M., G. D. Egbert, P. E. Wannamaker, A. Kelbert, and A. Schultz (2014), Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data, Earth and Planetary Science Letters, 402, 290–304, doi:10.1016/j.epsl.2013.12.026.
- Munch, F., A. Grayver, A. Kuvshinov, and A. Khan (2018), Stochastic inversion of geomagnetic observatory data including rigorous treatment of the ocean induction effect with implications for transition zone water content and thermal structure, Journal of Geophysical Research: Solid Earth, 123(1), 31–51.
- Murphy, B. S., and G. D. Egbert (2017), Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and Appalachian topographic rejuvenation, Earth and Planetary Science Letters, 462, 66–75.
-
Newitt, L. R., and R. Coles (2007), Observatories in Canada, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, pp. 726–727, Springer.
10.1007/978-1-4020-4423-6_234 Google Scholar
- Ohtani, E., M. Toma, K. Litasov, T. Kubo, and A. Suzuki (2001), Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle, Physics of the Earth and Planetary Interiors, 124(1–2), 105–117.
- Olsen, N., H. Luhr, T. J. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, and S. Choi (2006), CHAOS – A model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data, Geophysical Journal International, 166(1), 67–75, doi:10.1111/j.1365-246X.2006.02959.x.
-
Overbye, T. J., T. R. Hutchins, K. Shetye, J. Weber, and S. Dahman (2012), Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies, in Proc. 2012 North Am. Power Symp., September, Champaign, IL, USA.
10.1109/NAPS.2012.6336365 Google Scholar
- Patro, P. K., and G. D. Egbert (2008), Regional conductivity structure of Cascadia: Preliminary results from 3D inversion of USArray transportable array magnetotelluric data, Geophysical Research Letters, 35, L20311, doi:10.1029/2008GL035326.
- Pellerin, L., J. Peacock, D. Jones, P. Bedrosian, and SAGE students and faculty (2005–2035), Summer of Applied Geophysical Experience (SAGE): Magnetotelluric Transfer Functions in Santa Fe, New Mexico, USA, doi:10. 17611/DP/EMTF/SAGE.MT, retrieved from the IRIS database on March 20, 2018.
- Pulkkinen, A., R. Pirjola, and A. Viljanen (2007), Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems, Earth, Planets and Space, 59, 999–1006.
-
Rasson, J. L. (2007), INTERMAGNET, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, pp. 715–717, Springer, Dordrecht, The Netherlands.
10.1007/978-1-4020-4423-6_227 Google Scholar
-
Reed, J. C., and C. A. Bush (2007), About the Geologic Map in the National Atlas of the United States of America, Citeseer.
10.3133/cir1300 Google Scholar
- Reed, J. C., J. O. Wheeler, and B. E. Tucholke (2005), Geologic Map of North America: Guide, vol. 1, Geological Society of America.
- Reitzel, J., D. Gough, H. Porath, and C. Anderson III (1970), Geomagnetic deep sounding and upper mantle structure in the western united states, Geophysical Journal International, 19(3), 213–235.
- Riddihough, R., C. Finn, and R. Couch (1986), Klamath-Blue Mountain lineament, Oregon, Geology, 14(6), 528–531.
- Robertson, K., G. Heinson, and S. Thiel (2016), Lithospheric reworking at the proterozoic–phanerozoic transition of australia imaged using auslamp magnetotelluric data, Earth and Planetary Science Letters, 452, 27–35.
- Robertson, K., G. Heinson, D. Taylor, and S. Thiel (2017), The lithospheric transition between the Delamerian and Lachlan orogens in western Victoria: New insights from 3D magnetotelluric imaging, Australian Journal of Earth Sciences, 64(3), 385–399.
- Rosenkjaer, G. K., E. Gasperikova, G. A. Newman, K. Arnason, and N. J. Lindsey (2015), Comparison of 3D MT inversions for geothermal exploration: Case studies for Krafla and Hengill geothermal systems in Iceland, Geothermics, 57, 258–274.
- Schultz, A. (1990), On the vertical gradient and associated heterogeneity in mantle electrical-conductivity, Physics of the Earth and Planetary Interiors, 64(1), 68–86.
- Schultz, A. (2010), EMscope: A continental scale magnetotelluric observatory and data discovery resource, Data Science Journal, 8, IGY6–IGY20.
- Schultz, A., G. D. Egbert, A. Kelbert, T. Peery, V. Clote, B. Fry, staff of the National Geoelectromagnetic Facility, and their contractors (2006–2018), USArray TA Magnetotelluric Transfer Functions, doi:10.17611/DP/EMTF/USARRAY/TA, retrieved from the IRIS database on March 20, 2018.
- Selway, K. (2014), On the causes of electrical conductivity anomalies in tectonically stable lithosphere, Surveys in Geophysics, 35(1), 219–257.
- Semenov, A., and A. Kuvshinov (2012), Global 3-D imaging of mantle conductivity based on inversion of observatory C -responses-II . Data analysis and results, Geophysical Journal International, doi:10.1111/j.1365-246X.2012.05665.x.
- Semenov, V. Y., and W. Jozwiak (2006), Lateral variations of the mid-mantle conductance beneath Europe, Tectonophysics, 416, 279–288, doi:10.1016/j.tecto.2005.11.017.
- Shimizu, H., H. Utada, K. Baba, T. Koyama, M. Obayashi, and Y. Fukao (2010), Three-dimensional imaging of electrical conductivity in the mantle transition zone beneath the North Pacific Ocean by a semi-global induction study, Physics of the Earth and Planetary Interiors, 183(1–2), 252–269, doi:10.1016/j.pepi.2010.01.010.
- Siripunvaraporn, W., G. D. Egbert, Y. Lenbury, and M. Uyeshima (2005), Three-dimensional magnetotelluric inversion: Data-space method, Physics of the Earth and Planetary Interiors, 150(1–3), 3–14.
- Smirnov, M. Y., and G. D. Egbert (2012), Robust principal component analysis of electromagnetic arrays with missing data, Geophysical Journal International, 190, 1423–1438, doi:10.1111/j.1365-246X.2012.05569.x.
-
Stanley, W. D., C. Finn, and J. L. Plesha (1987), Tectonics and conductivity structures in the southern washington cascades, Journal of Geophysical Research: Solid Earth, 92(B10), 10,179–10,193.
10.1029/JB092iB10p10179 Google Scholar
- Sun, J., A. Kelbert, and G. D. Egbert (2015), Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data, Journal of Geophysical Research: Solid Earth, 120(10), 6771–6796.
- Toffelmier, D. A., and J. A. Tyburczy (2007), Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States, Nature, 447(7147), 991.
- Trichtchenko, L. (2016), Modelling natural electromagnetic interference in man-made conductors for space weather applications, Annales Geophysicae, 34, 427–436, doi:10.5194/angeo-34-427-2016.
- USGS (1901), USGS Geomagnetism Program Definitive Data. INTERMAGNET. Other/Seismic Network, doi:10.7914/SN/NT.
- Utada, H., T. Koyama, M. Obayashi, and Y. Fukao (2009), A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry, Earth and Planetary Science Letters, 281(3–4), 249–257, doi:10.1016/j.epsl.2009.02.027.
- Viljanen, A., and R. Pirjola (1994), Geomagnetically induced currents in the finnish high-voltage power system, Surveys in Geophysics, 15, 383–408.
- Wannamaker, P., R. Evans, R. McGary, V. Maris, and Q. G. Inc. (2010), Long Period Magnetotelluric Transfer Functions from the CAFE-MT experiment in central Washington, doi:10.17611/DP/EMTF/CAFE-MT.LP, retrieved from the IRIS database on March 20, 2018.
- Wannamaker, P. E. (2005), Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: Fundamental response characteristics and implications for physicochemical state, Surveys in Geophysics, 26(6), 733–765.
- Wannamaker, P. E., D. P. Hasterok, J. M. Johnston, J. A. Stodt, D. B. Hall, T. L. Sodergren, L. Pellerin, V. Maris, W. M. Doerner, K. A. Groenewold, et al. (2008), Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics, Geochemistry, Geophysics, Geosystems, 9(5), 38, doi:10.1029/2007gc001886.
- Wannamaker, P. E., R. L. Evans, P. A. Bedrosian, M. J. Unsworth, V. Maris, and R. S. McGary (2014), Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in cascadia, inferred from magnetotelluric resistivity, Geochemistry, Geophysics, Geosystems, 15(11), 4230–4253.
-
Weidelt, P., and A. D. Chave (2012), The magnetotelluric response function, in The Magnetotelluric Method, edited by A. D. Chave and A. G. Jones, pp. 122–164, Cambridge University Press, Cambridge, UK.
10.1017/CBO9781139020138.006 Google Scholar
- Weigel, R. S. (2017), A comparison of methods for estimating the geoelectric field, Space Weather, 15(2), 430–440, doi:10.1002/2016SW001504, 2016SW001504.
- Whitmeyer, S. J., and K. E. Karlstrom (2007), Tectonic model for the Proterozoic growth of North America, Geosphere, 3(4), 220–259.
- Williams, M. L., K. M. Fischer, J. T. Freymueller, B. Tikoff, A. M. Tréhu, and others (2010), Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020, pp. 1–78, EarthScope.
- Yang, B., G. D. Egbert, A. Kelbert, and N. M. Meqbel (2015), Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data, Earth and Planetary Science Letters, 422, 87–93.
-
Yoshino, T. (2011), Electrical properties of rocks, in Encyclopedia of Solid Earth Geophysics, edited by H. K. Gupta, pp. 270–276, Springer-Verlag, Dordrecht, The Netherlands.
10.1007/978-90-481-8702-7_45 Google Scholar
-
Zhdanov, M. S., A. Gribenko, M. Čuma, and M. Green (2012), Geoelectrical structure of the lithosphere and asthenosphere beneath the northwestern United States, Journal of Geology & Geophysics, 1(2), 106, doi:10.4172/2329-6755.1000106.
10.4172/2329‐6755.1000106 Google Scholar
- Zhdanov, M. S., R. B. Smith, A. Gribenko, M. Cuma, and M. Green (2011), Three-dimensional inversion of large-scale earthscope magnetotelluric data based on the integral equation method: Geoelectrical imaging of the yellowstone conductive mantle plume, Geophysical Research Letters, 38(8), L08307, doi:10.1029/2011GL046953.