Journal Highlights

Earthquake data visualization shows ground motion in real time

On 11 March 2011 a magnitude 9.0 earthquake shattered the seabed off the eastern coast of Japan's Honshu Island. Visualizations of scientific data showing the peaks of a seismograph or maps overlain with the locations and magnitudes of the earthquake and its numerous aftershocks were brought out to help explain the devastation to the public. While dramatic, such displays can be difficult for the public to interpret clearly because people have trouble trying to picture what the recordings of a seismograph might look like on the ground or because they have trouble understanding the logarithmic relationship between earthquake magnitude and energy. Drawing on the three-dimensional position records of a dense web of high-frequency GPS ground receiver stations, Grapenthin and Freymueller (2011) developed an animation of the abrupt horizontal and vertical motions that pulled parts of the country over 4 m to the east and sank large portions of its eastern shore more than half a meter into the sea. The authors suggest that their animations (which can be seen online in the study's auxiliary material) are more intuitive than other forms of earthquake data visualization. In addition to the visualizations' promising explanatory power, the authors suggest that the GPS stations' real-time displacement measurements could, if automated, provide valuable scientific information that could be potentially useful in earthquake early warning systems or in tsunami and aftershock risk estimation.

RSS

Recent Highlights Across AGU Publications

Eos.org: Earth & Space Science News

View more Earth and space science news from Eos

Download the App

New Android App Available!

Google Play Store Logo

Download the Geophysical Research Letters app from the Google Play Store

iOS App for iPad or iPhone

GRL IOS App

Download the Geophysical Research Letters app from the Apple store


AGU Career Center


AGU Unlocked


Featured Special Collection

Early Results: Juno at Jupiter 

Early results from Juno's mission at Jupiter including approach to Jupiter and the first perijove pass (PJ1). Juno's scientific objectives include the study of Jupiter's interior, atmosphere and polar magnetosphere with the goal of understanding Jupiter's origin, formation and evolution. This collection of papers provides early results from Juno's measurements of the gravity and magnetic fields, deep atmospheric microwave sounding, infrared, visible and ultraviolet images/spectra and an array of fields and particles instruments as well as context for the early results with respect to current theory and models of Jupiter's formation and evolution. Topics include both Juno - Jupiter related theoretical models and data analysis as well as collaborative observations made from Earth based assets.