Journal Highlights

Dinosaur-killing asteroid impact may have cooled Earth’s climate more than previously thought

Press Release— 



The Chicxulub asteroid impact that wiped out the dinosaurs likely released far more climate-altering sulfur gas into the atmosphere than originally thought, according to new research.

A new study makes a more refined estimate of how much sulfur and carbon dioxide gas were ejected into Earth’s atmosphere from vaporized rocks immediately after the Chicxulub event. The study’s authors estimate more than three times as much sulfur may have entered the air compared to what previous models assumed, implying the ensuing period of cool weather may have been colder than previously thought.

The new study lends support to the hypothesis that the impact played a significant role in the Cretaceous-Paleogene extinction event that eradicated nearly three-quarters of Earth’s plant and animal species…More

RSS

Recent Highlights Across AGU Publications

Eos.org: Earth & Space Science News

View more Earth and space science news from Eos

Download the App

New Android App Available!

Google Play Store Logo

Download the Geophysical Research Letters app from the Google Play Store

iOS App for iPad or iPhone

GRL IOS App

Download the Geophysical Research Letters app from the Apple store


AGU Career Center


AGU Unlocked


Featured Special Collection

Early Results: Juno at Jupiter 

Early results from Juno's mission at Jupiter including approach to Jupiter and the first perijove pass (PJ1). Juno's scientific objectives include the study of Jupiter's interior, atmosphere and polar magnetosphere with the goal of understanding Jupiter's origin, formation and evolution. This collection of papers provides early results from Juno's measurements of the gravity and magnetic fields, deep atmospheric microwave sounding, infrared, visible and ultraviolet images/spectra and an array of fields and particles instruments as well as context for the early results with respect to current theory and models of Jupiter's formation and evolution. Topics include both Juno - Jupiter related theoretical models and data analysis as well as collaborative observations made from Earth based assets.