Journal Highlights

Reducing Errors in Satellite-Derived Arctic Sea Ice Thicknesses

Research Spotlight—

Salty snow throws off satellite-based estimates of Arctic sea ice thickness by up to 25%. A new method seeks to fix that.

Each September, Arctic sea ice melts to a minimum point and then refreezes again over the winter. As a result of climate change, the Arctic is warming at a rate faster than the rest of the globe, causing more sea ice to melt during the summer than freezes in the winter.

The sea ice minimum has been diminishing by about 13% per decade since 1979 (and perhaps long before that) when scientists first started using satellites to track Arctic sea ice. The 2017 Arctic sea ice minimum was the eighth lowest on record, covering roughly 1.8 million square miles of the Earth’s surface....more

-- Sarah Witman, Freelance Writer,

RSS

Recent Highlights Across AGU Publications

Eos.org: Earth & Space Science News

View more Earth and space science news from Eos

Download the App

New Android App Available!

Google Play Store Logo

Download the Geophysical Research Letters app from the Google Play Store

iOS App for iPad or iPhone

GRL IOS App

Download the Geophysical Research Letters app from the Apple store


AGU Career Center


AGU Unlocked


Featured Special Collection

A Census of Atmospheric Variability from Seconds to Decades 

The atmosphere varies naturally on all length scales from millimeters to thousands of kilometers, and on all time scales from seconds to decades and longer.  This special collection of Geophysical Research Letters synthesizes and summarizes that variability through a phenomenological census.  The collection brings together some of the most influential and definitive papers to have been published in this journal in recent years.  The topics covered include turbulence on time scales of seconds and minutes, gravity waves on time scales of hours, weather systems on time scales of days, atmospheric blocking on time scales of weeks, the Madden–Julian Oscillation on time scales of months, the Quasi-Biennial Oscillation and El Niño–Southern Oscillation on time scales of years, and the North Atlantic, Arctic, Antarctic, Pacific Decadal, and Atlantic Multi-decadal Oscillations on time scales of decades.  The collection is accompanied by a Commentary article, which provides an authoritative, concise, and accessible point of reference for the most important modes of atmospheric variability.

A Census of Atmospheric Variability from Seconds to Decades