Journal Highlights

Ocean Dynamics May Drive North Atlantic Temperature Anomalies

From Eos.org: Research Spotlights—

A new analysis of sea surface temperature and salinity over several decades seeks to settle the debate on which of two mechanisms underlies the Atlantic Multidecadal Oscillation. 

For at least the past 1,000 years, the surface waters of the North Atlantic Ocean have undergone a series of warmer and cooler phases, each lasting about 20 to 40 years and differing by a maximum of about 0.5 °C. Known as the Atlantic Multidecadal Oscillation (AMO), this pattern influences Atlantic hurricanes, Arctic sea ice, and European summer climate, as well as rainfall and droughts worldwide. What’s more, it can obscure or amplify the effects of global climate change. 

Although the AMO is well documented, the underlying mechanism that drives it is unknown and remains up for debate. In a new study, Zhang presents compelling findings in support of the idea that ocean dynamics play a central role in the AMO. 

Past studies, including some copublished by the author, had already indicated an important role for the ocean in powering the AMO. These studies propose that large-scale ocean circulation underpins the AMO. However, ongoing debate and recent studies suggest that stochastic atmospheric white noise is the main driver of the pattern. 

In an effort to settle the debate, the author investigated several decades’ worth of monthly temperature and salinity observations for the sea surface and subsurface of the subpolar North Atlantic, the region with the most extreme temperature anomalies seen in the AMO. The author also examined the simulations using a fully coupled climate model known as Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1. 

The author’s analysis revealed key statistical features of the AMO that are not adequately explained by atmospheric mechanisms. Instead, she found that the key AMO features she identified are linked with the Atlantic Meridional Overturning Circulation, a major current in which warm, salty water flows northward in the upper Atlantic while colder water flows southward at greater depths. These findings lend support to the ocean dynamics mechanism. 

The debate over what drives the AMO is not yet resolved. Nonetheless, the study provides compelling evidence for the important role of ocean circulation and contributes new insights into the features that characterize the AMO. 

RSS

Recent Highlights Across AGU Publications

Eos.org: Earth & Space Science News

View more Earth and space science news from Eos

Download the App

New Android App Available!

Google Play Store Logo

Download the Geophysical Research Letters app from the Google Play Store

iOS App for iPad or iPhone

GRL IOS App

Download the Geophysical Research Letters app from the Apple store


AGU Career Center


AGU Unlocked


Featured Special Collection

Early Results: Juno at Jupiter 

Early results from Juno's mission at Jupiter including approach to Jupiter and the first perijove pass (PJ1). Juno's scientific objectives include the study of Jupiter's interior, atmosphere and polar magnetosphere with the goal of understanding Jupiter's origin, formation and evolution. This collection of papers provides early results from Juno's measurements of the gravity and magnetic fields, deep atmospheric microwave sounding, infrared, visible and ultraviolet images/spectra and an array of fields and particles instruments as well as context for the early results with respect to current theory and models of Jupiter's formation and evolution. Topics include both Juno - Jupiter related theoretical models and data analysis as well as collaborative observations made from Earth based assets.