Journal Highlights

Volcanic Eruptions Stir an Already Complex Atmosphere

From Eos.org: Research Spotlights

A study of Earth’s atmospheric response to major volcanic eruptions seeks to reconcile contradictions between observations and climate models.

Volcanic eruptions can have an enormous influence on global climate from year to year. Most notably, the sulfuric acid particles from eruptions reflect sunlight and absorb energy radiating from Earth, warming the lower stratosphere while cooling the troposphere. Despite its importance, the atmospheric response to volcanic eruptions is not well characterized. Only two large tropical eruptions have occurred since the beginning of the satellite era, in 1979, and climate models often seem to contradict observations of those eruptions. In a new study, McGraw et al. work to explain this apparent discrepancy.

After the eruptions of El Chichón in 1982 and Mount Pinatubo in 1991, the belt of westerly winds surrounding Antarctica expanded toward the equator. Because of the sample size of only two events, previous studies were unable to conclude whether there was a causal relationship between the eruptions and the atmospheric changes (called a negative Southern Annular Mode, or SAM) that followed.

By analyzing observations of the Mount Pinatubo and El Chichón eruptions alongside 207 model simulations, the team finds that the atmospheric response to volcanic eruptions is a positive SAM, and that the concurrent El Niño during both eruptions may be to blame for why a negative SAM was observed. Their research also shows that the positive SAM response to volcanic eruptions is stronger during La Niña, when the equatorial Pacific Ocean is cooler than usual.

The statistical significance of the scientists’ results relies upon their use of many different simulations. Because internal climate variability is large, the Southern Hemisphere’s atmospheric response to volcanic eruptions could be obscured in any single simulation. Between internal variability and the effects of El Niño and La Niña, the discrepancies between climate models and observations can be accounted for. Earth’s atmosphere is a complicated system, and the response to major tropical volcanic eruptions like Pinatubo, while significant, does not overwhelm its other complexities

-- Leah Crane, Freelance Writer,

RSS

Recent Highlights Across AGU Publications

Eos.org: Earth & Space Science News

View more Earth and space science news from Eos

Download the App

New Android App Available!

Google Play Store Logo

Download the Geophysical Research Letters app from the Google Play Store

iOS App for iPad or iPhone

GRL IOS App

Download the Geophysical Research Letters app from the Apple store


AGU Career Center


AGU Unlocked


Featured Special Collection

Early Results: Juno at Jupiter 

Early results from Juno's mission at Jupiter including approach to Jupiter and the first perijove pass (PJ1). Juno's scientific objectives include the study of Jupiter's interior, atmosphere and polar magnetosphere with the goal of understanding Jupiter's origin, formation and evolution. This collection of papers provides early results from Juno's measurements of the gravity and magnetic fields, deep atmospheric microwave sounding, infrared, visible and ultraviolet images/spectra and an array of fields and particles instruments as well as context for the early results with respect to current theory and models of Jupiter's formation and evolution. Topics include both Juno - Jupiter related theoretical models and data analysis as well as collaborative observations made from Earth based assets.